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Abstract: Loop parallelization and loop vectorization of array-intensive programs are two common transformations ap-
plied by parallelizing compilers to convert a sequential program into a parallel program. Validation of such
transformations carried out by untrusted compilers are extremely useful. This paper proposes a novel algo-
rithm for construction of the dependence graph of the generated parallel programs. The transformations are
then validated by checking equivalence of the dependence graphs of the original sequential program and the
parallel program using a standard and fairly general algorithm reported elsewhere in the literature. The above
equivalence checker still works even when the above parallelizing transformations are preceded by various
enabling transformations except for loop collapsing which changes the dimensions of the arrays. To address
the issue, the present work expands the scope of the checker to handle this special case by informing it of
the correspondence between the index spaces of the corresponding arrays in the sequential and the parallel
programs. The augmented algorithm is able to validate a large class of static affine programs. The proposed
methods are implemented and tested against a set of available benchmark programs which are parallelized
by the polyhedral auto-parallelizer LooPo and the auto-vectorizer Scout. During experiments, a bug of the
compiler LooPo on loop parallelization has been detected.

1 INTRODUCTION

Parallelization and vectorization of loops in a sequen-
tial program are two of the most important transfor-
mations performed by parallelizing compilers. There
is a growing need to verify the correctness of the par-
allelizing transformations as they become more rel-
evant in the prevalent high performance computing
systems. In this paper, we propose a novel method to
generate dependence graphs (DGs) that can be used to
verify the equivalence of the original sequential pro-
gram and the parallelized program. A DG captures
data dependences among array elements in the pro-
gram. Equivalence checking can be performed on the
dependence graph abstractions of the sequential and
the parallel programs.

A DG oriented equivalence checking mechanism
for sequential programs reported in (Verdoolaege
et al., 2012) is sophisticated enough to handle many
loop transformations with recurrences. The method,
however, cannot be applied for validating paralleliz-
ing transformations because their DG construction
mechanism does not apply directly to the transformed
parallel programs. In the present work, we propose

a method of constructing DGs of loop parallelized or
vectorized programs. Like the method described in
(Verdoolaege et al., 2012), our method incorporates
dependence analysis so that the pre-processing steps
to convert an input sequential program and its loop-
parallelized version to the dynamic single assignment
(DSA) forms can be avoided; this is achieved using
an independently devised data-flow analysis method
similar to that proposed in (Collard and Griebl, 1997).
In the example program of Fig. 1(a), loop skewing fol-
lowed by loop interchange are applied to get the par-
allel program of Fig. 1(b) and the proposed method is
able to construct DGs of this program where wait −
signal synchronization statements are not present in
the body of the parallel loop.

In our experimental results section, we have gen-
erated the parallel programs using the parallelizing
compiler LooPo (Griebl and Lengauer, 1996) on the
sequential programs available with the compiler and
PolyBench (version 3.2) (Pouchet, 2012) benchmark
programs. In the process of translation validation,
we have detected a bug of the parallelizing compiler
LooPo.

Vectorization is a compiler transformation that
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(a) (b)

output D[100]
do i = 1,n

do j = 1,n

s1 : A[i][ j] = 5
end do

end do

do i = 2,n−1
do j = 2,n−1

s3 : D[i][ j] = A[i][ j]

s2 : A[i][ j] = (A[i−1][ j]
+A[i][ j−1]+A[i+1][ j]

+A[i][ j+1])

end do
end do

output D[100]
do i = 1,n

do j = 1,n
s1 : A[i][ j] = 5

end do
end do

min(n−1, j−2)
s2 : A[i][ j− i] = (A[i−1][ j− i]

parallel do i = max(2, j−n+1),
do j = 4,n+n−2

+A[i][ j−1− i]+A[i+1][ j− i]
+A[i][ j+1− i])
s3 : D[i][ j− i] = A[i][ j− i]
end parallel do

end do

Figure 1: (a) Source code, (b) Loop parallelized version
of the source code where loop skewing followed by loop
interchange transformations are applied prior to loop paral-
lelization.

transforms loops to vector operations. We propose a
method to construct the DG for a vectorized program.
In this method, the vectorized code (e.g., Fig. 2(b)) is
first converted to its loop parallelized version (e.g.,
Fig. 2(c)) and then its DG is constructed to estab-
lish equivalence with the sequential program (e.g.,
Fig. 2(a)). In the experimental result section we gen-

(a)

S T

(b)

T’

(c)

do i = 1,N
s1: A[i] = B[i]
s2: C[i] = A[i]+B[i]

s3: E[i] =C[i+1]
end do

s′1: A[1:N] = B[1:N]
s′2: E[1 : N] =C[2 : N +1]

s′3: C[1:N] = A[1:N] + B[1:N]

parallel do i = 1,N
s′′1,1: T mp1[i] = B[i]

end parallel do
parallel do i = 1,N

s′′1,2: A[i] = T mp1[i]
end parallel do
parallel do i = 1,N

s′′2,1: T mp2[i] =C[i+1]
end parallel do
parallel do i = 1,N

s′′2,2: E[i] = T mp2[i]
end parallel do
parallel do i = 1,N

s′′3,1: T mp3[i] = A[i]+B[i]
end parallel do
parallel do i = 1,N

s′′3,2: C[i] = T mp3[i]
end parallel do

Figure 2: (a) Sequential code snippet (S), (b) transformed
vectorized code (T ), (c) corresponding parallelized code
(T ′).

erated vectorized programs using a configurable auto-
vectorizer Scout(Krzikalla et al., 2011) which applies
various enabling transformations such as, loop distri-
bution, loop unrolling, loop collapsing, etc., before
applying vectorization. Among the enabling transfor-
mations, loop collapsing cannot be handled by the ex-
isting equivalence checking method. Consider the ex-
ample of Fig. 3. The dimensions of the output arrays
of the source program S is 2 and the same for the loop
parallelized version of the vectorized program T ′ is 1.
Here the method of (Verdoolaege et al., 2012) used
to establish equivalence fails. We resolve this with a

(a)

S
(b)

T

(c)

T’

do i = 1,5
do j = 1,5

s1 : A[i][ j] = B[i][ j]
+C[i j]

end do
end do

+C[i][ j]

s′1 : A[1 : 25] = B[1 : 25]

+C[1 : 25]

s′′1 : A[i j] = B[i j]

parallel do i j = 1,25

end parallel do

Figure 3: (a) Sequential code snippet (S), (b) corresponding
vectorized code after aplication of loop collapsing enabling
transformation (T ), (c) transformed loop parallelized code
(T ′).

novel solution in section 4.1.7. The contributions of
the paper are summarized as follows.
• DG construction methods for loop parallelized

programs are proposed.

• DG construction methods for vectorized programs
are proposed. In the first step, the vectorized pro-
gram is transformed to loop parallelized program;

• The scope of the existing equivalence checking
method has been broadened for validating loop
collapsing followed by loop vectorization trans-
formations.

• All of the above are experimentally supported in
the current paper. During the experimental work,
a bug of the parallelizing compiler LooPo has
been detected.

The paper is organized as follows. Section 2 focuses
on the related work and section 3 describes the class
of programs that can be analyzed using our method.
Section 4 describes the proposed method using for-
mal model as well as illustrative examples. Section 5
presents the experimental results and we conclude in
section 6.

2 RELATED WORK AND
MOTIVATION

Three kinds of parallelisms namely, instruction-level,
thread-level and process-level parallelisms are gener-
ally applied on sequential scalar-handling programs.
The methods of (Karfa et al., 2008), (Kundu et al.,
2010) can be applied for instruction-level paralleliz-
ing transormation and that of (Bandyopadhyay et al.,
2012) for validating thread-level parallelization tech-
niques. None of the above methods, however, applies
to validation of array-intensive programs.

Loop parallelization and loop vectorization are
two most commonly used parallelizing transforma-
tions applied primarily on array-intensive sequen-
tial programs as such programs handle more data-
intensive computations than those carried out by
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scalar-handling programs. In loop parallelization
transformations, which fall under thread-level paral-
lelization techniques, the iterations of a loop are parti-
tioned as threads which concurrently execute on a set
of processors to achieve the data computation of the
loop. To the best of our knowledge, the reported liter-
ature has not addressed the problem of validating par-
allelization or vectorization for array-handling pro-
grams. However, some methods for checking equiv-
alence between two sequential array-handling pro-
grams are reported in (Shashidhar et al., 2005), (Ver-
doolaege et al., 2012); for all of them, the equivalence
is checked using DG based abstractions of the pro-
grams.

The authors of (Krinke, 1998) describe threaded
program dependence graphs (tPDGs) for represent-
ing control and data dependences for concurrent pro-
grams. The available literature (Collard and Griebl,
1997) provides a method for dataflow analysis of
array-handling parallel programs. The current work
uses a method similar to the method of dataflow anal-
ysis for array data structures of data-parallel programs
to construct the DGs for loop parallelized programs.
More precisely, the method of computing maxima i.e.,
finding the exact source of values for each uses of the
program is independently devised (in the method of
costruction of DG for a given CAG in section 4.1.5)
and the proposed method is used to construct DGs for
parallel programs.

3 CLASS OF INPUT PROGRAMS

The algorithm to generate a dependence graph han-
dles programs with the following properties:
1. Subscripts in arrays and expressions in the bounds

of f or-loops are all piecewise affine in the iterator
variables of the enclosing f or-loop.

2. There are no pointer references in the program.
3. The control flow of the program does not depend

on input data i.e., the program has static control
flow. Alternatively, control dependencies have
been converted to data dependencies (Allen et al.,
1983).

It may be noted that none of the above properties are
too restrictive but are common in the literature.

4 PROPOSED APPROACH

In general, two programs are said to be equivalent to
each other if they generate the same outputs given the
same inputs.

To understand the method of construction of DGs
for loop parallelized and vectorized programs, we will
begin by looking into a brief overview of the vocabu-
lary used in the remainder of the section followed by
a detailed description of the proposed method of con-
struction of DGs of loop parallelized and vectorized
programs and enhancement of the equivalence check-
ing method.

4.1 Definitions and Methods

4.1.1 Definition: Access and Access Instances

An access refers to read and write accesses of the
statements present in the program. It depicts the
type (i.e., read or write) of the access and the set
of memory locations it refers to in the program. If
the access α is a read access, then the set of write
accesses which write on some or all of the memory
locations as α are kept in a field called Sα. This field
is later used for dataflow analysis. The accesses are
instantiated by the surrounding loops in the program.

4.1.2 Definition: Conflict Access and Conflict
Access Instance

Two accesses α1 occurring in statement s1 and α2 oc-
curring in statement s2 are conflict accesses if the fol-
lowing three conditions hold simultaneously: (1) both
accesses refer to the same array, (2) type of α1 or α2
or both are write accesses, and (3) they refer to all or
some of the same memory locations. The conflict ac-
cess instances corresponding to α1 and α2 are repre-
sented as (α1(i), α2(i′)), where both α1(i) and α2(i′)
of i−th and i′−th iterations of the loops, respectively
refer to the same array element(s).

4.1.3 Definition: Conflict Access Graph (CAG)

A conflict access graph or CAG of a program P is a
directed graph Cg = (A,EC) where A is the set of ver-
tices and EC is the set of directed edges. The set A
comprises the accesses in P. The edges in EC asso-
ciate the conflict accesses; their directions capture the
dependence between them. In general, for a conflict
access pair (α1, α2), for some of their instances, the
dependence may be from α1 to α2 and for the remain-
ing instances, the dependence may be from α2 to α1;
hence an instance-wise analysis is needed.

Two conflict accesses α1 and α2 belonging to the
vertex set A are connected by an undirected edge if
the order of execution is yet to be determined and
connected by a directed edge 〈α1(i), α2(i′)〉 (〈α2(i′),
α1(i〉) if α1(i) (α2(i′)) executes after α2(i′) (α1(i)).
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Equivalently, an edge 〈α1, α2〉 (〈α2, α1〉) is drawn
and a mapping M〈α1,α2〉 (M〈α2,α1〉), defining the ex-
act access instance-wise dependence of α1 on α2 (α2
on α1) is provided. EC is the set of all such conflict
edges in Cg. A conflict edge can be a RAW (read after
write), WAR (write after read) or WAW (write after
write) edge depending on the type of α1 and α2.
Example 1. [Conflict Access] In statement s2 of
Fig. 1(a), let the two read accesses “A[i - 1][j]” and
“A[i][j - 1]” be denoted as α2,1, α2,2, respectively
(where the first suffix refers to the statement num-
ber and the second suffix refers to the two read ac-
cesses from left to right); the write access “A[i][j]” be
denoted as α2,l where the second suffix l stands for
the left hand side (lhs) of the assignment operation
’=’ in the statement. The other accesses are similarly
interpreted in Fig. 1(a). For example in Fig. 1(a),
the access instances α2,l(2,2), α2,1(3,2) conflict as
they access the same memory location A[2][2]. For all
the conflict access instances (α2,l(i−1, j), α2,1(i, j)),
3≤ i≤ n−1, 2≤ j≤ n−1, of the members of the pair
(α2,l , α2,1), since α2,1(i, j)� α2,l(i−1, j), we say that
there is a RAW dependence of α2,1 on α2,l which is
depicted by the edge 〈α2,1(i, j), α2,l(i−1, j)〉, 3≤ i≤
(n− 1), 2 ≤ j ≤ (n− 1). Similarly the dependences
among the other conflict accesses of Fig. 1(b) are de-
termined.

4.1.4 Definition: Dependence Graph (DG)

A dependence graph is a connected labeled directed
graph G = 〈V,E, I,Vo〉 with vertices V and directed
edges E, each v ∈ V involves a single arithmetic op-
eration f and each e ∈ E captures the dependences
from a vertex to another vertex (or more precisely,
their operations). There is a set of vertices Vo ⊂ V
corresponding to an output arrays (or output opera-
tions) and a set I ⊂ V of vertices corresponding to
input arrays (or input operations).

A vertex v in V is represented by a 3-tuple
〈l, f ,D〉, where f is the operation associated with v,
l is the line number of the program where f occurs,
and D is a set of integers depicting the iteration do-
main of l.

An edge e is represented by a 3-tuple
〈s(e), t(e),Me〉, where s(e)(t(e)) is the source
(target) vertex of e; the third member Me is a map-
ping from some subset of elements of s(e) to that of
t(e). It is to be noted that the DG only represents
RAW dependences of operations.
Example 2. [DG of Programs in Fig. 3(a),
Fig. 3(b)] Fig. 4(a) and Fig. 4(b) show the DGs
corresponding to the programs in Fig. 3(a) and
Fig. 3(c), respectively. In Fig. 4(a), v1 represents the
output vertex and v3, v4 the input vertices. The vertex

v2 represents the addition operation performed in the
statement s1 and the domain Dv1 of v1 is [1 : 5][1 : 5].
The edge 〈v1,v2〉 represents the RAW dependence of
the output array A on the statement s1.

In, B

[1, 5][1, 5]

Out : A

s1,+

s1, C

v1

v2

v3 v4

[1, 5][1, 5]

[1, 5][1, 5]

[1, 5][1, 5]

In, B

Out : A

s1,+

s1, C

[1, 25]

[1, 25]

[1, 25][1, 25]

v′1

v′2

v′3 v′4

{v1(i, j)→ v2(i, j)|1≤ i≤ 5∧1≤ j ≤ 5}
{v2(i, j)→ v3(i, j)|1≤ i≤ 5∧1≤ j ≤ 5}

{v2(i j)→ v4(i j)|1≤ i j ≤ 25}
{v2(i j)→ v3(i, j)|1≤ i j ≤ 25}
{v1(i j)→ v2(i j)|1≤ i j ≤ 25}

{v2(i, j)→ v4(i, j)|1≤ i≤ 5∧1≤ j ≤ 5}

Figure 4: (a) DG of the sequential program of Fig. 3(a), (b)
DG of the vectorized program of Fig. 3(c).

4.1.5 Methods: DG Construction for Loop
Parallelized Programs

The present section describes the DG construction
method for loop parallelized programs.
High Level Method to Construct DG for a Given
Parallel Program
The DG construction procedure for a parallel
program P is outlined in Algorithm 1. It
first obtains the CAG for P using the procedure
ConstructCon f lictAccessGraph. In the next step,
it is processed to obtain the DG by a call to
ConstructDGFromCAG.

Algorithm 1: ConstructDGParallelProgram (P).
Input: The parallel program P
Output: The dependence graph for the program P

1 Let S be the set of statements of P; Let Z be the set of
output array of P;

2 〈Cg, f lag〉 ←ConstructCon f lictAccessGraph (S);
3 if f lag == ”undirectedEdge” then
4 report (”non-determinate program”) and return;

5 else
6 ConstructDG (Z, S, Cg);

Method to Construct CAG for a Given Parallel
Program
The method for construction of the CAG takes the set
of statements of the sequential or parallel program as
input and constructs the CAG containing all the ac-
cesses and the directed edges connecting the conflict
accesses. For sequential programs and for the parallel
programs, the direction of a conflict edge between two
conflict accesses is determined by observing their ex-
ecution order. Method to Construct DG for a Given
CAG
For a sequential program, the order of every pair of
conflict access instances can be determined and it is
represented by directed conflict edges. If the con-
flict access instances are present in different parallel
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threads, then the order can only be determined in pres-
ence of wait− signal synchronization statements. In
the present cotext, wait−signal statements are absent
in the parallel program; hence, the order of execution
of presence of conflict accesses in different threads
(if any) cannot be determined and it is represented by
undirected conflict edge depicting “non-determinate”
program. The field flag in algorithm 1 indicates that.

The following rule is used to decide whether the
two conflict accesses α1(i) and α2(i′) occur in paral-
lel threads or not: suppose, α1(i) and α2(i′) are the
conflict access instances of the transformed parallel
program. Let i = (i1, i2, · · · , ik1−1, ik1 , ik1+1, · · · , ik2 ,
· · · , in) and i′ = (i1, i2, · · · , ik1−1, ik1 +m, i′k1+1, · · · ,
i′k2

, · · · , i′n); thus, k1 is the outermost loop index where
they differ. The accesses occur in the same therad if
and only if the k1-loop is not parallelized.

Returning to Fig. 1(b), for example, consider the
access instances of one of the four pairs (α2,l( j, i),
α2,1( j + 1, i+ 1)), 4 ≤ j + 1 ≤ n+ n - 2, max(2, j -
n+ 1) ≤ i+ 1 ≤ min(n - 1, j - 2). The iterator vec-
tors first differ in the outer loop iterator values and
the outer loop is not parallelized. Hence, the con-
flict access instances are performed sequentially and
the direction of the conflict edge is ascertained to be
〈α2,1( j+ 1, i+ 1), α2,l( j, i)〉. Similarly, the direction
of the rest of the pairs, where α2,l is one of the ac-
cesses, are ascertained.

If the parallel program is not a “non-determinate”
program, then algorithm 1 proceeds to construct the
DG. For each of the output arrays, a DG vertex v is
installed first in the dependence graph. To construct
the DG of the parallel program, three types of RAW
dependence edges are installed — 1) output array ver-
tex to the vertex depicting operation which computes
the values of the array, 2) the vertex depicting opera-
tion to the vertex depicting input array if the array is
one of the operands to the operation, 3) the vertex de-
picting operation to the vertex depicting the same or
other operation which computes the values for the for-
mer. The first type of edges represent the dependence
of the output array elements on the corresponding el-
ements of the operations which compute the values
of the array. The second type of edges represent the
dependence of some operation on the corresponding
elements of the input array. The last type of edges
are borrowed from the CAG of the program. To do
that, the Sα field of each of the read access α is sorted
based on WAW conflict edges of the CAG; this is done
to find the last write operation on the memory location
referred in the corresponding read access. The edges
are installed for each such read access occurring in an
argument position of an operation to the vertex cor-
responding to the operation which is used to compute

the values of the last write access on the same memory
location. This in short depicts our dataflow analysis
technique used to construct the DGs.

4.1.6 Method: DG Construction for Vectorized
Programs

The process of construction of the parallelized version
T ′ from a vectorized code T is as follows. For every
vector instruction s′1 of T , a piece of loop parallelized
code segment is generated in T ′. More precisely, for
a vector statement s′1 in T , two statements s′′1,1 and
s′′1,2, enclosed in two different parallel do loops, are
generated in T ′. If the write access of s′1 in T is
a[l1′,l : h1′,l ], say, then the iteration domains of both
the parallel do loops are generated as l1′,l ≤ i≤ h1′,l
where i is the iterator variable of the parallel do loop.
The generated statement s′′1,1 is an assignment of the
computation performed on the rhs of the statement
s′1 in T to the elements of a temporary array, T mp
say, and the other statement s′′1,2 in T ′ is the assign-
ment statement of the elements of the array T mp to
the corresponding elements of the array occurring in
the lhs of s′1 in T . Consider any read access α1′, j as
b[l1′, j : h1′, j] in the rhs of s′1; then the corresponding
access is assumed as b[i+ l1′, j − l1′,l ] in s′′1,1, where
i is the thread designators for both the parallel loops
introduced in the parallelized version T ′ of the vec-
torized program T . The two statements of the gen-
erated loop parallelized code segment are executed in
two different loops as all the computation in rhs of
the vectorized statement are executed first and they
are assigned to the vector register in parallel fashion
in the next step as per semantics of vectorization.
Example 3. (contd). For example, statement s′2
of Fig. 2(b) is converted to the statements s′′2,1 and
s′′2,2 of Fig. 2(c). Here the iteration domains of both
the parallel do loops are [l1′,l = 1,h1′,l = N]. The
only read access on the rhs of s′2 is transformed to
C[i+ l1′,1− l1′,l ] i.e., C[i+ 1] of the statement s′′2,1 in
T ′.

4.1.7 Method: Vectorization in Presence of
Enabling Transformations

Loop collapsing (Padua and Wolfe, 1986) is one of
the enabling transformations which enables the pro-
cess of parallelization; it transforms a two-nested loop
into a single loop, which is used to increase the effec-
tive vector length for vector machines. For example,
for validating vectorization transformation, the vec-
torized code T is converted to its loop parallelized
version T ′ given in Fig.3. (Note that we have avoided
the usage of temprary array while generating the loop
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parallelized version of Fig. 3(c) from the vectorized
version Fig. 3(b) to avoid distraction from the main
issue.) However, the existing equivalence checking
technique fails right at the begining to establish equiv-
alence between S and T ′ as the dimensionalities of
two input arrays and those of two output arrays mis-
match in S and T ′.

4.1.8 Method: Overview of the Existing
Equivalence Checking Method

The method of checking equivalence of (Verdoolaege
et al., 2012) of two programs takes two DGs as in-
puts. It starts by pairing up the output array vertices
of the two DGs and associating with the pair a goal
Rwant which asserts that each element of the output ar-
ray is computed identically in both the programs. The
process of establishing equivalence is carried out by a
goal reduction process and it is captured by construct-
ing a tree, called equivalence tree (ET). To start with,
the root node r associates the only output nodes of the
DGs with their entire domains captured in Rwant

r . A
node n= 〈v1, v2〉 is made to have a child node c= 〈v′1,
v′2〉 along the DG-edges 〈v1, v′1〉 and 〈v2, v′2〉; Rwant

n
is now propagated (reduced) to Rwant

c which captures
the equality of values of the instances of the functions
associated with v′1 and v′2; the instances and the corre-
sponding subdomains are derived using the mappings
associated with the edges 〈v1, v′1〉 and 〈v2, v′2〉. If the
child creation process leads to a leaf node l with Rwant

l
depicting the goal of proving the equalities of the cor-
responding elements of the input arrays, then the goal
is ascertained to have been met by synthesizing an-
other predicate Rlost

l as /0. Non-empty Rlost
c have to

be synthesized at a leaf node when the non-identical
elements of the input arrays are referred. Non-empty
Rlost predicates are then propagated back to the root
capturing the parts of the output arrays for which the
equality remains unproved.
Validation of Vectorization Preceded by Enabling
Transformations
The following example underlines the fact that for
validation of such transformations, the equivalence
checking module requires as inputs the correspon-
dence of the respective output array index spaces and
that of the input array index spaces which are assumed
to be equivalent in both the programs. For a given cor-
respondence of the output array index spaces, if the
given correspondence of the input array index spaces
is entailed by the predicate Rwant at the leaf nodes,
then Rlost in these leaf nodes are not generated; Oth-
erwise Rlost is generated.
Example 4. [Enhanced Equivalence Check for
Loop Collapsing Followed by Vectorization Fol-
lowed by Loop Parallelization]. In Fig. 4, the DGs

corresponding to the sequential and the parallel pro-
grams of Fig. 3 are shown. The ET of the DGs is
drawn in Fig. 5. Let the correspondence of the out-
put arrays be provided to the equivalence checker as
A[i][ j] is equivalent to A[i j] where i j = (i−1)∗5+ j,
1 ≤ i ≤ 5 and 1 ≤ j ≤ 5; similarly, let the correspon-
dence of the input arrays be provided to the equiva-
lence checker as B[i][ j] is equivalent to B[i j] where
i j = (i− 1) ∗ 5+ j, 1 ≤ i ≤ 5 and 1 ≤ j ≤ 5. So the
proof goal at the root node n1 of the ET in Fig. 5 be-
comes Rwant

n1
= {(i, j) ↔ i j | 1 ≤ i ≤ 5 ∧ 1 ≤ j ≤ 5

∧ 1 ≤ i j ≤ 25 ∧ i j = (i− 1) ∗ 5+ j}, it is eventually
reduced at n3 to Rwant

n3
= {(i, j) ↔ i j | 1 ≤ i ≤ 5 ∧

1≤ j ≤ 5 ∧ 1≤ i j ≤ 25 ∧ i j = (i−1)∗5+ j} which
conforms with the correspondence of the input arrays
provided as input to the equivalence checking mod-
ule. Hence, Rlost

n3
= /0. Similar situation happens for

ET-node n4 also.

5 EXPERIMENTAL RESULTS

The DG construction method described in this paper
has been implemented in C and run on a 1.80-GHz
Intel R© CoreTM i3 processor with 4-GB RAM for 5
benchmarks shown in Table 1.

The sequence of transformations applied for a spe-
cific benchmark is listed in the 3rd column. The lines
of codes in both source and transformed programs are
provided in the 4th and 5th columns, respectively. The
DG construction times of the source and the trans-
formed programs (in seconds) are listed in the 6th and
the 7th columns. The 8th column records the time
taken by the equivalence checking module reported
in (Verdoolaege et al., 2012) when fed with the DGs
of the source and the transformed programs produced
by our modules. The first 2 benchmarks are taken
from the benchmark suite available with a paralleliz-
ing compiler LooPo and they have been parallelized
with this compiler. The last 3 benchmarks are taken
from an available polyhedral benchmark suite Poly-
Bench; they have been parallelized with the LooPo
compiler.

In the 1st benchmark, as shown in Fig. 6, loop
skewing, interchange and parallelization transforma-
tions have been applied on the source program to gen-
erate the transformed program. The source program

computes
n−1
∑

i=0
B[i] +

n−2
∑

i=0

i+1
∑
j=0

A[i][ j] +
n−1
∑

i=n−3

n−1
∑
j=0

A[i][ j].

In this example, the target code does not produce the
same result as the source code. It may be noted that
in both the source and the transformed programs, the
output variable T S1 gets the same value as the vari-
able T S. In the transformed code, if (3 ≤ i ≤ n+ 2)
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v2↔ v′2n2

n3 v3↔ v′3

v4↔ v′4n4

Rwant
n3

= {(i, j)↔ i j|1≤ i≤ 5∧1≤ j ≤ 5∧1≤ i j ≤ 25∧ i j = 5(i−1)+ j}

Rwant
n4

= {(i, j)↔ i j|1≤ i≤ 5∧1≤ j ≤ 5∧1≤ i j ≤ 25∧ i j = 5(i−1)+ j}

Rwant
n1

= {(i, j)↔ i j|1≤ i≤ 5∧1≤ j ≤ 5∧1≤ i j ≤ 25∧ i j = 5(i−1)+ j}

v1↔ v′1n1

Rwant
n2

= {(i, j)↔ i j|1≤ i≤ 5∧1≤ j ≤ 5∧1≤ i j ≤ 25∧ i j = 5(i−1)+ j}

Figure 5: ET of the DGs of Fig. 4.

Table 1: Experiments of Validation of Loop Parallelization preceded by Enabling Transformations. Col. 2 - Applied transfor-
mation for the test case (1 - loop parallelization, 2 - loop interchange, 3 - loop fusion, 4 - loop skewing).

Serial
Number (1) Cases (2) Transformation

Applied (3) Lines of codes DG Construction Time (Sec) Equivalence Checking
Time (Sec) (8)

Src (4) Trans (5) Src (6) Trans (7)
1 adder 4, 3, 2, 1 13 20 0.221 0.255 0.004
2 matmul− imper 2,1 17 17 0.157 0.155 0.004
3 2mm 4, 3, 2, 1 17 14 0.234 0.221 0.004
4 atax 4, 2, 1 20 19 0.245 0.248 0.005
5 covariance 3, 1 30 24 0.286 0.297 0.008

Figure 6: (a) The source code adder.c, (b) The non-
equivalent target code where loop skewing, interchange and
parallelization are applied generated by LooPo.

and (i−3 == j) hold, then the variable T S is updated
twice — first in statements s3 and then in statement s5.
Also, if (3≤ i≤ n+2) and (n≤ i≤ 2n−1) hold, then
T S can be updated in statements s3, s4 and s5 depend-
ing on the values of j. However, in the source code,
for any values of i, T S can be updated only once. This
bug is detected by the equivalence checker although
the parallelizing compiler LooPo generated the paral-
lel code without reporting any error.
Table 2 records the results obtained for vectorization

validation of 4 benchmarks and one example program
borrowed from literature. The benchmark programs
are vectorized by a configurable source-to-source auto
- vectorization tool Scout. Scout provides the means
to vectorize loops using SIMD instructions at source
level. It uses a configuration file to define the tar-
get SIMD architecture and it contains essential infor-
mation such as, vector size etc. We have used con-
figuration files to define the vector instructions for
Intel R©AVX architecture.
The meanings of columns of table 2 are the same as
the meanings of columns of table 1. The first 4 ex-
amples are taken from the benchmark suite available
with the auto - vectorizing compiler Scout; they have
been converted automatically into the corresponding
parallelized versions using the method described in
this work and the DGs are subsequently generated
by the method proposed for loop parallelized pro-
grams. The 5th testcase has been taken from (Padua
and Wolfe, 1986) and loop collapsing is applied man-
ually to generate the transformed code.

6 CONCLUSION

In the present work, we have described a validation
method for loop parallelization and loop vectoriza-
tion which are the most commonly applicable par-
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Table 2: Experiments of Validation of Loop Vectorization preceded by Enabling Transformations. Col. 3 - Applied transfor-
mations for the test case (1 - loop vectorization, 2 - loop collapsing, 3 - loop distribution, 4 - loop unrolling).

Serial
Number (1) Cases (2) Transformation

Applied (3) Lines of codes DG Construction Time (Sec) Equivalence Checking
Time (Sec) (8)

Src (4) Trans (5) Src (6) Trans (7)
1 alias regression 2 3, 1 15 22 0.223 0.245 0.004
2 alias regression 3,1 14 22 0.147 0.125 0.004
3 const expr 3, 1 15 20 0.101 0.114 0.036
4 conditional expr 3, 1 13 26 0.102 0.125 0.035
5 loop collapsing 3, 2, 1 18 21 0.115 0.145 0.005

allelizing transformations by parallelizing compilers.
Our experimental section indicates encouraging re-
sults for some non-trivial benchmarks for both the
transformations. The present work can be extended
in future along the following directions: 1. validation
of other parallelizing transformations such as soft-
ware pipelining applied by parallelizing compilers, 2.
localizing faulty application of enabling transforma-
tions when more than one of them are applied.
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