Improving the Specification and Analysis of Privacy Policies

The RSLingo4Privacy Approach

Alberto Rodrigues da Silva¹, João Caramujo¹, Shaghayegh Monfared¹, Pavel Calado¹
and Travis Breaux²

¹INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
²Institute for Software Research, Carnegie Mellon University, Pittsburgh, U.S.A.

Keywords: Privacy Policy, Privacy-aware Specific Language, Requirements Specification, Quality of Requirements.

Abstract: The common operation of popular web and mobile information systems involves the collection and retention of personal information and sensitive information about their users. This information needs to remain private and each system should show a privacy policy that describes in-depth how the users' information is managed and disclosed. However, the lack of a clear understanding and of a precise mechanism to enforce the statements described in the policy can constraint the development and adoption of these requirements. RSLingo4Privacy is a multi-language approach that intends to improve the specification and analysis of such policies, and which includes several processes with respective tools, namely: (P1) automatic classification and extraction of statements and text snippets from original policies into equivalent and logically consistent specifications (based on a privacy-aware specific language); (P2) visualization and authoring these statements in a consistent and rigorous way based on that privacy-aware specific language; (P3) automatic analysis and validation of the quality of these specifications; and finally (P4) policies (re)publishing. This paper presents and discusses the first two processes (P1 and P2). Despite having been evaluated against the policies of the most popular systems, for the sake of briefness, we just consider the Facebook policy for supporting the presentation and discussion of current results of the proposed approach.

1 INTRODUCTION

Web and mobile information systems increasingly leverage user data that is collected from multiple sources without a clear understanding of data provenance or the privacy requirements that should follow this data. These systems are based on multi-tier platforms in which each “tier” may be owned and operated by a different party, such as cellular and wireless network providers, mobile and desktop operating system manufacturers, and mobile or web application developers. In addition, user services developed on these tiers are abstracted into platforms to be extensible by other developers, such as Google Maps and the Facebook and LinkedIn social networking platforms. Application marketplaces, such as Amazon Appstore, Google Play and iTunes, have also emerged to provide small developers increased access to customers, thus lowering the barrier to entry and increasing the risk of misusing personal information by inexperienced developers or small companies. Therefore, platform and application developers bear increased, shared responsibility to protect user data as they integrate their services into multi-tier ecosystems.

For example in Canada, Europe and the United States, privacy policies, also called privacy notices (or just “policies” for simplicity), have served as contracts between users and their service providers and, in the U.S., these policies are often the sole means to enforce accountability (Breaux and Baumer, 2011). In particular, Google has been found to re-purpose user data across their services in ways that violated earlier versions of their privacy policy (Farrell, 2011); and Facebook’s third-party apps were found to transfer Facebook user data to advertisers in violation of Facebook’s platform policies (Steel and Fowler, 2010). Given the pressure to post privacy policies and the pressure to keep policies honest, companies need tools to align their policies and practices. In this respect, we believe developers need tools to better specify their privacy policies at a requirements and architectual-level of abstraction (i.e., denoting the actors, data types and including restrictions on what data may be collected, how it may be used, to whom it may be transferred and for
what purposes) and that privacy policies only present a subset of this view to the general public. The challenge for these companies is ensuring that developer intentions at different tiers are consistent with privacy requirements across the entire ecosystem. To this end, we conducted a series of studies to formalize a set of privacy-relevant requirements captured from privacy policies.

On the other hand, Requirements Engineering (RE) intends to provide a shared vision and understanding of the system to be developed between business and technical stakeholders (Pohl, 2010; Sommerville and Sawyer, 1997; Robertson, 2006). The adverse consequences of disregarding the importance of the early activities covered by RE are well-known (Emam and Koru, 2008; Davis, 2005). A privacy policy is a technical document that states the multiple privacy-related requirements that a system should satisfy. These requirements are usually defined as ad-hoc natural language statements. Natural language is flexible, universal, and humans are proficient at using it to communicate. Natural language has minimal adoption resistance as a requirements documentation technique (Pohl, 2010; Robertson, 2006). However, although it is the most common and preferred form of requirements representation (Kovitz, 1998), it also exhibits some intrinsic characteristics that often present themselves as the root cause of quality problems, such as incorrectness, inconsistency or incompleteness (Pohl, 2010; Robertson, 2006; Silva, 2014).

The main objective of this research is to improve the understanding and quality of privacy policies by providing a set of languages and tools to align these requirements with their practices, namely by introducing a privacy requirements specification approach into the regular software development process that would allow to align multi-party expectations across multi-tier applications. The relevance of this approach, called RSLingo4Privacy, is demonstrated through the analysis and evaluation of real world privacy policies, namely those posted by the most popular web sites. The results of this research is of paramount importance of the early activities covered by RE are well-known (Emam and Koru, 2008; Davis, 2005). A privacy policy is a technical document that states the multiple privacy-related requirements that a system should satisfy. These requirements are usually defined as ad-hoc natural language statements. Natural language is flexible, universal, and humans are proficient at using it to communicate. Natural language has minimal adoption resistance as a requirements documentation technique (Pohl, 2010; Robertson, 2006). However, although it is the most common and preferred form of requirements representation (Kovitz, 1998), it also exhibits some intrinsic characteristics that often present themselves as the root cause of quality problems, such as incorrectness, inconsistency or incompleteness (Pohl, 2010; Robertson, 2006; Silva, 2014).

The main objective of this research is to improve the understanding and quality of privacy policies by providing a set of languages and tools to align these requirements with their practices, namely by introducing a privacy requirements specification approach into the regular software development process that would allow to align multi-party expectations across multi-tier applications. The relevance of this approach, called RSLingo4Privacy, is demonstrated through the analysis and evaluation of real world privacy policies, namely those posted by the most popular web sites. The results of this research is of paramount relevance and impact both to the industrial as well academic communities by promoting a further rigor related the understanding of the system to be developed between business and technical stakeholders (Pohl, 2010; Robertson, 2006; Silva, 2014). The adverse consequences of disregarding the importance of the early activities covered by RE are well-known (Emam and Koru, 2008; Davis, 2005). A privacy policy is a technical document that states the multiple privacy-related requirements that a system should satisfy. These requirements are usually defined as ad-hoc natural language statements. Natural language is flexible, universal, and humans are proficient at using it to communicate. Natural language has minimal adoption resistance as a requirements documentation technique (Pohl, 2010; Robertson, 2006). However, although it is the most common and preferred form of requirements representation (Kovitz, 1998), it also exhibits some intrinsic characteristics that often present themselves as the root cause of quality problems, such as incorrectness, inconsistency or incompleteness (Pohl, 2010; Robertson, 2006; Silva, 2014).

The results of this research is of paramount relevance and impact both to the industrial as well academic communities by promoting a further rigor related the understanding of the system to be developed between business and technical stakeholders (Pohl, 2010; Robertson, 2006; Silva, 2014). The adverse consequences of disregarding the importance of the early activities covered by RE are well-known (Emam and Koru, 2008; Davis, 2005). A privacy policy is a technical document that states the multiple privacy-related requirements that a system should satisfy. These requirements are usually defined as ad-hoc natural language statements. Natural language is flexible, universal, and humans are proficient at using it to communicate. Natural language has minimal adoption resistance as a requirements documentation technique (Pohl, 2010; Robertson, 2006). However, although it is the most common and preferred form of requirements representation (Kovitz, 1998), it also exhibits some intrinsic characteristics that often present themselves as the root cause of quality problems, such as incorrectness, inconsistency or incompleteness (Pohl, 2010; Robertson, 2006; Silva, 2014).
The Statement is the key concept of the privacy-aware profile. This element describes what rules or actions are specified in a privacy policy, therefore it is considered a privacy requirement. It is also noteworthy that one Statement may refer several services and several privacy data (Service and PrivateData elements respectively). Each Statement can be classified into five different categories, according to its purpose (Caramujo and Silva, 2015): Collection (which data is collected); Disclosure (which data is disclosed and to what parties); Retention (how long data will be stored); Usage (what is the purpose of having the data); and Informative (with just generic information). This approach has been supported by an Eclipse plugin, called “RSLingo4Privacy Studio” and available from its GitHub repository (https://github.com/RSLingo/RSLingo4Privacy).

Figure 1: RSL-IL4Privacy metamodel (partial view).

2.2 Eddy Language

Eddy is a formal language for specifying privacy requirements (Breaux et al., 2014). Eddy is expressed based on Description Logics (DL) (Baader et al., 2003) that allows specifying actors, data, and data-use purpose hierarchies based on the DL subsumption. It also allows to specify the modality (i.e., permission and prohibition) of such data purposes and then automatically detects conflicts between what it is permitted and what it is prohibited. Eddy language is supported by the Eddy engine (on top of an OWL reasoner) available at https://github.com/cmu-relab/eddy.

3 RSLingo4Privacy APPROACH

A privacy policy (PP) is a technical document that states multiple privacy-related requirements that websites and mobile apps should show and respective organizations should satisfy. These requirements are usually defined as ad-hoc natural language statements, meaning that there is not a rigorous and consistent way to specify and validate them. In spite the advantages of natural language as a flexible, universal, and human proficiency at using it to communicate with each other, there are some well-known restrictions such as the difficulty to automatically analyse and validate the quality of those specifications.

RSLingo4Privacy approach supports the specification of privacy policies giving concrete guidance to improve their quality. RSLingo4Privacy includes several processes (supported by respective tools), namely:

- **P1**: automatic text classification and extraction;
- **P2**: visualization and authoring;
- **P3**: analysis and quality validation; and
- **P4**: (re)publishing.

RSLingo4Privacy is a multi-language approach that uses the following privacy-aware languages (as introduced in Section 2): RSL-IL4Privacy and Eddy. Fig. 2 overviews RSLingo4Privacy approach as a top-level BPMN business process diagram.

If a given (ad-hoc natural language) policy exists, the process P1 applies complex text classification and text extraction techniques to automatically produce the equivalent specification in RSL-IL4Privacy (P1 is further discussed in Section 4). In addition or otherwise, if that policy does not exist, the RSLingo4Privacy approach starts directly with process P2 to allow visualizing and authoring the policy in a rigorous and consistent way based on the RSL-IL4Privacy language (P2 is further discussed in Section 5). Process P3 takes as input both RSL-IL4Privacy and Eddy specifications, and provides analysis and validation features, producing, for example an analysis report with errors and warnings that can be taken into consideration during these authoring and validation processes.

Finally, when the quality of the policy specified in RSL-IL4Privacy is appropriated, the process P4 is responsible for producing an improved version of the policy, specified again in natural language but in a more consistent and high-quality manner. This publishing process is based on the Apache POI framework (https://poi.apache.org/).
Due to space constraints this paper focuses the discussion in just the first two processes, i.e. P1 and P2. This approach has been evaluated against the policies of most popular systems; however, for the sake of brevity we just consider some statements taken from the Facebook privacy policy (https://www.facebook.com/policy) for supporting the presentation and discussion of current results in the following sections.

4 TEXT CLASSIFICATION AND EXTRACTION (P1)

One of the goals regarding the privacy policies of popular information systems is to govern users’ personal information by describing a set of actions or rules for managing it in terms of how the company shares, keeps or uses such data. These policies are written using natural language and do not have any specific format attached, i.e., the number of sections and paragraphs, as well as the length or the type of language used, is quite contrasting, varying from one privacy policy to another. Being an exhaustive and very detailed document, privacy policies pose problems for end-users (e.g., poor understanding of the different personal data flows within a policy) but also for developers and service providers (e.g., difficulty in extracting the right requirements from a policy).

This process P1 intends to optimize the process of analysing privacy policies. First, through the automatic classification of the different statements that comprise a policy into a set of five distinct types. Second, by automatically extracting some relevant elements from those classified statements. Both the statement types and relevant elements are defined beforehand in RSL-IL4Privacy.

4.1 Automatic Text Classification

The task of classifying statements according to a given type is truly important under the scope of RSLingo4Privacy, since each kind of statement has different features and raises different concerns. However, doing it manually is very time-consuming and requires a lot of human-effort, which in itself lowers people’s motivation, therefore increasing the probability of making mistakes during the analysis. Streamlining this process by having an automatic classification of the statements in a privacy policy while achieving reliable results is of the utmost importance.

4.1.1 The Classification Model

According to the RSL-IL4Privacy metamodel (see Fig. 1), statement sentences can belong to one of five categories: Collection, Disclosure, Retention, Usage, and Informative. Our goal is to build a classifier that, given a sentence from a specific policy, can determine to which of these it belongs. The classifier architecture is depicted in Fig. 3.
The classifier contains two main components, each containing its own specialized classification model. The Binary Classifier Model is used to determine if a given sentence is of class Informative or not. Informative sentences usually contain very generic text and, thus, can hamper the determination of the remaining classes. For this reason, this first filtering step is taken. Once a sentence is classified as non-Informative, it is passed as input to the MultiClass Classifier Model, which determines its class among the remaining four categories. Even though the main goal of this second classifier is to label a non-informative statement as Collection, Disclosure, Retention and Usage, it also has the ability of determining if a non-informative is “informative”. By doing this specific classification step two times, we get another opportunity to properly classify an informative statement that may have been labelled incorrectly as non-informative by the first classifier.

Each sentence is represented by its constituent words and their TF-IDF weights (Ramos, 2003), after some preprocessing. This preprocessing includes: discarding words with less than 3 characters, pruning words that occur in less than 3 documents and in more than 300 sentences, removal of stopwords, reduction to word stems, and generation of 2-grams (i.e. sequences of two consecutive words). After this preprocessing, the most informative words are selected using a function that assigns – for each word - the coefficients of a hyperplane calculated by a Support Vector Machine (Cortes and Vapnik, 1995) for the Binary classifier and Information Gain (Quinlan, 1986) for the MultiClass classifier. The best results for the Binary classifier were achieved with the 700 words with the highest values, whereas those for the MultiClass classifier were achieved with only 600 words.

4.1.2 Data

One of the biggest problems concerning the automatic classification of privacy policies is the lack of annotated privacy policies available for common use (Ammar et al., 2012). To carry out this experiment, we ourselves collected the statements (i.e., sentences) from 6 privacy policies of well-known websites: Facebook, LinkedIn, Zynga, Dropbox, IMDb and Twitter. We manually classified each statement according to their category and ended up with a dataset comprised of 598 examples. Table 1 summarizes the distribution of examples throughout the various categories.

<table>
<thead>
<tr>
<th>Type</th>
<th>Nr. of Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection</td>
<td>78</td>
</tr>
<tr>
<td>Disclosure</td>
<td>114</td>
</tr>
<tr>
<td>Retention</td>
<td>64</td>
</tr>
<tr>
<td>Usage</td>
<td>92</td>
</tr>
<tr>
<td>Informative</td>
<td>250</td>
</tr>
</tbody>
</table>

4.1.3 Preliminary Results

The system with two classifiers have been tested to measure the solution’s feasibility and some preliminary results are already available. All tests were performed using 5-fold cross-validation. The effectiveness of the proposed system was measured according to the standard metrics of accuracy, precision, recall and the F-score. Table 2 shows the system performance, per statement type, in terms of such evaluation metrics. All values are quite high, particularly those of precision, which illustrates the ability of the system to correctly discriminate between statement types. However, despite being subject to classification by both classifiers, the “informative” type of statements still have a lower precision in comparison with the remaining types.

The proposed solution returned an accuracy value of 84.28% which means that only less than 20% of the total number of statements are wrongly classified. On the other hand, the Binary classifier
Table 2: System performance, per statement type, in terms of precision, recall, and F-score. The last column shows the overall system accuracy.

<table>
<thead>
<tr>
<th>Type</th>
<th>Prec.</th>
<th>Rec.</th>
<th>F-score</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection</td>
<td>84.28%</td>
<td>70.51%</td>
<td>76.78%</td>
<td>84.28%</td>
</tr>
<tr>
<td>Disclosure</td>
<td>90.28%</td>
<td>78.95%</td>
<td>84.41%</td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>92.85%</td>
<td>75.00%</td>
<td>82.98%</td>
<td>84.28%</td>
</tr>
<tr>
<td>Usage</td>
<td>94.38%</td>
<td>72.83%</td>
<td>82.22%</td>
<td></td>
</tr>
<tr>
<td>Informative</td>
<td>67.91%</td>
<td>97.90%</td>
<td>90.19%</td>
<td></td>
</tr>
</tbody>
</table>

on its own has a global accuracy of 82.61%, whereas the MultiClass classifier holds an overall accuracy of 70.73%.

4.2 Automatic Text Extraction

Knowing the type of a statement gives a better insight on the different actions that apply to the users’ personal information. However, it is necessary to automatically extract other pieces of knowledge from a privacy policy, in order to get a more in-depth understanding of how the users’ information is in fact handled and governed.

The disclosure of personal information is a sensitive topic, thus it is crucial to discover the various entities that end up receiving information that is shared by the service provider. In addition, it is also necessary to grasp which information concerning users is after all disclosed, collected and retained. Thus, our priority is to extract, from each sentence, the elements of RSL-IL4Privacy “Recipient” and “PrivateData”. A methodology that allows one to automatically detect these kinds of data, which may not be clearly specified or grouped together in the policy, plays an important role on the process of analysing and validating a privacy policy in RSLingo4Privacy.

Discovery and extraction of such elements will be performed through Conditional Random Fields (CRF) (Lafferty, McCallum and Pereira, 2001). A CRF is a framework for building probabilistic models to segment and label sequence data, i.e., it intends to find a label Y that maximizes the probability P(Y|X) for a given sequence data X. Each attribute of X receives a value from a feature function that associates such attribute with a possible label. Each feature holds a weight that represents its strength for the proposed label (Ceri et al., 2013): positive values mean a good association between the function and the label, negative values mean otherwise, and a value of 0 means that the feature function does not have an influence on the label identification. In short, CRFs provide a powerful and flexible mechanism for exploiting arbitrary feature sets along with dependency in the labels of neighbouring words (Sarawagi, 2008). [This task of entity extraction is still in its initial implementation phase.]

5 VISUALIZATION AND AUTHORING (P2)

As mentioned above, RSL-IL4Privacy allows specifying policies in a rigorous way. However, to provide a good support to both technical and non-technical stakeholders, a visualization and authoring environment is required. Such tool should provide common features that already exist in popular and general-purpose text editors, but also features that are found in language-specific tools such as parsers, linkers, compilers or interpreters. Due to these reasons we decided to implement such environment on the top of the Xtext framework.

5.1 Domain-specific Authoring Tool

Xtext is an open-source framework for developing domain specific languages (DSLs) that covers all aspects of language implementation such as parsers, linkers, compilers, interpreters and full-blown IDE support based on Eclipse (Bettini, 2013; http://xtext.org).

In addition, Xtend code generator can be used with the Xtext DSL to generate code/text to other languages such as Eddy, XML, DOC, and so on. The task of writing the generator is greatly simplified by the fact that Xtext automatically integrates the generator into the Eclipse infrastructure. As soon as running the Xtext grammar, a code generator is created into the runtime project of the DSL, and Java Beans will be defined for each entity of the DSL’s domain model (Bettini, 2013).

The rules of the grammar are defined to describe the key entities and their relations. Each Entity has a name and some properties. Fig. 4 shows the partial RSL-IL4Privacy grammar definition for Collection and Private Data. After defining the grammar, we need to execute the code generator that derives the various language components, generates the parser and some additional infrastructure code.
5.2 Model-to-Model Transformation (RSL-IL4Privacy to Eddy)

A RSL-IL4Privacy to Eddy generator was defined in the context of the Xtext framework. With this feature it is possible to generate Eddy specifications from equivalent RSL-IL4Privacy specifications.

To define this generator we had to find all the matching concepts between both RSL-IL4Privacy and Eddy grammars.

As discussed, a privacy policy specified using RSL-IL4Privacy encompasses a set of privacy elements: “Statement”, “Service”, “Recipient”, “PrivateData” and “Enforcement”. The single definition of a statement (i.e., its description, modality – forbidden or permitted) encloses the various associations with the remaining elements that are, in their turn, defined on the bottom of the privacy policy in RSL-IL4Privacy. A privacy policy in Eddy, on the other hand, is represented with a specification header (“SPEC HEADER”) and the following specification body (“SPEC POLICY”). The header aggregates the prior definitions of three elements: “P” for Purpose, “A” for Actor and “D” for Datum. The statements are then described on the body. Each statement has a modality (“P” indicates permission, “O” indicates obligation and “R” indicates prohibition), the action verb, the Datum, the source (“FROM”), the target (“TO”) and the Purpose (“FOR”). Based on the description of the different elements and keywords from both languages, it is possible to map the following concepts: the “PrivateData” can be considered as Datum, the “Service” as Purpose and the “Recipient” as Actor (target). Since the source (“FROM”) refers to the service provider, there is not a direct match between concepts in the two languages. Some relations between both grammars are clarified in Table 3.

The RSL-IL4Privacy to Eddy converter is defined on the top of the Xtend code generator framework. So, Eddy specifications are automatically created in Eclipse Editor based on equivalent RSL-IL4Privacy specification.

5.3 Simple Example based on the Facebook Policy

The following shows two Facebook’s statements represented in both Ad-hoc NL, RSL-IL4Privacy and Eddy languages. The ad-hoc natural language statements are shown in Fig. 5 and Fig. 6. The type of statement st1 is Collection that specifies what personal information will be collected by the service provider and st19 is a statement of type Disclosure that explicitly defines which information is shared to other external entities or third-parties or, in this case, which information is not shared to those entities.

The action using phrase heuristics (verbs) indicates which action should be assigned (e.g., “collect” indicates a COLLECT action and “share” indicates a TRANSFER action). The modal keywords “will” and “will not” infer the modality of permission and prohibition, respectively. Besides, the datum, purpose and target are clarified on these statements.

The definition of the mentioned statements in Eddy and RSL-IL4Privacy specifications are shown respectively in Fig. 7 and Fig. 8.
Improving the Specification and Analysis of Privacy Policies - The RSLingo4Privacy Approach

Permission

Collect keyword

Datum (Private Data)

We will collect the content and other information you provide when you use our Services, including when you sign up for an account, create or share, and message or communicate with others.

Purpose (Service)

Transfer keyword

Datum (Private Data)

Prohibition

We will not share information that personally identifies you (personally identifiable information is information like name or email address that can by itself be used to contact you or identifies who you are) with advertising, measurement or analytics partners unless you give us permission.

Target (Recipient)

Figure 5: Statement st1 of Facebook Policy.

Figure 6: Statement st19 of Facebook Policy.

Figure 7: Eddy representation for Facebook’s statement St1 and St19.

<table>
<thead>
<tr>
<th>Language</th>
<th>Domain</th>
<th>Abstract Syntax, defined as a…</th>
<th>Concrete Syntax, represented by…</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSL-IL</td>
<td>Generic</td>
<td>Grammar</td>
<td>Textual</td>
<td>Declarative</td>
</tr>
<tr>
<td>RSL-IL4Privacy</td>
<td>Data Privacy</td>
<td>UML Profile + Grammar</td>
<td>Graphic + Textual</td>
<td>Declarative</td>
</tr>
<tr>
<td>Eddy</td>
<td>Data Privacy</td>
<td>Grammar</td>
<td>Textual</td>
<td>OWL-DL</td>
</tr>
<tr>
<td>P3P/APPEL</td>
<td>Web Privacy</td>
<td>XML schema</td>
<td>Textual</td>
<td>Declarative</td>
</tr>
<tr>
<td>KAoS</td>
<td>Generic</td>
<td>DAML (XML schema)</td>
<td>Textual</td>
<td>OWL</td>
</tr>
<tr>
<td>Rei</td>
<td>Generic</td>
<td>Prolog* constructs</td>
<td>Textual</td>
<td>OWL</td>
</tr>
</tbody>
</table>

Table 4: Comparison of privacy-aware specification languages.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Languages</th>
<th>Text Extraction</th>
<th>Visualization & Authoring</th>
<th>Analysis & Validation</th>
<th>Publishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSLingo4 Privacy</td>
<td>RSL-IL4Privacy + Eddy</td>
<td>Yes</td>
<td>Yes (Eclipse xText-based)</td>
<td>Yes (intra and inter policies)</td>
<td>Yes</td>
</tr>
<tr>
<td>Eddy</td>
<td>Eddy</td>
<td>No</td>
<td>Yes (General purpose text editor)</td>
<td>Yes (intra and inter policies)</td>
<td>No</td>
</tr>
<tr>
<td>P3P/APPEL</td>
<td>P3P/APPEL</td>
<td>No</td>
<td>Yes (General purpose text editor)</td>
<td>Yes (inter policies)</td>
<td>No</td>
</tr>
<tr>
<td>KAoS</td>
<td>KAoS</td>
<td>No</td>
<td>Yes (KPAT)</td>
<td>Yes (inter policies)</td>
<td>No</td>
</tr>
<tr>
<td>Rei</td>
<td>Rei</td>
<td>No</td>
<td>Yes (General purpose text editor)</td>
<td>Yes (inter policies)</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 5: Comparison of privacy-aware specification approaches.
6 RELATED WORK

Other approaches and privacy-aware languages for specifying privacy policies can be considered in an analysis of related work, namely P3P/APPel, KAoS, and Rei. Table 4 gives a brief comparison of these languages, also with RSL-IL4Privacy and Eddy included in the context of the RSLingo4Privacy approach. Furthermore, Table 5 provides a comparison of the more high-level perspective concerning the process of privacy policies specification when using the aforementioned languages.

6.1 P3P/Appel

The Platform for Privacy Preferences, P3P, is an XML-based language that allows websites to express their privacy practices in a standard format (http://www.w3.org/TR/P3P). This format intends to provide user agents with the ability to easily access and interpret such practices, hence encoding them in a machine-readable format. APPel (http://www.w3.org/TR/P3P-preferences) complements P3P by specifying a language that describes collections of preferences regarding P3P policies between P3P agents. P3P gives an exhaustive characterization of a policy by defining a set of elements about such policy. However, the lack of a well-defined semantics for P3P lead to an unclear separation between the elements described in a P3P policy and vague definition of what data is collected and retained, and which part of that data is disclosed to external entities.

6.2 KAoS

KAoS is a collection of componentized services compatible with popular agent frameworks (Uszok et al., 2003). KAoS policy services play a very important role because they deal with the whole policy life cycle by allowing the specification,
management, handling of conflicts, and enforcement of such policies within multiple domains. KAoS uses Web Ontology Language (OWL) as a central policy ontology, which allows the definition of the main policy-related concepts but also provides application developers with the possibility of extending and adding application-specific concepts (i.e., specific vocabulary) that may be useful when defining particular policies (e.g., privacy policies). Conflict detection occurs at specification time and relies on algorithms that are embedded into KAoS (Tonti, 2013).

6.3 Rei

The Rei policy language is a logic-based language, modelled on deontic concepts of rights, prohibitions, obligations and dispensations (Kagal et al., 2003). Rei is not tied to any particular application and supports the addition of domain-specific information, hence allowing the specification of different kinds of policies (including privacy policies). The Rei framework provides means to reason about policy specifications but it does not provide an enforcement model (Tonti, 2013). Even though it can detect conflicts, Rei does not have the proper tools for enforcing policies by preventing some entities (i.e., subjects) from performing unauthorized actions, for instance.

Most of the languages discussed in this section were developed with the goal of having a privacy policy written in a machine-readable format that allow one to reason about such policies. However, if we consider such languages within a privacy requirements specification approach, they do not encompass the common case where privacy policies are already written using natural language and the fundamental idea is to come up with an approach that deals with the whole process: get an existing privacy policy, process and extract the desired information and apply the new knowledge producing better versions of the current privacy policy. On the other hand, due to their syntax and semantics, they have no advantages to the final end-users of the systems (with regard to their own understanding of the policy itself) and developers need specific assistance for policy specification and interpretation (Tonti, 2013). For these reasons, these privacy-aware specification languages, although providing mechanisms to analyse and validate policies, lack the flexibility for being used in a more broad approach which contemplates the specification of privacy policies.

7 CONCLUSIONS

This paper proposes and discusses the RSLingo4Privacy approach that intends to improve the specification and analysis of privacy policies. RSLingo4Privacy complements the current state-of-the-art by providing a clear and plain approach for the specification of such requirements with multiple representations while taking into account the importance of having requirements documented in a format as close to natural language as possible. The validation with some case studies showed so far the adequacy of this approach (including its RSL-IL4Privacy and Eddy formal languages and respective tools) for the purpose discussed in the paper. The different representations, for distinct levels of formality, express the flexibility and reliability which is desired for these languages.

RSLingo4Privacy approach includes four key processes with respective tool support. Of these processes only two are discussed in the paper, namely: (P1) the automatic classification of statements and extraction of text snippets from original policies into equivalent specifications, and (P2) the visualization and authoring of these requirements in a consistent and rigorous way based on the RSL-IL4Privacy intermediate language.

Process P1 includes two tasks in sequence. The first task automatically classifies a set of statements into a set of five distinct categories. The second task automatically extracts the relevant elements from the original statements into equivalent RSL-IL4Privacy statements.

On the other hand, Process P2 includes several tasks, mainly related the visualization, authoring, but also syntactic analysis and validation of RSL-IL4Privacy policies. This process is supported by a domain-specific text editor that implements the RSL-IL4Privacy language on the top of the Xtext framework. Consequently, this tool provides relevant features to both technical and non-technical stakeholders in their collaborative work in what concerns the definition, understanding, analysis and (re)publishing of these policies.

The other two processes, i.e. P3 and P4, will be discussed in future publications. In addition, the main public results of this project are available at RSLingo4Privacy’s GitHub repository (https://github.com/RSLingo/RSLingo4Privacy).

Several issues may be considered for future work such as the following. First, more extensive experiments should be achieved to better evaluate the effectiveness of the process P1, particularly in what concerns the automatic text extraction task. Second,
we should research techniques to manually and then automatically evaluate the quality of these privacy policies. For example, how can we evaluate the quality of a specific policy. Further research and guidelines may help companies to properly specify these policies. Third, and consequence from the second issue, we should include the ability to analyze not just one but a set of inter-related policies and automatically identify inconsistencies among the requirements stated in these policies, that increasingly appear in multi-tier systems, in which each tier may be owned and operated by a different party, and raising additional problems such as over-collection and repurposing (Breaux et al., 2015).

ACKNOWLEDGEMENTS
This work was partially supported by national funds under FCT projects UID/CEC/50021/2013, EXCL/EEI-ESS/0257/2012, CMUP-EPB/TIC/0053/2013 and the project TT-MDD-Mindbury/2014.

REFERENCES

Bettini, L., 2013. Implementing Domain-Specific Languages with Xtend and Xtend. Packt Publishing Ltd.

