
Towards a Goal-oriented Approach to Adaptable Re-deployment of
Cloud-based Applications

Patrizia Scandurra1, Marina Mongiello2, Simona Colucci2 and Luigi Alfredo Grieco2

1Dip. di Ingegneria Gestionale dell’Informazione e della Produzione, Universitá di Bergamo, Dalmine (BG), Italy
2Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy

Keywords: Cloud Applications, Adaptation, Deployment, Goal-model.

Abstract: Due to the on-demand and dynamic nature of Cloud, there is an increasing interest for automated management
of adaptation and (possibly) re-deployment of cloud applications to realize quality requirements and evolution
needs autonomously at run-time. This paper proposes a fast and automated approach for adapting and re-
deploying a cloud application at run-time as dictated by evolution needs and sudden changes in the operating
environment conditions. The proposed approach exploits a graph-based model and an algorithm that extracts
a sub-graph identifying the adaptation processes to be executed according to evolution changes. The approach
is general enough to be implemented by any cloud application management framework. A TOSCA-based
description of the structure and management aspects of the cloud application may be updated according to
the above mentioned sub-graph. Then, this description may be processed by a TOSCA-compliant runtime
environment to effectively adapt and possibly re-deploy the cloud application in an automated manner. The
paper also illustrates the instantiation of this generic approach for adapting an e-commerce cloud application.

1 INTRODUCTION

Modern service-oriented software applications, like
those envisioned in cloud computing scenarios, op-
erate in highly dynamic and often uncertain and un-
predictable environments that can degrade their qual-
ity of service (such as availability, reliability, per-
formance, etc.). Moreover, rapid elasticity and self-
service – to enable on demand dynamic growing and
shrinking of resources and service composition de-
pending on the user/evolution needs (e.g., extending
the storage of an email account, adding temporarily a
social login service to the conventional authentication
system, etc.) – are becoming key goals in cloud ser-
vice and application management (Lehrig et al., 2015;
Dubois et al., 2015; Andrikopoulos et al., 2013).

Managing the adaptation of complex applications
over clouds with high evolving resource provisioning
and service compositions, while guaranteeing qual-
ity attributes, is one of the emerging problems in
the cloud era, especially for data-intensive applica-
tions (Casale et al., 2015). In particular, automa-
tion of cloud application deployment and manage-
ment (including adaptation) across clouds, regardless
of provider platform or infrastructure, is becoming a
prerequisite to realize key cloud properties (see, for

example, the works (Wettinger et al., 2015; Brogi
et al., 2015; Andrikopoulos et al., 2013), to name a
few, addressing such topics).

In this paper, we investigate the challenge in
adapting and re-deploying cloud applications at run-
time according to evolution needs and operating en-
vironment conditions changes (such as brokerage of
new resources, QoS optimization and tradeoffs, fail-
ures, changes in the workload and size of jobs, elastic-
ity requirements based on application-level metrics,
etc.). Cloud adaptation essentially requires configu-
ration and elasticity changes in the application topol-
ogy at any cloud layer through low-level actions at
IaaS (Infrastructure as a Service) level, such as a new
Virtual Machine (VM) is added or a resource-related
parameter of a VM is changed (e.g., a new disk is at-
tached), or high-level actions at the PaaS (Platform
as a Service)-SaaS (Software as a Service) levels,
such as moving an application service from one IaaS
provider to another or adding a new service.

To this purpose, we propose an automated ap-
proach for adapting and re-deploying a cloud appli-
cation at run-time as dictated by evolution needs and
sudden changes in the operating environment condi-
tions. The proposed approach exploits a goal-oriented
graph-based model and a fast algorithm (based on

Scandurra, P., Mongiello, M., Colucci, S. and Grieco, L.
Towards a Goal-oriented Approach to Adaptable Re-deployment of Cloud-based Applications.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 253-260
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253

the well-known Dijkstra algorithm) that extracts a
sub-graph identifying the adaptation processes to be
executed according to evolution changes/events. A
TOSCA-based1 description of the structure and man-
agement aspects of the cloud application may be up-
dated according to the above mentioned sub-graph.
The description may be then processed by a TOSCA-
compliant runtime environment to effectively adapt
and possibly re-deploy the cloud application in an au-
tomated manner. The paper also illustrates the instan-
tiation of the approach for a scalability adaptation sce-
nario in an e-commerce cloud application.

The proposed approach is general enough to be
implemented by any cloud application management
framework. The proposed approach can be used, for
example, to strengthen current management engines
(e.g., current auto-scaling tool available in the cloud
market) or to support adaptation decision making at
run-time in more complex management frameworks
(see, for example, the initiative (Brogi et al., 2015)).

This paper is organized as follows. Section 2
provides some background assumptions and concepts
about TOSCA for realizing the proposed approach.
Section 3 introduces a running example used through-
out the paper. Section 4 presents our goal-oriented
adaptation approach and exemplifies it on the run-
ning example; in particular, it presents a scalability
scenario of the application example involving scaling
and adding of an additional login service as adapta-
tion actions. Section 5 reports some related initia-
tives, while Section 6 provides concluding remarks
and challenges we want to address as future work.

2 BACKGROUND ASSUMPTIONS

We assume that a cloud application is described in
terms of the OASIS standard TOSCA. TOSCA al-
lows to express in a portable manner how to auto-
matically deploy and manage complex cloud appli-
cations (Binz et al., 2014) by requiring developers
to define an abstract topology of a multi-component
Cloud application and to create plans describing its
deployment and management. The proposed ap-
proach can be therefore implemented in any TOSCA-
compliant cloud platform offering a TOSCA con-
tainer (like OpenTOSCA) able to process an archive
format called CSAR (Cloud Serivce ARchive) pack-
aging the TOSCA Cloud application specification to-
gether with concrete implementation and deployment

1The OASIS Topology and Orchestration lan-
guage (http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/
TOSCA-v1.0-os.html)

artifacts. TOSCA containers not only support appli-
cation at deployment time, but also at run-time.

In TOSCA, the architecture (or topology) of a
cloud application is explicitly modeled by a graph
where nodes represent the components of the appli-
cation and edges represent different kinds of relations
between these components. Relations may be, for ex-
ample, one component is “hosted on”, “depends on”,
or “communicates with” another component. Nodes
and edges in the topology may define additional prop-
erties, the management operations they offer (e.g.,
how to setup the component, establish a relation, de-
ploy artifacts, scale-up, or backup), the artifacts re-
quired to run the component, or non-functional re-
quirements. Figure 2 in Section 3 shows the topol-
ogy delivering the e-commerce cloud application we
consider as running example throughout the paper.

Without loss of generality, we assume that each
server component is installed in a stand-alone VM.
Accordingly, the scaling up/down the cloud applica-
tion taken as example in this work typically involves
adding/removing extra software servers, and hence
extra VMs in a cloud environment.

Moreover, we assume that a TOSCA container
adopts a declarative processing mechanism (Brogi
et al., 2014), i.e. it deploys the application by trying
to automatically excerpt a deployment plan from the
application topology. Essentially, the CSAR engine
(a) first deploys the nodes without requirements on
other nodes, and then (b) until all nodes have been de-
ployed, it searches the nodes whose requirements are
satisfied (by the capabilities of the already deployed
nodes) and deploys them. This way of processing
allows us to easily adapt the current application de-
ployment by adapting directly the TOSCA applica-
tion topology. Alternatively, an imperative processing
model could be adopted by taking the CSAR archive
and deploying the application according to a TOSCA
build plan (defined using a workflow modeling lan-
guage such as BPMN2 or WS-BPEL3) combining the
operations offered by the nodes in the topology.

3 RUNNING EXAMPLE

In this paper, we consider a scalability scenario where
an e-commerce cloud application is adapted to pro-
vide the amount of load balancing capacity required
to distribute application traffic. The e-commerce
cloud application is divided into multiple tiers (see

2http://www.bpmn.org/
3http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

254

Figure 1: Basic, multi-tier e-commerce web application.

the logical structure of such application shown in Fig-
ure 1 in a free-style notation). An elastic load bal-
ancer is used as frontend for accepting and distribut-
ing end users’ requests automatically across multi-
ple application server instances (the back end) in the
cloud. Moreover, it has the power to cache con-
tent according to some rules to set; this means that
when a request comes for some content that exists
in the cache, the load balancer can simply deliver it
directly to the browser, rather than handing the re-
quest to the application server(s). The real applica-
tion tiers (presentation, business and data tiers) are
implemented through an Apache web server for han-
dling http requests, a middle-tier Tomcat application
server for implementing the business logic, and a
backend MySQL database with data store and pro-
cessing. These servers work together to handle end
users’ requests. The corresponding topology descrip-
tion in TOSCA is shown in Figure 2. The Presenta-
tion Tier and Business Tier are declared scalable (by
the multiplicity 1..n), and the composite application’s
template includes a Load Balancer node with content
caching that understands how to connect to and scale
them. The DBTier is also scalable. The Presenta-
tion Tier includes the entire set of dependent service
components necessary for deploying the e-commerce
web application on an Apache web server (with PHP
Module support, for example). It’s required hosting
environment also includes a Linux Operating System
(OS), a VM container and a “Tier container”4 to log-
ically group all related components. Similarly for the
other tiers.

Initially, the application is deployed (see Figure 1)
on five server instances in the Cloud to support a small
number of customers. Depending on the application
workload, the servers at each tier can be stressed at
different times and the implementation ideally needs
to scale up or down the resources at the appropri-
ate tier so as to maintain the overall quality require-
ments of the application while minimizing the cost
of resources used. To this purpose, each tier is elas-
tically scaled independently to adapt the application
in response to load changing demand. In particular,
a separate elastic scaling is adopted for the Presenta-

4“Tier” is a topological concept used to describe sets of
nodes (or sub-topologies) that can be deployed and man-
aged as a single group.

tion tier and the Business tier because the process-
ing components are more computation intensive or
used less frequently than the User Interface compo-
nents. For example, additional server instances can be
launched automatically (e.g., in the example of Fig-
ure 3 one Apache server and two Tomcat servers are
added) when the load on the current instances rises,
for example, to 70 percent, and then some server in-
stances can be removed to reduce the cost of service
provision when the load falls to 40 percent.

Adaptation Requirements. As types of adaptation,
various reactive or anticipatory scaling actions could
be done vertically (i.e., scale up/down) or horizon-
tally (i.e., scale out/in) to handle the increased de-
mand. The load balancer with caching, the mes-
sage queues, the presentation tier and the business-
tier can be scaled horizontally by adding more cache
and queue devices and server instances at each tier
into the computing cloud platform. The database
tier can be scaled both vertically, by adding more
resources to the same computing pool (e.g., more
disks), and horizontally, by using a MySQL master-
slaves configuration model with data replication. In
the last case, a MySQL Master is initially deployed
and, when the database tier is scaled up, extra MySQL
Slaves are added and configured with replication from
the MySQL Master. The numbers of load balancer
servers and MySQL Master database do not change.
These scaling actions have different prices and real-
ization costs that may also change at run-time. Usu-
ally, vertical scaling can handle most sudden, tem-
porary peaks in application demand on cloud infras-
tructures since they are not typically CPU intensive
tasks. Sustained increases in demand, however, re-
quire horizontal scaling and load balancing to restore
and maintain peak performance. Horizontal scaling is
also manually intensive and time consuming, requir-
ing a technician to add machinery to the customers
cloud configuration, and this may be not productive
since traffic may settle to its pre-peak levels before
new provisioning can come on line.

In addition to scaling actions, that mostly affect
the PaaS and IaaS layers, the e-commerce cloud appli-
cation can be adapted by adding a new service com-
ponent at SaaS level to reflect an evolution need in
the application requirements. Essentially, to increase
sales for a certain event calendar (e.g., in the Christ-
mas period or Black Fridays), a new social login com-
ponent (for example, Facebook) is added temporarily
to the application to allow not registered users to pur-
chase orders by using their personal social account
credentials (e.g., their Fb authentication credentials)
to authenticate into the system.

Towards a Goal-oriented Approach to Adaptable Re-deployment of Cloud-based Applications

255

Figure 2: TOSCA topology of the e-commerce web application.

Figure 3: Scaled, multi–tier e-commerce web application.

4 ADAPTATION APPROACH

The proposed methodology for the generation and the
execution of adaptation plans is summarized in the
steps shown in Figure 4. The proposed approach
helps in deciding and guiding the necessary adapta-
tion changes to carry out at different Cloud tiers of
the application as dictated by evolution needs. Es-
sentially, the management framework implementing
the proposed approach observes, according to con-
figured monitoring parameters (i.e., sampling rate),
and generates real-time graphs by aggregating met-
rics originated from multiple sources5. From these
graphs, appropriate adaptation processes are deter-
mined and translated on-the-fly into TOSCA-based
adaptation plans.

Metrics and monitor mechanisms/frameworks for

5Metrics can be obtained either from native Cloud mon-
itoring systems or from custom metric collectors (probes)
provided by the user during deployment.

Figure 4: Generation and execution of an adaptation plan.

identifying the evolution events or predict future
changes that may trigger the Cloud application adap-
tation at run-time and eventually its re-deployment are
out of the scope of this paper.

4.1 Adaptation Model

The proposed adaptation approach is grounded on a
graph-based model. This model generalizes the ele-
ments involved in the composition of adaptation pro-
cesses in heterogeneous scenarios of interest.

In particular, different scenarios are described in
terms of three inter-related building entities: evolu-
tion events, adaptation processes triggered by events
and cloud node tiers implementing adaptation pro-
cesses. Formally, the general model is defined as an
Adaptation Graph in the following:

Definition 1 (Adaptation Graph (AG)). Let EV, AP,
CT be three sets describing events, adaptation pro-
cesses and cloud tiers, respectively.

An Adaptation Graph is a weighted directed graph
G = {V,E}, such that:

• V = EV∪AP∪CT, i.e., a vertex can model an
event, an adaptation process or a cloud node tier;

• E = (EV×AP)∪ (AP×CT)∪ (CT×EV), i.e.,
an edge connects either an event to an adaptation

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

256

process or an adaptation process to a cloud tier
or a cloud tier to an event;

• a function c : E →ℜ+∪{0} labels edges in E as
follows:

1. c(v,w) is the cost of performing an adaptation
process w triggered by an event v, for v ∈ EV
and w ∈ AP

2. c(v,w) is the cost of implementing an adapta-
tion process v in a cloud tier w, for v ∈ AP and
w ∈CT

3. c(v,w) = 0, for v ∈CT and w ∈ EV
The model is aimed at finding the best composi-

tion of adaptation processes satisfying a goal, gener-
ated at run-time by an occurring event. In the Adap-
tation Graph, the adaptation cost can be computed
based on the performance of the physical platform
and/or defined by the system administrator depending
on the user’s profiles of the application.

In the following, a Goal is defined according to
the proposed model.
Definition 2 (Goal). Given an AG R = (V,E), defined
according to Definition 1, a Goal G in R is an ordered
pair (s,d) with s ∈ EV ∩V and d ∈ EV ∩V .

Intuitively, a goal is defined as a transition from
an original status (modeled by the event node s) to a
destination status (modeled by the event node d).

The reader may note that, given the graph struc-
ture of an AG R, if a goal (s,d) is identified in
R, all paths connecting s to d need to match pat-
terns made up by sequences of ordered quadruples
(Event,AdaptationProcess,CloudTier,Event). Of
course, many of such paths exist. This paper only fo-
cuses on minimum cost paths and on possible Goal-
oriented Adaptation Subgraphs (GASs) of R, de-
fined by such paths.
Definition 3 (Goal-oriented Adaptation Subgraph
(GAS)). Given an AG R = (V,E), defined according
to Definition 1, and a goal (s,d) in R, defined accord-
ing to Definition 2, a Goal-oriented Adaptation Sub-
graph (GAS) of R is a direct graph S = (V ′,E ′), such
that:
• S⊆ R;
• s ∈V ′ and d ∈V ′;
• E ′ includes a path p connecting s to d, such that

cost(p)≤ cost(r) for every path r in R connecting
s to d.
Algorithm Adapt is now proposed for finding a

GAS S of an AG R = (V,E), given R and a goal
(s,d) in R. In Row 2, the Dijkstra algorithm (Dijkstra,
1959), well-known form graph theory, is called. The
algorithms associates to each node vi ∈V , the cost of
the (minimum) path from s to vi and the node vi−1

Data: An AG R = (V,E), a goal (s,d) in R,
Result: A GAS S = (V ′,E ′) of R

1 let c be the function labeling R;
2 solve DIJKST RA(R,c,s)
3 read a minimum cost path pmin from s to d
4 add all nodes in pmin to V ′

5 add all edges in pmin to E ′

Algorithm 1: Adapt.

preceding vi in the minimum cost path. Then (Row 3),
the minimum cost path from s to d is read from the re-
sults of Dijkstra algorithm and S is consequently built
in Rows 4–5. Note that Algorithm Adapt is based on
the Dijkstra algorithm (Dijkstra, 1959), and thus, its
time complexity depends on the chosen implementa-
tion. In particular, if Fibonacci Heap is adopted as pri-
ority queue, the algorithm requires O(|E|+ |V |log|V |)
running time in the worst case.

At instantiation level, the model presented hereby
needs to be referred to an application scenario, for
which specific events, adaptation processes and cloud
tiers have to be identified, together with the relations
among them. This activity leads to the definition of
an application-specific AG. Then, when an occurring
event requires intervention, the following steps have
to followed: i) a contextual AG is built by customiz-
ing the application-specific AG on the basis of run-
time settings; ii) a Goal is identified, again depending
on run-time settings; iii) the GAS determined by the
AG and the Goal is computed.

4.2 Model Instantiation

In this section we instantiate the graph model pre-
viously defined by considering a concrete adapta-
tion scenario w.r.t. scalability of the e-commerce
cloud application taken as running example. Let
us suppose the e-commerce service is initially de-
ployed with a Load Balancer with one cache, one
Apache web server instance, two Tomcat servers, one
MySQL Master server instance. In order to illustrate
the composition of adaptation processes required by
our example, we need to refer to the AG model in-
stance in Figure 5. Note that, in the proposed ex-
ample, there is only one outgoing transition from an
adaptation process to a Cloud node tier (except for
the adding/removing the social login service that is
linked to three social networking services); in a more
realistic scenario involving a variability of alterna-
tive Cloud technologies for realizing a specific Cloud
node tier, there would be different outgoing transi-
tions with different costs.

The evolution event initiating the adaptation is an
event calendar, for example Christmas days begin-
ning (or Black Fridays). Coherently with the evolu-

Towards a Goal-oriented Approach to Adaptable Re-deployment of Cloud-based Applications

257

Figure 5: AG for the e-commerce application scalability scenario.

tion needs, the adaptation goal is the pair (authentica-
tion variation, authentication variation) to add/remove
a new social login service to the application. To ad-
dress the goal, in the AG in Figure 5 there are different
paths that can be followed depending on the differ-
ent cloud social networking services and their costs
(e.g., utilization-level/serviceability). The Adapt al-
gorithm selects the minimum cost path and therefore
determines the GAS shown in Figure 6.

This originating goal may in turn increase work-
load significantly, thus generating new adaptation
goals related to the performance of the application
that need to be managed by one or more further adap-
tion processes. In particular, in a first period the num-
ber of concurrent users is 1006 and when the con-
current users increases, for example to 300, affect-
ing the application performance (performance varia-
tion), a vertical scaling process is selected by increas-
ing the capacity of the load balancer caching and of
the server’s message queues. The target goal is (users
requests variation, performance variation). The re-
sulting GAS extracted for this goal can be intuitively
derived from Figure 5.

If the number of users increases further, e.g. to
500, and saturates the Apache and Tomcat tiers (per-
formance variation), horizontal scaling is triggered
and one Apache and two Tomcats servers are added.
When the number of concurrent users increases fur-
ther the adaptation cycle repeats. In contrast, when
this number decreases, the application is scaled down

6The values in the example are used only for illustra-
tion purposes. Realistic workload measures can be obtained
through monitoring systems based on statistical analysis
and on the amount of impact that various tuning parame-
ters produce on the application performance.

by removing idle servers and reducing the capacity of
the cache and message queues.

Data-intensive jobs are also monitored and if the
number of traffic data per user increases stressing the
data tier (DB performance variation), a vertical scal-
ing of the database tier is first executed by adding re-
sources to the MySQL master server. Further work-
load increasing that affects the DB performance re-
quires horizontal DB scaling by enabling the mas-
ter/slaves configuration with data replication.

Once a triggering event occurs, the customiza-
tion of the application-specific AG and the compo-
sition of the adaptation processes (construction of the
GAS) are completed within few milliseconds. From
the GAS, an adaptation plan may be generated by up-
dating the TOSCA description of the application and
re-deploying it on-the-fly using the deployment ser-
vice of the Cloud platform provider. Technical details
needed to adapt the TOSCA description may be gen-
erated from accessory data attached to the AG nodes.
The adaptation of the TOSCA topology from an AG
model is out of the scope of this paper.

5 RELATED WORK

General purpose studies on adaptation based on QoS
optimization and balancing are available in the liter-
ature. The SeaClouds project focuses on the prob-
lem of how to deploy and manage, in an efficient
and adaptive way, complex applications across mul-
tiple heterogeneous cloud platforms. A key in-
gredient in the proposal is the use of two OA-
SIS standards initiatives for cloud interoperability,
CAMP and TOSCA, which allow for: describing the

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

258

Figure 6: GAS extracted for the first goal.

topology of user applications independently of cloud
providers; providing abstract plans; discovering, de-
ploying/reconfiguring, and monitoring the applica-
tions independently of the peculiarities of the cloud
providers (Brogi et al., 2015).

A Self-adaptive hierarchical monitoring mecha-
nism for Clouds is proposed in (Katsaros et al., 2012),
where a multi-layered monitoring framework mea-
sures QoS at both application and infrastructure lev-
els. The framework targets trigger events for runtime
adaptability of resource provisioning estimation and
decision making.

Changed user needs, system intrusions or faults,
changing operational environment, resource variabil-
ity are among the main kinds of adaptation required
in Service Oriented Architectures. An automatic op-
timization process for adaptation of service-oriented
applications is proposed in (Mirandola et al., 2014).
The approach is based on trade-offs between func-
tional and extra-functional requirements. The pro-
posed methodology relies on heterogeneous service
assembly and open tools and runtime infrastructures
to process architectural models that are directly tight
to the real assembled components implementations
and their distributed deployment.

Optimal solutions for cloud layers when resource
allocation is needed and to support explicit coopera-
tion between layers is addressed in (Scandurra et al.,
2012) using Pareto multi-objective optimization.

All these approaches satisfactorily address adap-
tation at design and at maintenance time, but are less
flexible than our one in coping with evolution needs
emerging at runtime.

Several frameworks are available for providing
more specific solutions to addressed problems.

c-Eclipse is an open-source Cloud Application
Management Framework through which users are
able to define the description, deployment and man-
agement of their cloud applications in a clean and in-
tuitive graphical manner (Sofokleous et al., 2014).

JCatascopia is a Monitoring System capable of
supporting a fully automated cloud resource provi-
sioning system with proven interoperability, scalabil-
ity and low runtime footprint (Trihinas et al., 2014).

Celar is a platform able to automatically scale ap-
plications deployed over a cloud infrastructure. Celar
allow Cloud developers to build efficient services and
achieve high performance by elastically managing
the use of available resources (Giannakopoulos et al.,

2014).
The framework proposed by (Copil et al., 2013c)

is made up of the SYBL language (Copil et al., 2013b)
and the Mela service (Moldovan et al., 2013). For
the control of elasticity the framework use the control
mechanism detailed in (Copil et al., 2013a).

Both methods and tools analyzed in this state of
the art face adaptation from well-defined perspectives
and propose solutions to specific need emerging in an
adaptation scenario. On the contrary, our work man-
ages adaptation goals as general evolution needs. As a
consequence, the proposed approach generates adap-
tation plans through a workflow which is indepen-
dent of the evolution need to address. This makes the
whole approach general enough to be implemented in
any monitoring and management cloud framework.

6 CONCLUSION

This paper proposes a goal-based approach to the
run-time selection and composition of adaptation pro-
cesses in cloud-based applications. The approach ex-
ploits a graph-model to generate and execute an adap-
tation plan on the basis of evolution needs emerging
at run-time in a scenario of interest. Such a plan is de-
rived from sub-graphs in the general model extracted
by a specifically proposed algorithm. The instantia-
tion of this generic approach in an e-commerce cloud
application is given as running example.

We are currently working at the full implementa-
tion of the proposed approach, so to proceed with the
evaluation of its feasibility in different scenarios in-
volving cloud-based applications. To this purpose, we
are combining open source tools such as those of the
OpenTOSCA initiative and cloud middleware soft-
ware stacks (like Openstack and Opscode Chef con-
figuration management software) to develop a cloud
management framework supporting our approach and
evaluate an end-to-end realistic scenario. In partic-
ular, we are defining a mapping from a graph-based
representation of an adaptation plan to a TOSCA-
based adaptation plan.

As future work, we want to extend our approach
on several directions. Essentially, we want to: cope
with the management of concurrent multiple goals;
investigate on the adoption of an imperative process-
ing model for deploying a TOSCA-based cloud ap-
plication through a workflow; study how to make the

Towards a Goal-oriented Approach to Adaptable Re-deployment of Cloud-based Applications

259

system dynamically perform architecture-based adap-
tation to meet run-time quality requirements (such as
availability, performance, resilience, and greenness).
Architecture tactics could support the realization of
this last aim (see, for example, the work in (Miran-
dola et al., 2014)), but only if embedded at design
time into the TOSCA cloud topology of the applica-
tion and enabled/disabled at run-time accordingly.

ACKNOWLEDGEMENTS

This work is supported in part by the EC H2020 pro-
gram, project EscudoCloud (644579), by the Apulia
Region initiative ”Future in Research”, and by the
PON MIUR Edoc@work 3.0.

REFERENCES

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to adapt applications for the cloud envi-
ronment - challenges and solutions in migrating appli-
cations to the cloud. Computing, 95(6):493–535.

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). chapter TOSCA: Portable Automated Deploy-
ment and Management of Cloud Applications, pages
527–549. Springer, New York.

Brogi, A., Carrasco, J., Cubo, J., Nitto, E. D., Durán, F.,
Fazzolari, M., Ibrahim, A., Pimentel, E., Soldani, J.,
Wang, P., and D’Andria, F. (2015). Adaptive man-
agement of applications across multiple clouds: The
seaclouds approach. CLEI Electron. J., 18(1).

Brogi, A., Soldani, J., and Wang, P. (2014). Tosca in a
nutshell: Promises and perspectives. In Villari, M.,
Zimmermann, W., and Lau, K.-K., editors, Service-
Oriented and Cloud Computing, volume 8745 of
Lecture Notes in Computer Science, pages 171–186.
Springer Berlin Heidelberg.

Casale, G., Ardagna, D., Artac, M., Barbier, F., Nitto,
E. D., Henry, A., Iuhasz, G., Joubert, C., Merseguer,
J., Munteanu, V. I., Perez, J. F., Petcu, D., Rossi, M.,
Sheridan, C., Spais, I., and Vladuic, D. (2015). DICE:
quality-driven development of data-intensive cloud
applications. In 7th IEEE/ACM International Work-
shop on Modeling in Software Engineering, MiSE
2015, pages 78–83. IEEE.

Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013a). Multi-level elasticity control of cloud ser-
vices. In Service-Oriented Computing, pages 429–
436. Springer.

Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013b). Sybl: An extensible language for controlling
elasticity in cloud applications. In Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM In-
ternational Symposium on, pages 112–119. IEEE.

Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013c). Sybl+ mela: Specifying, monitoring, and

controlling elasticity of cloud services. In Service-
Oriented Computing, pages 679–682. Springer.

Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271.

Dubois, D. J., Valetto, G., Lucia, D., and Nitto, E. D.
(2015). Mycocloud: Elasticity through self-organized
service placement in decentralized clouds. In 8th
IEEE International Conference on Cloud Computing,
CLOUD 2015, pages 629–636. IEEE.

Giannakopoulos, I., Papailiou, N., Mantas, C., Konstanti-
nou, I., Tsoumakos, D., and Koziris, N. (2014). Celar:
automated application elasticity platform. In IEEE In-
ternational Conference on Big Data (Big Data), pages
23–25. IEEE.

Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis,
D., Menychtas, A., and Varvarigou, T. A. (2012). A
self-adaptive hierarchical monitoring mechanism for
clouds. Journal of Systems and Software, 85(5):1029–
1041.

Lehrig, S., Eikerling, H., and Becker, S. (2015). Scala-
bility, elasticity, and efficiency in cloud computing:
a systematic literature review of definitions and met-
rics. In Proc. of the 11th International ACM SIG-
SOFT Conference on Quality of Software Architec-
tures, QoSA’15 (part of CompArch 2015), pages 83–
92. ACM.

Mirandola, R., Potena, P., and Scandurra, P. (2014). Adap-
tation space exploration for service-oriented applica-
tions. Sci. Comput. Program., 80:356–384.

Moldovan, D., Copil, G., Truong, H.-L., and Dustdar, S.
(2013). Mela: Monitoring and analyzing elasticity of
cloud services. In Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 80–87. IEEE.

Scandurra, P., Raibulet, C., Potena, P., Mirandola, R., and
Capilla, R. (2012). Adapting cloud-based applications
through a coordinated and optimized resource alloca-
tion approach. In CLOSER 2012 - Proceedings of
the 2nd International Conference on Cloud Comput-
ing and Services Science, pages 355–364. SciTePress.

Sofokleous, C., Loulloudes, N., Trihinas, D., Pallis, G.,
and Dikaiakos, M. D. (2014). c-eclipse: An open-
source management framework for cloud applica-
tions. In Euro-Par 2014 Parallel Processing, pages
38–49. Springer.

Trihinas, D., Pallis, G., and Dikaiakos, M. D. (2014).
Jcatascopia: monitoring elastically adaptive applica-
tions in the cloud. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 226–235. IEEE.

Wettinger, J., Breitenbücher, U., and Leymann, F. (2015).
Compensation and convergence - comparing and com-
bining deployment automation approaches. Int. J. Co-
operative Inf. Syst., 24(3).

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

260

