
Dealing with the Complexity of Model Driven Development with Naked
Objects and Domain-Driven Design

Samuel Alves Soares, Mariela Inés Cortés and Marcius Gomes Brandão
State University of Ceará, Dr. Silas Munguba Avenue, 1700, Fortaleza, Brazil

Keywords: Model-Driven Development, Naked Objects, Domain-Driven Design, Domain Patterns, Design Patterns.

Abstract: The Model-Driven Development aims to the implementation of systems from high-level modeling artifacts,
while maintaining the focus of the development team in the application domain. However, the required models
in this approach become very complex and, in many cases, the developer’s intervention can be required along
the application infrastructure construction, then failing to keep the focus on application domain and could also
be impaired synchronization between code and model. To solve this problem, we propose a tool where the
developer just models the business objects through the use of Domain Patterns and Software Design Patterns,
which is used to generate the application code. A naked object framework is responsible for the system
infrastructure code. The use of the tool benefits the generation of functional applications, while maintaining
the synchronization between code and model along the development.

1 INTRODUCTION

Throughout its evolution, the software engineering
has looking for to abstracting increasingly the
developing work from the computing infrastructure
(Hailpern and Tarr, 2006; Thomas, 2004). The full
focus on the problem domain has been claimed as the
ideal model for the computer systems development
(Pawson, 2004; Budgen, 2003). In this sense, in
the Model-Driven Development (MDD), the design
models are used as primary artifacts in system
development, going beyond to the specification and
design phases (Brambilla et al., 2012; Mohagheghi
and Aagedal, 2007).

However, the construction of a complete software
using the MDD approach requires the definition of
infrastructure aspects, such as user interface (UI) and
persistence technologies, both in the model or code
generated, by taking the focus of the application
domain (Hailpern and Tarr, 2006). As consequence,
it makes the modeling more complex and less
intelligible since several artifacts from a specific
platform must be included (Hailpern and Tarr, 2006;
Thomas, 2004). In addition, the ambiguous nature of
models and the redundancy of the information along
the different visions, makes it difficult to maintenance
and impairs the adoption of MDD in the industry
(Haan, 2008; Hailpern and Tarr, 2006). In order
to solve these questions, complementary approaches

must be considered (Whittle et al., 2013).
In the context of object-oriented development,

the Naked Objects Pattern (NOP) (Pawson, 2004)
promotes focus on the implementation of the domain
objects. Meanwhile, a framework is responsible to
generate all the system infrastructure automatically.
Thus, is possible to create an application based only
on the implementation of the domain objects avoiding
redundancy and replicated information. In other hand,
objects in the domain model can be documented
on the basis of the Domain-Driven Design (DDD)
approach (Evans, 2003).

Considering solutions centered on the application
domain, research show the suitability of NOP in
the context of DDD approach for the development
of robust systems (Haywood, 2009; Läufer, 2008).
Likewise, the utilization of design patterns in
association with DDD features can increase the
productivity of the application development and
maintenance (Nilsson, 2006; Fowler et al., 2003;
Gamma et al., 1995). This association contributes
in the identification of the responsibility of each
class in the application model, in order to facilitate
understanding of the model and their corresponding
implementation code (Nilsson, 2006).

Thus, in view of the problematic of the model-
driven development and the solutions for code
generation and modeling centered on the application
domain we propose a MDD solution whose modeling

528
Soares, S., Cortés, M. and Brandão, M.
Dealing with the Complexity of Model Driven Development with Naked Objects and Domain-Driven Design.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 528-535
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



is based on DDD and software patterns and the full
code of the application domain is generated based on
the NOP to run.

2 THEORETIC REFERENTIAL

2.1 Model-Driven Development

Model-Driven Development (MDD) is a development
methodology that foresees the generation of
executable code starting from high-level models,
or even model execution, enabling developers to
work in higher abstraction level. It promotes the
rapid development of applications and facilitates
the communication among the project members
(Hailpern and Tarr, 2006; Brambilla et al., 2012).

In the counterpart, a useful model artifact in MDD
must be sufficient to execute or require a minimum
intervention to transform it into executable code.
Thus, a complete modeling of the system is required,
including details about the presentation technologies,
for example (Brambilla et al., 2012). It makes the
modeling laborious and result in large and more
complex designs (Hailpern and Tarr, 2006).

The utilization of standards languages such as
the Unified Modeling Language (UML), provides a
uniform notation and favors their utilization for a
wide range of activities. But in return, it becomes
huge, ambiguous semantic and unwieldy, with
redundant information along the diverse diagrams.
Thus, keeping the synchronization and consistency
between them, avoiding information loss, is hard and
hinder the use of MDD in the industry (Haan, 2008;
Hailpern and Tarr, 2006; Thomas, 2004).

In this sense, the use of patterns in the system
modeling enriches the semantics without increasing
complexity to the model, contributing with the
software maintenance (Evans, 2003).

2.2 Naked Objects Pattern

The Naked Objects Pattern (NOP) focuses on the
creation of domain objects to their direct presentation
to the user (Pawson, 2004). The pattern states
that the infrastructure aspects, such as presentation,
persistence and remote communication, must be
supplied by a framework (Haywood, 2009; Pawson,
2004). In this way the software developer is
responsible only for the creation of the domain classes
and their relationships, states and behaviors.

In practice, the creation of a new class in the NOP
presupposes its modeling in terms of attributes and
methods, for example using UML notation (Booch

et al., 2006). Using a suitable template for the code
generation, the application can be executed through
of framework based on NOP (Läufer, 2008). In this
sense, this solution based on NOP becomes adequate
to the problematic pointed in MDD.

However, there are objects in the model need to be
identified as persistent objects or as simply attributes
of other objects, for example. In this sense, DDD
approach and design patterns can be useful.

2.3 Domain-Driven Design

The Domain-Driven Design (DDD) (Evans, 2003) is a
set of principles, techniques and patterns for software
development. The focus of the DDD is the domain,
abstracting infrastructure aspects.

In this context, Domain Patterns aims to identify
the characteristics and responsibilities of each domain
objects in the application in order to create the
Domain Model (Evans, 2003). This identification
can be performed by UML stereotypes (Booch et al.,
2006) or colors (Coad et al., 1999). The main are:

• Entity: an object that maintains continuity, it has
an identity, and it has a life cycle;

• Value Object (VO): an object used to describe
other objects and has no identity concept;

• Service: a class that provides services to objects
and without keeping a state;

• Aggregate: it represents related Entities and VOs
that are treated as a unit. It has a root object;

• Repository: a mechanism to the insertion, removal
and queering of objects abstracting the database.

There are studies that show the usefulness of DDD
approach with NOP in the creation of robust systems
(Haywood, 2009; Läufer, 2008). In this context, the
creation of an application requires the construction
of a Domain Model indicating the Domain Patterns
associated with the classes of the application. In
addition, design patterns (Gamma et al., 1995; Fowler
et al., 2003; Nilsson, 2006) can be used in association
with Domain Patterns in order to solve common
development problems (Nilsson, 2006).

2.4 Design Patterns

Design Patterns are reusable solutions to recurring
problems in the object-oriented software design
(Gamma et al., 1995), and they are an excellent tool to
express the concepts involved in a particular domain
(Buschmann et al., 2007). The design patterns are
divided into three categories: Creational, Structural
and Behavioral (Gamma et al., 1995).

Dealing with the Complexity of Model Driven Development with Naked Objects and Domain-Driven Design

529



Design patterns can be used together with Domain
Patterns to refine the domain model (Nilsson, 2006)
and assist the identification of the responsibility of
each class in the application, in order to facilitate
the model of understanding and generation of the
appropriated code (Läufer, 2008). For example, the
State pattern can be useful to express the various
states associated with an Entity class.

2.5 Patterns of Enterprise Application
Architecture

The Patterns of Enterprise Application Architecture
(PoEAA) (Fowler et al., 2003) were caught along the
development of enterprise object-oriented systems.
These patterns are used to drive the code generation.

The Identity Field pattern, for example, is
associated with an Entity class to link the Entity to
a table in the database. Moreover, the Aggregate is
directly related to the Encapsulate Collection pattern
which ensures the control and consistency between
items and the root object. Thus the necessary methods
in the Encapsulate Collection pattern can be generated
automatically. The concurrency control is treated
with the Coarse-Grained Lock pattern. Finally,
the Business ID pattern (Nilsson, 2006) identifies
properties that are business keys of object and that
ensure the uniqueness of object.

2.6 UI Conceptual Patterns

Despite the possibility of taking the whole application
just creating domain objects and be able to run the
application without to model the infrastructure code,
the NOP can generate only one UI (Pawson, 2004).

UI Conceptual Patterns (Molina et al., 2002b) can
be used to specify UI for independent devices. These
interfaces can be refined using UI Design Patterns, as
well as be used to automatically obtain specific UI
prototypes for various devices. These patterns are
composed of simple patterns and they are categorized
into four types, namely: Service Presentation,
Instance Presentation, Population Presentation and
Master-Details Presentation (Molina et al., 2002a).

Through these patterns the developer can
customize the view of the objects to the user via
multiple visions without having to deal directly with
UI infrastructure code. The Naked Objects View
Language (NOVL) (Brandão et al., 2012a) allows the
framework based on NOP manages various visions
for the same object based on the UI Conceptual
Patterns.

3 RELATED WORK

In general, the modeling tools work with visual
modeling, such as UML, in order to help in
the software development activities. Many seek
to support MDA (Kleppe et al., 2003) as the
creation of platform independent models and
subsequent code generation in an object-oriented
programming language. Examples of tools with
these characteristics are: Enterprise Architect (EA)1,
Modelio2, Objecteering3, and objectiF4, Such
modeling tools support code generation, however
little or no support is provided for the generation of
infrastructure code.

Some of these tools support the creation of
templates to support the automatic generation of
the infrastructure code. However, synchronization
problems can arise and manual alterations can be
required. Another limitation relates to relationships
between diagrams, for example as denote the
association between a dynamic diagram that
modeling the behavior of a class’s operation.

The lack of a tool to support the development
of the application model infrastructure in integrated
way, turns the development using the MDD approach
complex, leading to possible incompatibilities
between the tools used in the process (Alford,
2013). On the other hand, MDD projects focused
on mechanisms to support model to model and
model to code transformations, considering as a
starting point models created from different modeling
tools. Examples of these projects are AndroMDA5,
BaseGen6, Jamda7 and openMDX8.

With creation of the complete models, MDD
frameworks are able to create the business classes and
infrastructure of the complete system. However, after
that, any change in the model may need for manual
intervention to avoid the overwritten of existent code.
In addition, considering that the generation of the
application is often based on layered architecture,
changes to the domain layer can lead to alterations
in other layers (Pawson, 2004).

So, any of the tools or framework cited above
works in a satisfactory way in order to abstract

1EA - http://www.sparxsystems.com.au/products/ea/
2Modeliosoft - https://www.modelio.org/index.php
3Objecteering - http://www.objecteering.com/
4microTOOL objectiF - http://www.microtool.de/en/

objectif-model-driven-development/
5AndroMDA.org - http://www.andromda.org/
6BaseGen - http://sourceforge.net/projects/basegen/
7Jamda Project - http://jamda.sourceforge.net/
8openMDX - http://sourceforge.net/p/openmdx/wiki/

Introduction/

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

530



infrastructure aspects of the application without
generating models and redundant code and an
integrated manner.

4 THE Elihu MDD TOOL

Elihu is an MDD tool dedicated to the development
of enterprise applications through the implementation
of business domain objects. It is based on the
concepts and patterns of DDD, software design
patterns and NOP. Its aim is to create platform-
independent models that contain all the functionality
of the application on domain objects, and regardless
aspects of infrastructure. The generation of user
interfaces, persistence, security, among other things
are possible through the NOP.

In Elihu, as shown in Figure 1, the Domain
Model is created from the DDD Domain Patterns and
software patterns. The Domain Patterns represent
the application building blocks (Evans, 2003) and
they are associated with software patterns to allow
the representation of all the features, operations and
visions of domain objects (Nilsson, 2006). After
modeling the domain objects, templates are applied
to generate the source code according to the desired
language and platform. This source code is then
submitted to a framework based on NOP to run.

Figure 1: Development process using Elihu.

4.1 Elihu’s Metamodel

Elihu’s metamodel (Figure 2) defines the
DomainModel metaclass to represent the application
model. Domain Patterns are defined by metaclasses,
i.e., Aggregate, Entity, Service and ValueObject.
The metaclasses are linked to the DomainModel
and used as the application modeling elements. The
relationships between model elements are defined by
the Association metaclass.

The Classifier metaclass is designed to define
the common characteristics of Entity and VO in an
inheritance relationship. Classifiers have properties,
operations, and may be part of associations.

The Aggregate metaclass defines a set of
Classifiers that behave as one logical unit. There is
a root, which is necessarily an Entity. The Service
metaclass defines an element that provides operations
and does not have state.

A Property metaclass needs to be properly
configured when added to a Classifier, so it
can be interpreted correctly when the application
generating. The main Property’s attributes are: name,
type, scale, length, required, visibility, minValue,
maxValue, transient, mask, readOnly, lower and
upper. Regarding an Operation, its main attributes
are: name, return, body and visibility.

The value of the body attribute of the Operation
metaclass can be informed in textual form or through
behavioral diagrams. Operation may also have input
parameters, as normally happens in object-oriented
languages. Thus, Operation metaclass is associated
to Parameter metaclass in the metamodel, which in
turn inherits from Property metaclass. When the
developer defines an operation’s Parameter, he should
set of the Parameter properties, similarly as Property.

The metamodel also defines relationships between
Classifier and Aggregate metaclasses and software
patterns. The main patterns supported are:

• Business ID (Nilsson, 2006) - it is the
identification of properties that are Entity’s
business keys and that guarantee its uniqueness;

• Presentation (Molina et al., 2002a) - it is the
UI definition of Classifier or Aggregate. It
is represented by metaclasses which contains
attributes corresponding to properties defined to
generate UI, in this case using NOVL;

• Specification (Evans, 2003) - it is the definition
of conceptual specifications of an object, such as
queries based on domain concepts, which can be
reused;

• State (Gamma et al., 1995) - it is the
representation of the states in which an object
goes through during its life cycle. In this case,
a state diagram binding to the Entity metaclass
defines the states and transitions of the object.

This metamodel has been implemented with the
Ecore metamodel language, which is part of Eclipse
Modeling Framework (EMF)9. It is used to create
model application and the modeling information are
used to generate a XMI file (Brambilla et al., 2012).

9EMF - https://www.eclipse.org/modeling/emf/

Dealing with the Complexity of Model Driven Development with Naked Objects and Domain-Driven Design

531



Figure 2: Elihu’s Metamodel.

This file is used in the process of code generation by
templates presented in the next section.

4.2 Elihu’s Code Generation Templates

The Elihu includes templates to support the code
generation of the modeled objects according to
the characteristics and composition of each pattern.
These templates have been created through the
Eclipse plugin Acceleo10. The code generation occurs
from XMI file of the model created by the developer.

The templates generate code in Java programming
language in the structure of Entities Framework that
implements the NOP (Brandão et al., 2012b). Other
templates can be created and added to Elihu to
generate code for other frameworks based on NOP.

The code snippet below refers to the
generateEntityPattern template. This template
defines the rules of code generation from a Entity:

[template public
generateEntityPattern(entity : Entity)]

[file (entity.name.toUpperFirst()
.concat(’.java’), false)]

... package and imports
@Entity
[if (not entity.businessId -> isEmpty())]

//Business ID Pattern
@Table(uniqueConstraints =
{@UniqueConstraint(columnNames =
{[writeUniqueConstraints(entity)/]})})

[/if]
[if (entity.presentations -> size() > 0)]
//Presentation Pattern
@Views({[for (s : Presentation |
entity.presentations) separator(’,\n’)]

10Acceleo - https://eclipse.org/acceleo/

@View(name = "[s.name/]",
title = "[s.title/]",
//Filter Pattern
filters = "[s.filters/]",
//Display Set Pattern
members = "[s.displaySet/]",
//Specification Pattern
namedQuery=
"[s.specification.definition/]",

template="[s.template/]")[/for]})
[/if]
public class [entity.name.toUpperFirst()/]

implements Serializable {
...

[if(not entity.state.oclIsUndefined())]
//State Pattern
[for(t : StateTransition | entity.state

.transitions) separator(’\n’)]
public String [t.name/]() {
[entity.getStateEnum()
.toLowerFirst()/].[t.name/](this);

return "[t.target.name/][entity.name/]";
} [/for] [/if] ...

} [/file] [/template]

For each Entity in the model, the template above
creates a .java file for the class, checks which patterns
are linked to class, and creates the structure of a Java
class with the annotation @Entity of Java Persistence
API (JPA) (Jendrock et al., 2014) to ensure the
persistence of objects of that class.

If the Business ID pattern is linked to the
Entity the template adds the UniqueConstraints
annotation and configures class business keys and
it creates the hashCode and equals methods based
on these business keys (Jendrock et al., 2014).
If the Presentation pattern is linked, the template
adds @Views and @View annotations of Entities
Framework to define UIs with NOVL. Each item

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

532



in the presentations collection represents a UI. If
the Specification pattern is linked, the template adds
@NamedQueries and @NamedQuery annotations of
JPA to query specification of the class (Jendrock et al.,
2014). If the State pattern is linked, the template
creates the class structure for the possible states and
the methods that perform switching entity state in
accordance with the transition rules.

As shown in Section 2.5, there are other patterns
that may be related to the Domain Patterns as Identity
Field, Encapsulate Collection and Coarse-Grained
Lock (Fowler et al., 2003). These patterns do not need
to be added explicitly by the developer in modeling.
They can be automatically generated according to the
characteristic of the modeled object. The code snippet
below shows these cases:

[template public
generateEntityPattern(entity : Entity)]

...
public class [entity.name.toUpperFirst()/]

implements Serializable {
//Identity Field Pattern
@Id @GeneratedValue private Long id;

...
[if (entity.aggregateItem

.oclIsUndefined())]
//Coarse-Grained Lock Pattern
@Version private Timestamp version; [/if]

...
[if (not entity.aggregate

.oclIsUndefined())]
//Encapsulate Collection Pattern
[for (a : Association | entity.outgoing)]
public void add[a.target.name/]() {

[a.target.name/] item =
new [a.target.name/]();

item.set[entity.name/](this);
[a.targetDef.name/].add(item);
numberOf[a.targetDef.name/]++;

} [/if] [/for]
[/if]
[for (a : Association | entity.incoming)]

[if (not entity.aggregateItem
.oclIsUndefined() and entity
.aggregateItem.root = a.source)]

public void remove[a.target.name/]() {
[a.sourceDef.name/].get[a.targetDef
.name.toUpperFirst()/]().remove(this);

[a.sourceDef.name/].setNumberOf[a
.targetDef.name/]([a.sourceDef.name/]
.getNumberOf[a.targetDef.name/]()-1);

} [/if] [/for] ...
} ... [/template]

For all Entity a id property is created, to bind
the entity to a line in the corresponding table in the
database, and is created a property with the annotation
@Version for concurrency treatment (Jendrock et al.,

2014). If the entity is the root of a Aggregate, access
to other elements of aggregation should be controlled
by that entity by the add() and remove() methods and
other properties of control.

Finally, the template generates the properties,
associations and operations of the class. The template
checks the attributes configured by the developer to
the correct mapping of code. The generation of
operations sets the parameters set by the developer
and the method body.

4.3 Example of Operation

In this section, the Elihu metamodel is instantiated to
illustrate its operation.

This application consists of creating an order to
sell products to customers with available credit limit
in the company. The client must be registered with
the identification number, the social identification
number, name and address. The customer’s credit
limit should consider orders unpaid customer. Each
order, in turn, must have the date of creation,
a number and the items for sale with product
identification, quantity of items and value. Must be
identified if a order has been accepted, canceled or
has been paid. It should also be possible to consult
all orders placed by the customer in a specific data.
Figure 3 shows the model created based on these
requirements.

For the application has been created Customer,
Order, Product and OrderLine Entities, Address VO,
associations between Customer and Address, Order
and Customer, Order and OrderLine and OrderLine
and Product, and TotalCreditService Service with
getCurrentCredit method to provide total available
to a customer credit. Also added the properties of
the Entities and the methods of Customer and Order.
Order and OrderLine form an Aggregate where Order
is the root.

As example, Figure 4 shows the setting details of
the number property of Order. Number has been set
as String of ten characters, required and has only one
value. These characteristics are used to generate code,
database and UI, avoiding duplication of validations
and settings by the developer. The necessary changes
in properties are held only at this location and it is
reflected in other points where it is used without the
developer needs to do manual changes.

In the Order Entity has been also added three
Presentations to different user profiles. Figure 5
shows the details of the Presentation ListOfOrders,
which defines the UI regarding query and presentation
of orders. The Filter and Display Set have been
added under the rules of NOVL language, and set

Dealing with the Complexity of Model Driven Development with Naked Objects and Domain-Driven Design

533



Figure 3: Sales order application.

Figure 4: Order’s number property.

the Specification of how the query will be held is the
ListOrders. Presentation Orders defines a UI where
the user can view and add orders and Presentation
AddOrder defines a UI to creating orders.

A state machine for the Order Entity called
StatusOrder has been also created. The states and
transitions are shown in Figure 6, being highlighted
the accept transition, as example, which defines New
state as source and Accepted state as target. The other
transitions are pay of Accepted to Paid and reject of

Figure 5: Presentations of Order Entity.

Figure 6: States of Order.

Accepted to Canceled.
With this complete model created, the application

code can be generated (with patterns, states,
bahaviors, and constraints) and executed. Figure
7 shows Presentation Orders presented to the user.
Figure 7 shows the UI after the user has added two
items to the order and has used the Accept operation.

Necessary changes in application because of
changing requirements or because maintenance must
be performed in the model.

5 CONCLUSION

The software modeling in the context of MDD need
to consider infrastructure aspects during the creation
of classes to generate complete models useful for
the generation of functional software. Consequently,
models became most complex and takes away the
developer’s focus of the application domain

This work presented Elihu, a MDD tool that
includes the utilization of NOP, Domain Patterns and
Design Patterns to create complete models abstracting
the application infrastructure. Thus, developers
can only be concerned to the application domain,
reducing the complexity in system modeling.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

534



Figure 7: Orders UI.

Elihu generates executable applications through
modeling of application domain objects. The model
presents clarity about the purpose of the system due
to the use of patterns. Additionally, the generated
code is also reliable to the system domain and the
developer does not need to change infrastructure
code. In addition, it can change the domain model,
due to changing requirements, and synchronize
automatically with code.

As future work, we propose the creation of
concrete notation to support the visual modeling;
creating of nested aggregates; automatic detection
of the structure of patterns State and Encapsulate
Collection; the inclusion of new patterns in the
metamodel, and the creation of templates to others
NOP frameworks that serve different platforms.

REFERENCES

Alford, R. (2013). An evaluation of model driven
architecture (mda) tools. Master’s thesis, University
of North Carolina Wilmington, Wilmington, NC.

Booch, G., Rumbaugh, J., and Jacobson, I. (2006). UML:
guia do usuário. Campus, Rio de Janeiro.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Morgan &
Claypool Publishers.

Brandão, M., Cortés, M., and Gonçalves, E. J. T. (2012a).
Naked objects view language.

Brandão, M., Cortés, M. I., and Gonçalves, E. J. T. (2012b).
Entities: A framework based on naked objects for

development of transient web transientes. In CLEI-
Latin American Symposium on Software Engineering
Technical, Medellim, volume 4.

Budgen, D. (2003). Software design. Pearson Education, 2
edition.

Buschmann, F., Henney, K., and Schmidt, D. C. (2007).
Pattern-Oriented Software Architecture: On Patterns
and Pattern Languages, volume 5. John Wiley &
Sons, Chichester.

Coad, P., Luca, J. d., and Lefebvre, E. (1999). Java
modeling in color with UML: Enterprise Components
and Process. Prentice Hall.

Evans, E. (2003). Domain-Driven Design: tackling
complexity in the heart of software. Addison Wesley,
Boston.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and
Stafford, R. (2003). Patterns of enterprise application
architecture. Addison-Wesley Professional, Boston.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software. Addison Wesley, Indianapolis.

Haan, J. D. (2008). 8 reasons why model-driven approaches
(will) fail.

Hailpern, B. and Tarr, P. (2006). Model-driven
development: The good, the bad, and the ugly. IBM
systems journal, 45(3):451–461.

Haywood, D. (2009). Domain-driven design using naked
objects. Pragmatic Bookshelf.

Jendrock, E., Cervera-Navarro, R., Evans, I., Haase, K.,
and Markito, W. (2014). The Java EE 7 tutorial.
ORACLE.

Kleppe, A. G., Warmer, J. B., and Bast, W. (2003). MDA
explained: the model driven architecture: practice
and promise. Addison-Wesley Professional.

Läufer, K. (2008). A stroll through domain-driven
development with naked objects. Computing in
Science and Engineering, 10(3):76–83.

Mohagheghi, P. and Aagedal, J. (2007). Evaluating quality
in model-driven engineering. In Proceedings of
the International Workshop on Modeling in Software
Engineering, MISE ’07, pages 6–, Washington, DC,
USA. IEEE Computer Society.

Molina, P. J., Meliá, S., and Pastor, O. (2002a). Just-ui: A
user interface specification model. In Computer-Aided
Design of User Interfaces III, pages 63–74. Springer.

Molina, P. J., Meliá, S., and Pastor, O. (2002b). User
interface conceptual patterns. In Interactive Systems:
Design, Specification, and Verification, pages 159–
172. Springer.

Nilsson, J. (2006). Applying Domain-Driven Design and
patterns - with examples in C# and .NET. Addison
Wesley Professional.

Pawson, R. (2004). Naked Objects. PhD thesis, Trinity
College, Dublin.

Thomas, D. (2004). Mda: Revenge of the modelers or uml
utopia? Software, IEEE, 21(3):15–17.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden,
H., and Heldal, R. (2013). Industrial adoption of
model-driven engineering: are the tools really the
problem? In Model-Driven Engineering Languages
and Systems, pages 1–17. Springer.

Dealing with the Complexity of Model Driven Development with Naked Objects and Domain-Driven Design

535


