
Triple-based Sharing of Context-Aware Composite
Web Applications for Non-programmers

Gregor Blichmann, Carsten Radeck, Robert Starke and Klaus Meißner
Technische Universität Dresden, Dresden, Germany

Keywords: Synchronous Collaboration, Rights Management, Mashups, End User Development.

Abstract: Composite web applications are a promising way to support the long tail of user needs. While most mashup
platforms only support single-user scenarios, CRUISE enables the reconfiguration of multi-user mashups dur-
ing runtime. Thereby, synchronizing different parts of an application based on black-box components from
different vendors causes special challenges for the rights management system. Cause we additionally fo-
cus on non-programmers as target group, an adequate user interface concept is needed. To overcome these
challenges, we present a triple-based rights management concept as well as a corresponding user interface
support. It supports fine-grained sharing of whole applications, single components or UI parts of components
under configurable permissions. Thereby, users can select semantically compatible components during the
collaborative session. The practicability of our concept is validated by a prototypically implementation as
well as a user acceptance test.

1 INTRODUCTION

Within the last years, the number and acceptance of
collaborative web applications rapidly rose in a va-
riety of domains, like synchronous text and graphic
editing or project and document management. Tools,
like those of Google or Zoho, empower users very
well in fulfilling predefined group tasks. But they do
not support an easy adaption of the collaborative ap-
plication to support individual user needs.

The trend of mass customization requires single-
user applications to be adaptable to respect individual
use cases which standard tools do not cover. Mashup
approaches like (Radeck et al., 2013) or (Picozzi,
2013) address this long tail of user needs. End users
without programming skills can build individual ap-
plications by composing heterogeneous components.
Thereby, platforms facilitate recommendation tech-
niques or visually hide applications’ complexity.

However today’s mashup application platforms
offer no or only limited support to use and build such
individual applications synchronously in a group of
users. We argue that combining the two paradigms
seems promising for users to use and adapt individu-
ally created applications for synchronous usage sce-
narios. Mashups following the universal composition
paradigm (Pietschmann, 2009) are composed of self-
contained black-box components which can exchange

data. Parts of such a black-box-based composite web
application (CWA) in form of single components can
easily be shared. This ensures they also work cor-
rectly when being isolated from the rest of the appli-
cation, what can not be guaranteed for traditional built
rich internet applications (RIAs).

But, to enable end users to build CWA for syn-
chronous usage, it first is necessary to define a rights
management concept which is able to handle the spe-
cific requirements of a collaboration based on generic
black-box components. In addition, end users with
low or no programming knowledge require an ade-
quate user interface (UI) metaphor within a graphi-
cal editor to define new or reconfigure existing shar-
ing definitions. These definitions allow other users
to access a certain part of the application with spe-
cific rights. It is necessary to provide awareness about
all participants and their access rights to some parts
of the application. Parts can be either single compo-
nents or also parts of them in form of single UI ele-
ments whereby the rest of the component’s UI is hid-
den. Likewise, users have to be aware about all parts
of their application that were provided by others and
again the rights that are granted for them. In detail,
users have to understand which parts of the applica-
tion they can edit or which they can only observe and
which parts maybe blocked due to privacy needs.

Current platforms for mashup end user develop-

Blichmann, G., Radeck, C., Starke, R. and Meißner, K.
Triple-based Sharing of Context-Aware Composite Web Applications for Non-programmers.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 2, pages 17-26
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

17

ment (EUD) either do not support synchronous col-
laborative applications at all or lack in concepts for
handling various access rights on different parts of a
CWA as well as an adequate UI support.

The contributions of this paper are threefold:
1. Introduction of a triple-based rights management

concept for sharing and collaboratively using
CWA.

2. Presentation of a UI and interaction concept
which allows users without deep technical knowl-
edge to share parts of their application with others
and support them to be aware about all parts they
shared or received by others.

3. Evaluation by a user study based on a prototype as
part of a distributed mashup runtime environment.
The remainder of this paper first discusses the pa-

per’s underlying research questions based on a ref-
erence scenario (Section 2). Section 3 describes the
conceptual foundation of our work. After Section 4
introduces the triple-based rights management, Sec-
tion 5 presents details of the UI support for end users.
Afterwards, Section 6 highlights results of our eval-
uation. Section 8 summarizes the paper and outlines
future work.

2 REFERENCE SCENARIO AND
RESEARCH QUESTIONS

To illustrate underlying research questions, a refer-
ence scenario is presented:

The scientists Peter and Mary are planing to join
a conference in Rome by the help of a collaboratively
used CWA. It includes an event editor, a calender to
store the conference date and duration, a map to dis-
play the conference’s location as well as hotels, and a
hotel search component. After passing the conference
date, duration and location to the calender, the lat-
ter triggers the search for available rooms during the
time of the conference sorted by the distance to the
conference location. Hotels are additionally visual-
ized in the map. To discuss the proposed hotels, Peter
shares the hotel search and map with Mary, which ac-
cepts the invitation and joins. While Peter’s applica-
tion includes three components, Mary’s only the hotel
search and the map. Because Peter provides Alice the
right to make changes, both can adjust the list of ho-
tels, which permanently gets synchronized. Because
Mary is not satisfied with the visual presentation of
the map, she exchanges her local map with an alter-
native from another vendor. Due to their semantic in-
teroperability, the different maps of Peter and Mary
can still be synchronized. In addition, Mary adds a

public transport component to her private part of the
application to ensure the hotels’ reachability without
informing Peter.

Because Peter prefers four-star hotels, he blocks
the corresponding input element on the UI for Al-
ice. Next, he integrates a component which allows the
digital request approval for business trips. After both
filled in the form, Mary likes to ask some colleagues
for verification. Peter allows Mary to re-share the
component with others, but first defines his personal
data to be visually hidden for others, like his corre-
spondent bank account. Mary creates a new group and
shares the component. After a member of the group
gives Peter and Mary hints for cheaper hotels, they re-
voke the sharing with the group and change the hotel
selection.

To support scenarios like these and solve the chal-
lenges mentioned in Section 1 several research ques-
tions have to be tackled: The basic question is,
how to provide users without deep understanding of
programming the possibility to share their individu-
ally created mashup application or parts of it with
other users during runtime for synchronous collab-
orative usage. As target group, we focus on non-
programmers which regularly use the web and are fa-
miliar with the usage of web based applications like
Google Mail or Docs. First, there is a need for a rights
management system which on the one hand is less
complex than existing approaches like in the domain
of operating systems and on the other hand faces the
challenges which have to be tackled to support CWA.
In detail, sharing of applications has to be uniform for
whole applications, single components or even parts
of them, even if the components used not offer col-
laborative features by themselves and have to be syn-
chronized using their public interface description. In
this context, respecting privacy issues in the sense of
blocking parts of the UI during synchronous usage is
also a challenging task when using black-box compo-
nents. Thereby, the system has to guarantee that com-
ponents with partly shared UIs are still usable. Addi-
tionally, the concept has to empower the user to un-
derstand which parts of his application he shared with
other users under which access rights and which parts
are granted to him by others. Also the synchroniza-
tion of semantically compatible components form dif-
ferent vendors causes special needs for a rights man-
agement UI.

Before we present our solution in Section 4 and 5,
we first introduce the foundations of our work in the
next chapter.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

18

3 FOUNDATIONS

Our concept adheres to the universal composition ap-
proach introduced by (Pietschmann, 2009). Thereby,
CWA are built by combining arbitrary components
from all application layers, including data, logic
and UI. Necessary application information, like used
components, communication connections, layout,
screen flows or the adaptive behavior are described
in a platform and technology independent composi-
tion model. A runtime environment interprets this
model and context-sensitively selects suitable compo-
nents from a component repository.

Components are realized as black-boxes and can
encapsulate arbitrary web resources like data feeds,
databases, web services, or UI widgets. All compo-
nents have a public interface comprising operations,
events and properties. Properties are uniquely typed
key value pairs and represent a snipped of a compo-
nent’s inner state. State changes, indicated by events,
can be used to invoke operations by passing a set
of parameters. The component model is realized in
XML by the Semantic Mashup Component Descrip-
tion Language (SMCDL). It declaratively describes
the component’s meta data, like information about
author or price, the already mentioned interface and
the component’s bindings. The latter include refer-
ences to all used frameworks and resources. Within
the SMCDL, the component developer can describe
the component’s functional as well as data semantic
by annotating concepts of third-party ontologies, e. g.,
describing the traveling domain.

Within Composition of Rich User Interface Ser-
vices for Everybody (CRUISE) the model-driven de-
velopment approach has been extended to support dy-
namic application reconfiguration during runtime by
non-programmers. Among other things, the seman-
tic annotations of the SMCDL were extended by ca-
pabilities (Radeck et al., 2013). They can either de-
scribe general functionalities of components or spe-
cific ones of single interface elements, like operations
or properties. Therefore, basically a combination of
activities, like ”Search” or ”Select” and entities, like
”Weather Information” or ”Location” is used. Both
refer to concepts of third-party ontologies. Capabil-
ities can either describe possible user interactions or
system behavior. To represent cause and effect rela-
tions, it is possible to chain them. CSS selectors are
used to establish a link between functional semantic
describing capabilities and the UI by so called view
bindings. To detail, e. g., the cause of a capability,
interaction operators, like ”mouse click” or ”drag”,
can be attached. The extended semantic component
description, for example, is used to establish commu-

nication channels between components from different
vendors which have non-equal but semantically com-
patible interfaces (Radeck et al., 2014).

Amongst others, the CRUISE platform is realized
by a distributed client server runtime environment
(CSR). It uses a centralized architecture to offer, for
example, server-side execution of service components
or server-side coordination of multiple clients in case
of multi-user or multi-device scenarios. As presented
in (Blichmann et al., 2013), the synchronous usage
of CWA is supported by an architecture that blocks
the initial local execution of state changes on each
client to send them to the server first. The server af-
terwards informs all corresponding clients about the
state change and ensures their parallel execution by a
globally synchronized event queue. Following the ad-
vantages of the transparent synchronization paradigm,
we consider that application components are usually
built for single user scenarios and therefore, do nei-
ther provide any functionality for synchronize states,
manage permissions of different users nor present
awareness information. It is supposed, that all of
these features are generically realized by the plat-
form which uses the SMCDL of the components ,
e. g., to synchronize state changes by utilizing proper-
ties. Thereby, we only consider components based on
HTML5 technologies (which are based on a DOM).
Due to their vanishing relevance, plugin-based tech-
nologies, like Flash, are not in scope of our approach.

How users can specify which parts of their CWA
are private and which should be synchronized with
a certain group of collaborating participants is de-
scribed in the next two sections.

4 TRIPLE-BASED RIGHTS
MANAGEMENT

In this section, after defining basic terms and roles
first, the proposed rights management concept for col-
laborative CWA is described in detail. Afterwards, its
runtime support is presented.

4.1 Basic Terms and Roles

To understand the proposed rights management, first,
it has to be clarified which parts of a CWA can be
shared during runtime with participants of the col-
laborative session. As proposed in Section 1, a
major advantage of using universal composition for
synchronous collaboration compared to traditional
CSCW tools is the possibility to share different func-
tional parts of the application with different users.

Triple-based Sharing of Context-Aware Composite Web Applications for Non-programmers

19

We define such arbitrary parts of a CWA as composi-
tion fragments which can for example represent whole
compositions, groups of connected components, sin-
gle components or only parts of them.

Every shared composition fragment, is associated
with exactly one owner. An owner is defined as the
person who added the fragment to the application or
initialized the application in case the fragment equals
the whole composition. Owned fragments can be
edited, removed or shared at any time with any other
user. Thereby, users who are invited by an owner of
an application for synchronous usage, can still ex-
tend this application and receives the ownership for
the extended fragment. As for example presented in
Section 2, an application owned and shared by Pe-
ter, potentially can have multiple composition frag-
ments included, for example in form of single com-
ponents like the public transport component, owned
by Marry. Ownership cannot be restricted by, deleted
by or handed over to somebody.

4.2 Triple-based Sharing Definitions

All composition fragments are by default marked as
private for their owner and, thereby, can only be ac-
cessed and viewed by them no matter whether they
were initially part of the composition or are added
during runtime as long as they are not shared with
somebody.

access control list

permissionobjectsubject

sharing triple1...*

1 1 1

0...*

- single users
- group of users
- public

- edit
- edit and re-share
- view
- view and re-share
- block

- application
- couple of components
- single components
- parts of components

Figure 1: Basic triple scheme.

As presented in Figure 1, the rights management
is based on an access control list (ACL). To grant ac-
cess rights for different collaborating partners, we uti-
lize a set of sharing definitions based on triples which
basically comprise a subject, an object and a permis-
sion. The subject determines the person who I want
to share the part of my application with. It can be
further distinguished in public sharing definitions for
everybody and sharing definitions for groups of users
or single users. The object specifies what the previ-
ously defined subject should be able to access. This
includes all possible composition fragments, like the
whole application or some arbitrary parts of a single

component, like the location of an event or the list
of selected hotels in the hotel component of the ref-
erence scenario (Section 2). Third, the permission is
used to define how subjects can access the object. We
differentiate between the right to only view the shared
composition fragments as well as its state changes and
the right to edit them, e. g., by interacting with the UI.
The latter allows to interact with the UI of the object,
for example by dragging the marker of a map. In gen-
eral, the right to edit includes the right to view. The
chosen terms were proposed by users during our eval-
uation (Section 6) and replaced the previous, more
technical terms consume and contribute.

Within the process of sharing, an inviter is the user
who shares an object with a subject. This can be either
the owner of this composition fragment or a user with
the permission to re-share the objects he received ac-
cess to. The latter can be specified for each single
sharing definition independently and allows users to
share received objects with the permissions they have
(see permissions at Figure 1). The invitee is a per-
son which joins an application based on a previously
received invitation of the inviter.

Due to the usage of CWA where components ex-
change data via a channel-based publish subscribe
mechanism, sharing parts of an application has to take
care of communication channels. Consider the fol-
lowing example. Peter uses and shares a component
which presents the list of hotels based on the selected
location of a map with Mary, but keeps the map as
private. If Peter is changing the marker, his hotel
component will be updated. To updated the compo-
nent of Mary, the platform has to copy the event of
the map and additionally invoke the corresponding
operation ot Mary’s hotel component, even if Mary
does not have a map component at here client. Con-
sequently, users of our target group do not have to ex-
plicitly share communication channels as part of the
sharing definition, because they probably do not know
what they do and which data is transfered. In fact, as
motivated by the example, we assume that all events
on incoming or outgoing channels of a shared com-
ponent will be replicated to all users who received ac-
cess to the component no matter whether the channel
is connected to private or shared components. To add
a channel which has a shared component as subscriber
or publisher, the user has to have at least the right to
edit or has to be owner of the component.

4.3 Process of Sharing

Within the CSR triples are realized by synchronized
ACLs on client and server. The client-side ACL only
stores the triples which are related to this client. These

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

20

include all triples where the corresponding user of
the client is either the inviter or one of the invitees.
Thereby, the client-side ACL is used for the follow-
ing functionalities:

• view, edit or reconfigure parts of the application,

• determine the composition fragments the user is
allowed to share,

• present some awareness information about the
current access right configuration.

The server-side ACL represents triples from all
collaboration partners. This is needed to fulfill the
following two functionalities:

• Routing the upcoming messages from each client
to all clients that are allowed to receive the mes-
sage, e. g., containing information about the state
change of a component.

• Provide a mapping between a sender’s and a re-
ceivers component interface in case of synchro-
nization of differently implemented components.

To enable users to create, reconfigure and delete
triple-based sharing definitions during runtime, the
platform facilitates the following invitation process.
If a user wants to share a composition fragment, he is
able to open a dialog box (see Section 5 for details)
and to define a new or adjust an existing triple. After
the user opens the corresponding UI dialog, the sys-
tem checks his current permissions via the client-side
ACL. All fragments which can not be shared due to
missing access rights are hidden. After its valid cre-
ation, the temporal sharing triple is send to the server
as part of an invitation and marked on the client-side
as to be approved. The server once again checks the
user’s permission to share the proposed triple. If the
invitation is valid, the server requests semantically
equivalent components from the component reposi-
tory for all components part of the object separately
for each subject to address individual user require-
ments. Thereby it facilitates the recommendation sub
system of the CRUISE platform (Radeck et al., 2012)
and attaches the list of alternative usable components
to the invitation. Details according to the calculation
of alternative components are not in scope of this pa-
per. Next, all clients which where part of the invita-
tion’s subject are informed. As soon as the invitation
arrives at a client-side runtime, a pop-up dialog ap-
pears. Therein, the invitee can decide to either reject
or accept the invitation. In case of rejection, an in-
vitation response is send back to the server, informs
the inviter, and causes the deletion of the temporally
created sharing triple. In case a user accepts the in-
vitation, additionally he can choose to either use the
component(s) initially shared by the inviter or to use

at least one of the alternatives presented, like the Bing
Map in the reference scenario (Section 2).

If the original component was selected, the invi-
tation response which is send to the server and for-
warded to the inviter leads to a persisting of the shar-
ing triple at the client of the inviter and invitee as well
as at the sever-side ACL. After finishing the invita-
tion process, the generated sharing triples are used
for example to route upcoming state changes of the
application to all clients which are allowed to receive
them. If the inviter wants to stop the sharing, he ei-
ther can delete the triple using the sharing dialog from
the beginning, or remove the corresponding composi-
tion fragment from his application. In this case, the
composition fragment is deleted by all invitees too,
including the related triples of the ACL. If an invitee
decides to remove a certain composition fragment, it
only will be deleted on his client. All other clients still
can use it. If the invitee stops the sharing by delet-
ing the corresponding triple, the inviter gets asked
whether the other user is still allowed to use a local,
not synchronized copy of the composition fragment.

To support users with no programming skills in
sharing arbitrary composition fragments during run-
time, extended user guidance and UI support is
needed and is discussed in detail in the next section.

5 UI-SUPPORT FOR RIGHTS
MANAGEMENT BY
NON-PROGRAMMERS

To support users of our target group during the shar-
ing process proposed in the last section, an adequate
UI is needed. Therefore, it adheres to the triple
metaphor, which promises the following advantages:
First, it eases the creation of new sharing definitions
while considering the challenges discussed in Sec-
tion 2. Second, it allows simple understanding of de-
fined permissions. Thereby, the UI concept follows a
closed world assumption, i. e. all composition frag-
ments which are not explicitly shared by a sharing
definition are private.

5.1 Triple-based Rights Overview

Figure 2 presents the triple-based overview panel in
screen A, which serves for managing sharing defini-
tions. It is a separate window that overlays the appli-
cation’s UI. The panel basically consists of six parts.
¬ presents statistical information like the number of
triples currently shared, the number of collaborative
users and groups that currently exist as well as infor-

Triple-based Sharing of Context-Aware Composite Web Applications for Non-programmers

21

Figure 2: Prototypically implemented UI for sharing CWAs based on triples.

mation about open invitations. The filter and search
panel enables to search, sort or filter the triples
of previously assigned rights displayed in ± by sub-
ject, object or permission. ® allows users to create
new sharing definitions by visually composing a new
triple. Therefore, the user is guided by a message
panel ° on the right side which includes a stepwise
instruction how to create a new triple. Already de-
fined triples are displayed in a grid-based overview
at the bottom ± and are clustered by subjects. The
latter was one of the features requested by the user
study (Section 6). Thereby, as can be seen by the map
and hotel component of Marry, the top-most triple
summarizes the number of components and rights as-
signed. Initially, this triple is collapsed. Sharings
which are not accepted yet, are greyed out. The size
and amount of the triples displayed depends on the
size of the device’s display the user is currently using.
The presented triples include both, the ones where the
current user is the owner and the ones where the user
is one of the invitees. For each object, information
about the owner is attached.

To present the interaction steps necessary to cre-
ate a new sharing, Figure 2 extends the reference sce-
nario by a weather forecast component. Let us as-
sume, Peter wants to share this component with Marry
and Charlie. After clicking on the plus symbol of the
who area, a panel for selecting suitable collaboration
partners opens ¯. The user can select either a number
of single users currently registered at the platform or
individually defined groups (see screen A). As indi-
cated in screen B, by clicking on the plus symbol be-
low what, a similar panel allows to select all compo-

nents the user is allowed to share. Next, within screen
C, the user can either select edit or view as permission
and additionally can activate the check box to allow
for re-share. Before the user clicks on the share but-
ton, he can test his sharing configuration. Thereby, a
separated window is opened showing an instantiated
copy of the selected components with respect to the
selected permissions. Finally, indicated at screen D,
after Peter clicked on the share button, area ® will
be reseted to its initial state and ± includes the new
triples marked as to be approved.

By hovering the mouse over an existing triple, the
platform allows to delete or reconfigure it. For recon-
figuration, the triple is loaded once again to ®.

As soon as an invitee accepts an invitation, the
triple is displayed without the grey highlighting. If
he rejects, the triple is removed. In both cases a short
notification is presented to the user. If the invitee se-
lects an alternative component, again a notification is
presented. In addition, the triple visualizes this by a
small icon at the area of the object. If a user hovers
the mouse over this icon, the alternative component is
displayed as object.

5.2 Awareness and Live View Support

As a result of our user study (Section 6), users rec-
ommended to integrate an easy to understand access
right representation on the application’s live view.

As indicated by Figure 3, the live view support is
realized by specific click-able icons at the top right
corner of each component. Thereby, three functional-
ities are integrated:

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

22

Figure 3: Live view support for inviters and invitees.

1. A short cut to share the corresponding component.

2. An indicator whether the component was already
shared in general and some details of the specific
collaboration partners and their access rights.

3. A representation that informs which components
or their parts are shared with the current user un-
der certain permissions.

To ease the overview of all components that can
be shared by the user, the icon presented in ¬ is used.
If the user already shared a component, the color
changes to green . On hovering the icon with the
mouse, a small dialog shows all users and their cor-
responding rights ®. By clicking the plus symbol the
user can open the share menu presented in Section
5.1. The same functionality is achieved by directly
clicking on the icon. In both cases, the triple-based
overview starts a new triple creation process and pre-
selects the component as object.

To indicate components that were owned by oth-
ers, the granted access right is represented at the top
right of the component, like for example the presented
icon for the edit right in ¯. If a component for ex-
ample additionally includes parts which are blocked
or parts which are only visible by read-only mode,
a mixed representation is used °, which can be en-
larged by hovering the mouse over this icon ±. If
users again hover the indicators for, e. g., blocked el-
ements, the platform highlights the corresponding ar-
eas of the component’s UI. Therefore, the CSS selec-
tors of the view bindings are used which were referred
by the capabilities that are part of the correspond-
ing object of the triple. If the whole application was
shared, each component of the application includes a
corresponding icon.

Presenting further awareness information about,
e. g., changed access rights are realized by a widget-
based configurable awareness subsystem (Blichmann
et al., 2015) and therefore are not part of this paper.

6 EVALUATION

The proposed rights management system as well es
the corresponding UI support for CWAs were evalu-
ated by a reference implementation within the exist-
ing CRUISE runtime environment (Section 6.1) and a
user acceptance test of this reference implementation
(Section 6.2)

6.1 Prototypical Implementation

The prototype is implemented as extension of the
CSR. The server-side coordination layer uses Enter-
prise Java Beans (EJB) and is implemented as a sin-
gleton for all clients. The client-side is realized by
pure HTML5, CSS and JavaScript (JS) technologies.
Additionally, we use Ext JS1 and JQuery2 to fasten
development. In order to provide a channel-based
web socket communication between client and server,
we use the Apache Apollo framework3.

As proposed earlier, the ACL was implemented
on client-side using JSON and on the server-side us-
ing plain Java. Updates between server and client are
exchanged by dedicated commands and events which
uses the communication channels of Apache Apollo.
The client-side ACL clusters triples by users to al-
low an easy look up for the triple-based overview.
Further, to detect owners of components, beside each
sharing triple, the platform stores an additional triple
with a permission representing the ownership. Each
triple is associated with a state, to indicate, e. g., al-
ready accepted invitations. On server-side, a mapping
for semantically compatible components is necessary.
Thereby, the corresponding triples will be marked as
alternatives. If a state change occurs at one client,
the server can easily determine the components of the
other participants that have to be informed. Poten-
tially necessary data transformations are realized by
the existing mediation infrastructure individually for
each client.

6.2 User Acceptance

We used the Thinking Aloud methodology to conduct
a user study which achieves two main goals: First,
test the general acceptance of the triple metaphor for
sharing applications and their parts. Second, analyze
the usability of the proposed UI concept. Therefore,
paper mockups were used to simulate the latter.

The user study was conducted with the help of ten
male and four female participants including ages from

1https://www.sencha.com/products/extjs
2https://jquery.com/
3https://activemq.apache.org/apollo/

Triple-based Sharing of Context-Aware Composite Web Applications for Non-programmers

23

22 to 47 (average of 28.5). Six participants had no
programming skills, five considered themselves as be-
ginner and three were average-level programmers.

The process was three-staged: First, users get in-
troduced by a video as well as a basic scenario to un-
derstand what mashups are and how they potentially
can ease collaborative work. Second, they where en-
couraged to solve six tasks with increasing complex-
ity by using the paper prototype. The tasks were cre-
ated with the help of the reference scenario in Section
2. The moderator noted all comments and thoughts as
well as updated the prototype based on the desired in-
teractions of the participants. To get a comparable and
standardized result, the participants were asked to fill
in the System Usability Scale (SUS) questionnaire.

The overall results were very positive. Basic UI
structures and metaphors were understood correctly
without further explanations by nearly all participants
(12/14). Three explicitly mentioned the colored sepa-
ration as helpful. We found, that users preferred to use
a share icon placed directly on top of the components
instead using the icon in the main menu bar. This find-
ing caused the extended live view support presented
in Section 5.2. The used icons where understood by
all users quite well. 12 of 14 users were able to se-
lect multiple triple elements without help. Thereby,
we found out that users, probably due to their daily
usage of social networks, often thought in a group-
oriented way. This underlines the necessity of groups
as subject, which we provide. The component icon vi-
sualizing whether a component was shared or not was
instantly understood by 7 of 14 participants. All users
understood the messaging symbol and menu to read
and react on their invitation, the similarity to estab-
lished messenger programs like Facebook was con-
sidered very positive. But, 9 of 14 users criticized the
missing drag and drop support. The initially provided
dedicated dialog for creating new triples was not un-
derstood by 9 of 14 and therefore skipped in the fi-
nal result and replaced by the presented inline editing
functionality in the triple overview panel. Icons were
used inconsistently, confusing participants, and were
therefore replaced by unique ones. Surprisingly, the
possibility to use an existing triple as template for a
new one was not considered as intuitive by the major-
ity and removed from the final concept.

The average SUS score equals 77 with 62.5 as
lowest and 98 as highest single user rating, which we
consider as a promising result. The comments of the
users showed that the general approach was under-
stood and accepted very well. Suggested features or
misunderstood elements were re-worked and are al-
ready part of the presented concepts. Further limita-
tions are discussed in the next section.

6.3 Discussion

As already mentioned, some elements of the concept
are influenced by the results of the user study, thus
some concepts, like the final selection of icons for
the live view, have to be validated in a second study.
However, the majority of features have successfully
been proven to be acceptable. Beside a good user
acceptance, further challenges for a successful shar-
ing support have to be discussed. First of all, to en-
able users, e. g., the blocking of single parts of the UI,
quite rich component descriptions are needed. Com-
ponent developers have to annotate semantic con-
cepts in form of capabilities and view bindings to
ensure that the platform can offer all functionalities
presented above. We argue that the additional effort
a component developer has to invest is quite less in
comparison to the benefit users can achieve by using
the proposed functionalities. In addition, we support
component developers by a developer guide which in-
cludes best practices for, e. g., component annotation.
The components itself have to use technologies which
rely on the Document Object Model (DOM). From
our perspective, plugin-based technologies like Flash
can be omitted due to their decreasing dissemination.
The technology stack of HTML5 and CSS3 offers an
increasing number of functionalities and Application
Programming Interfaces (APIs).

Concurrency control is inevitable for collaborative
systems, but a detailed concept is very challenging
in context of black-box components and therefore not
part of this paper. Due to the usage of black-box com-
ponents, we can not prevent that component changes
already are finished locally before they can be pro-
cessed and synchronized with all other participants.
In case of conflicts, one of the conflicting state have
to be rolled back. This disturbs usability and confuses
the users. In addition, it is still challenging to give a
quick access right overview on the live view while al-
lowing specific restrictions on single UI elements.

7 RELATED WORK

The platform for distributed interactive workspaces
(DIWs) (Ardito et al., 2014) allows users to syn-
chronously use and edit component-based applica-
tions for joined learning. Thereby they can annotate,
live edit or freeze parts of the application and declare
theses changes as only private, public or group-width
visible. In contrast to our solution, no user guidance
during creating or reviewing access rights are given.
In addition, no concept to block or share parts of a
component’s UI to respect privacy needs is presented.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

24

Collaborative sessions where participants use differ-
ent components are not considered.

Tschudnowsky et al. (Tschudnowsky et al., 2014)
suggested an abstract architecture for mashup ap-
plications that can be used and reconfigurated syn-
chronously by multiple users. But, the approach does
not present any detailed concepts for rights manage-
ment as well as user guidance at all.

MultiMasher includes a visual tool for creating
multi-device mashups by marking parts of a web-
site’s UI and afterwards sharing them (Husmann et al.,
2013). Due to the focus on co-located scenarios, no
explicit awareness support about created right assign-
ments or support for different components exist. It is
also not possible to define single UI parts as private.
Therefore, different views for the same resource can
not be created. The component selection as well es
interactions between components are not discussed.

The personal learning environment (PLE) Graasp
(Bogdanov, 2013) enables the creation and sharing
of resources and widgets with participants by group-
ing into spaces. But, privacy settings are only main-
tained at space level and can not be configured more
fine-grained. Additionally, the rights management is
based on a dedicated set of roles which may ease the
right assignment in collaborative learning scenarios,
but can not be used in generic application platforms
like the one we propose. Another PLE, CURE, fa-
cilitates a room key metaphor to restrict access rights
(Schümmer et al., 2005). CURE allows to share re-
sources during runtime by end users similarly to the
space approach of Graasp. Access rights are defined
by keys which represent access to specific spaces.
This mainly focuses on sharing of documents and
works fine so far. Sharing arbitrary functional parts
of an application under different rights with different
participants is not feasible with this metaphor.

Within social networks, the circle metaphor intro-
duced by Google+4 tries to enable an easy grouping
of users that should receive the same content. This
particular solution is quite interesting for solving sub
problems but misses a strategy to represent different
rights for different parts of an application efficiently.

The most content or document management sys-
tems, like Typo35, Drupal6 or Joomla7, facilitates the
matrix metaphor to manage the user’s access rights on
different data objects. These approaches potentially
allow for fine-grained sharing definitions with differ-
ent rights on all sub parts of a mashup application.
But, as the number of users and elements of the ap-

4https://plus.google.com
5http://typo3.org/
6https://drupal.org/
7http://www.joomla.de/

plication increases, the visualization gets quite com-
plex and hard to understand for non-programmers. In
addition, highlighting dependencies between sharing
definitions or respecting different used components of
different users is not possible.

A number of solutions, like (Angulo et al., 2012)
or (Drogkaris et al., 2014), presented UIs for defining
and reviewing the consumption of private data of third
party service providers in websites. These approaches
work well for reviewing and configuring requested
data access from, e. g., different API providers, but
do not offer any possibility to generically create ac-
cess definitions for parts of an application’s underly-
ing data model for collaborating participants.

In summary, non of the examined approaches of-
fer full support for the requirements and research
questions that arise when enabling end-users to indi-
vidually share parts of a CWA.

8 CONCLUSION

Today’s mashup platforms offer no or only limited
support for collaborative applications. We argue that
CWAs are promising for non-programmers to use
and adapt individually created applications for syn-
chronous usage scenarios. In this paper, we pre-
sented an approach for the rights management as well
as an adequate UI concept in context of collabora-
tively used CWA. After presenting the current state
of the CRUISE runtime environment for CWAs based
on black-box components, the basic rights manage-
ment concept using triples of subject, object, and per-
mission were introduced in Section 4. The access
right concept allows to assign multiple owners to dif-
ferent parts of an application. The proposed shar-
ing process is empowered by a client- and server-
side ACL. To support end users with no programming
skills in creating and managing different access rights
for their CWA during runtime, we propose a triple-
based overview dialog, with two major functionali-
ties: First, it provides a possibility to share parts of the
CWA with single users or a group of users during run-
time. Second, the UI enables an easy to understand
visualization of existing right assignments where the
user is the inviter or the invitee and their current state.
To present awareness information about shared com-
ponents and the present permissions in the applica-
tion’s live view, Section 5.2 introduced a set of icons
and interaction techniques. We demonstrate the tech-
nical feasibility of the approach by implementing the
complete rights management concept as well as ma-
jor parts of the UI within the CSR platform. Finally,
a user survey showed that the concepts work as ex-

Triple-based Sharing of Context-Aware Composite Web Applications for Non-programmers

25

pected and are accepted by the target group. Thereby,
the majority of mentioned drawbacks and suggestions
for improvements are already respected within the
presented concepts.

In future, we iteratively will re-work our approach
based on the results of a second user study. Thereby,
we primary focus on the sharing of component parts,
where we plan to conduct an A/B testing to com-
pare a task-centered sharing approach against a data-
centered sharing approach. In addition, we extend the
overall user guidance for sharing single parts of com-
ponents. In this context we strive for a concept to
identify and prevent erroneous or meaningless shar-
ings leveraging semantic annotations and heuristics.

ACKNOWLEDGEMENTS

Carsten Radeck is funded by the Free State of Saxony
and the European Union within the EFRE program.
Gregor Blichmann is funded by the German Federal
Ministry of Economic Affairs and Energy (ref. no.
01MU13001D).

REFERENCES

Angulo, J., FischerHbner, S., Wstlund, E., and Pulls, T.
(2012). Towards usable privacy policy display and
management. Information Management & Computer
Security, 20(1):4–17.

Ardito, C., Bottoni, P., Costabile, M. F., Desolda, G., Mat-
era, M., and Picozzi, M. (2014). Creation and use
of service-based distributed interactive workspaces.
Journal of Visual Languages & Computing, 25(6):717
– 726. Distributed Multimedia Systems {DMS2014}
Part I.

Blichmann, G., Radeck, C., Hahn, S., and Meißner, K.
(2015). Component-based workspace awareness sup-
port for composite web applications. In Proceedings
of the 17th International Conference on Information
Integration and Web-based Applications & Services
(iiWas 2015).

Blichmann, G., Radeck, C., and Meißner, K. (2013). En-
abling End Users to Build Situational Collaborative
Mashups at Runtime. In Proceedings of the 8th Inter-
national Conference on Internet and Web Applications
and Services (ICIW2013), pages 120 – 123.

Bogdanov, E. (2013). Widgets and Spaces: Personal &
Contextual Portability and Plasticity with OpenSocial.
Theses, Ecole Polytechnique Fédérale de Lausanne
(EPFL).

Drogkaris, P., Gritzalis, A., and Lambrinoudakis, C. (2014).
Empowering users to specify and manage their pri-
vacy preferences in e-government environments. In
K, A. and Francesconi, E., editors, Electronic Govern-
ment and the Information Systems Perspective, vol-

ume 8650 of Lecture Notes in Computer Science,
pages 237–245. Springer International Publishing.

Husmann, M., Nebeling, M., and Norrie, M. C. (2013).
Multimasher: A visual tool for multi-device mashups.
In Sheng, Q. Z. and Kjeldskov, J., editors, Current
Trends in Web Engineering - ICWE 2013 International
Workshops ComposableWeb, QWE, MDWE, DMSSW,
EMotions, CSE, SSN, and PhD Symposium, Aalborg,
Denmark, July 8-12, 2013. Revised Selected Papers,
volume 8295 of Lecture Notes in Computer Science,
pages 27–38. Springer.

Picozzi, M. (2013). End-User Development of Mashups:
Models, Composition Paradigms and Tools. PhD the-
sis, Politcnico di Milano.

Pietschmann, S. (2009). A Model-Driven Development
Process and Runtime Platform for Adaptive Compos-
ite Web Applications. Technology, 2(4):277–288.

Radeck, C., Blichmann, G., and Meißner, K. (2013).
CapView - Functionality-Aware Visual Mashup De-
velopment for Non-programmers. In Daniel, F.,
Dolog, P., and Li, Q., editors, Web Engineering, vol-
ume 7977 of Lecture Notes in Computer Science,
pages 140–155. Springer Berlin Heidelberg.

Radeck, C., Blichmann, G., Mroß, O., and Meißner, K.
(2014). Semantic mediation techniques for compos-
ite web applications. In Casteleyn, S., Rossi, G., and
Winckler, M., editors, Web Engineering, volume 8541
of Lecture Notes in Computer Science, pages 450–
459. Springer International Publishing.

Radeck, C., Lorz, A., Blichmann, G., and Meißner, K.
(2012). Hybrid Recommendation of Composition
Knowledge for End User Development of Mashups.
In Proceedings of the Seventh International Confer-
ence on Internet and Web Applications and Services
(ICIW 2012).

Schümmer, T., Haake, J. M., and Haake, A. (2005). A
metaphor and user interface for managing access per-
missions in shared workspace systems. In Hemmje,
M., Niederée, C., and Risse, T., editors, From Inte-
grated Publication and Information Systems to Vir-
tual Information and Knowledge Environments, Es-
says Dedicated to Erich J. Neuhold on the Occasion
of His 65th Birthday, volume 3379 of Lecture Notes
in Computer Science, pages 251–260. Springer.

Tschudnowsky, A., Hertel, M., Wiedemann, F., and
Gaedke, M. (2014). Towards real-time collabora-
tion in user interface mashups. In Obaidat, M. S.,
Holzinger, A., van Sinderen, M., and Dolog, P., edi-
tors, ICE-B 2014 - Proceedings of the 11th Interna-
tional Conference on e-Business, Vienna, Austria, 28-
30 August, 2014, pages 193–200. SciTePress.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

26

