
Source and Test Code Size Prediction
A Comparison between Use Case Metrics and Objective Class Points

Mourad Badri, Linda Badri and William Flageol
Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University of Quebec,

Trois-Rivières, Quebec, Canada

Keywords: Use Cases, Use Case Metrics, Class Diagrams, Objective Class Points, Source Code Size, Test Code Size,
Prediction Models, Linear Regression.

Abstract: Source code size, in terms of SLOC (Source Lines of Code), is an important parameter of many parametric
software development effort estimation methods. Moreover, test code size, in terms of TLOC (Test Lines of
Code), has been used in many studies to indicate the effort involved in testing. This paper aims at
comparing empirically the Use Case Metrics (UCM) method, a use case model based method that we
proposed in previous work, and the Objective Class Points (OCP) method in terms of early prediction of
SLOC and TLOC for object-oriented software. We used both simple and multiple linear regression methods
to build the prediction models. An empirical comparison, using data collected from four open source Java
projects, is reported in the paper. Overall, results provide evidence that the multiple linear regression model,
based on the combination of the use case metrics, is more accurate in terms of early prediction of SLOC and
TLOC than: (1) the simple linear regression models based on each use case metric, and (2) the simple linear
regression model based on the OCP method.

1 INTRODUCTION

Software development is a time and resource
consuming process. Furthermore, software testing,
which plays a crucial role in software quality
assurance, takes an important part of the software
development effort. It is, therefore, important to
estimate as soon as possible, ideally in the early
stages of the software development lifecycle, the
effort required to develop and test software. In this
way, activities can be planned and resources can be
optimally allocated in order to ensure a successful
software development (and testing) management.

Many software development effort estimation
methods have been proposed in the literature over
the years (Albrecht, 1979; Albrecht and Gaffney,
1983; Antoniol et al., 1999; Antoniol et al., 2003;
Bianco and Lavazza, 2006a; Bianco and Lavazza,
2006b; Boehm, 1981; Boehm et al., 2000a; Boehm
et al., 2000b; Bourque and Côté, 1991; Carbone and
Santucci, 2002; Carroll, 2005; Chen et al., 2004;
Hastings and Sajeev, 2001; Henderson-Sellers,
1997; Jahan and Sheibani, 2005; Janaki and Raju,
2000; Jorgensen and Boehm, 2009; Jorgensen and
Shepperd, 2007; Kemerer, 1987; Lagerstrom et al.,

2012; Kim et al., 2006; Leung and Fan, 2002;
Matson et al., 1994; McDonnel, 2003; Mishra et
al., 2010; Ochodek et al., 2011; Pfleeger et al.,
2005; Trendowicz et al., 2008; Verner and Tate,
2012; Zhao and Tan, 2003; Zhou et al., 2014).
Source code size, in terms of SLOC (Source Lines
of Code), is an important parameter of many
parametric software development effort estimation
methods. The testing effort is unfortunately often
estimated as a part of the overall software
development effort. However, test code size, in
terms of TLOC (Test Lines of Code), has been used
in many studies to indicate the effort involved in
unit testing (Badri and Toure, 2012; Bruntik and
Van Deursen, 2004; Bruntik and Van Deursen,
2006; Singh et al., 2008; Singh and Saha, 2010;
Zhou et al., 2012).

In this paper, we focus on the early prediction of
both SLOC and TLOC for object-oriented (OO)
software development, which is used extensively in
the industrial projects. The study aims basically at
comparing empirically the Use Case Metrics
(UCM) method, which is a use case model based
prediction method that we proposed in a previous
work (Badri et al., 2013), and the Objective Class

172
Badri, M., Badri, L. and Flageol, W.
Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class Points.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 172-180
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Points (OCP) method (Kim et al., 2005) in terms of
early prediction of SLOC and TLOC. The UCM
method has already been compared in (Badri et al.,
2015) to the Use Case Points (UCP) method, which
is also a use case model based estimation method.
Results show that the UCM method is more
accurate, in terms of predicting test suites size, than
the UCP method. In this work, we wanted to
compare the UCM method to a class diagram based
method. We used both simple and multiple linear
regression methods to build the prediction models.
An empirical comparison, using data collected from
four open source Java projects, is reported in the
paper. Overall, results provide evidence that the
multiple linear regression model, based on the
combination of the use case metrics, is more
accurate in terms of early prediction of SLOC and
TLOC than: (1) the simple linear regression models
based on each use case metric, and (2) the simple
linear regression model based on the OCP metric.

The rest of this paper is organized as follows:
Section 2 presents summarily the Objective Class
Points method. The use case metrics are introduced
in Section 3. Section 4 presents the different steps
of the empirical study we conducted to evaluate
comparatively the Use Case Metrics and the
Objective Class Points approaches in terms of
SLOC and TLOC prediction accuracy. Finally,
Section 5 concludes the paper and outlines some
future work directions.

2 OBJECTIVE CLASS POINTS
METHOD

The Objective Class Points (OCP) method counts
the number of class points in a UML class diagram
(Kim et al., 2005). The OCP method, unlike other
class points based approaches such as (Costagliola
et al., 2005; Abrahao et al., 2006), does not involve
any subjective factors (Zhou et al., 2014). For a
class diagram, the OCP value is computed as
follows (Kim et al., 2005; Zhou et al., 2014):

OCP = NC + NGen + NDep + NORR + NM + NA
+ NAssoc + NAgg + NComp

where: NC: the total number of classes, NGen: the
total number of generalization relationships, NDep:
the total number of dependency relationships,
NORR: the total number of realization
relationships, NM: the total number of methods,
NA: the total number of attributes, NAssoc: the
total number of association relationships, NAgg: the

total number of aggregation relationships, and
NComp: the total number of composition
relationships.

3 USE CASE METRICS

A use case model defines the functional scope of
the system to be developed (Jacobson et al., 1993;
Larman, 2004). A use case is a collection of related
success and failure scenarios that describe actors
using a system to support a goal. Use cases describe
how external actors interact with the software
system. These interactions generate events to the
software system, known as input system events,
which are usually associated with system
operations. A scenario, also called a use case
instance, is a specific sequence of actions and
interactions between actors and the system. It is one
particular story of using the system, or one path
through the use case. We present, in what follows,
the use case metrics that we used in our study,
metrics that we introduced in previous work (Badri
et al., 2013; Badri et al., 2015), to quantify different
characteristics related to size and complexity of use
cases:

Number of Involved Classes (NIC): This metric
defines the total number of analysis classes
participating in a use case, which have been
identified during the analysis phase.

Number of External Operations (NEO): This metric
defines the total number of system operations
associated with the system events related to a use
case. These operations are easily identifiable from
UML system sequence diagrams.

Number of Scenarios (NS): This metric gives the
total number of the different scenarios of a use case.
One use case can, in fact, have one or more
scenarios. This metric is related to the cyclomatic
complexity of the use case.

Number of Transactions (NT): This metric gives the
total number of transactions of a use case. A
transaction is an event (a set of activities in a use
case scenario) that occurs between an actor and the
target system, the event being performed entirely or
not at all. The complexity of a use case is also
determined by the number of transactions.

Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class Points

173

4 EMPIRICAL STUDY

4.1 Goals, Selected Projects and Data
Collection

The study aims at comparing empirically the Use
Case Metrics and the Objective Class Points
approaches in terms of predicting both source code
size (SLOC) and test code size (TLOC). For a use
case (noted UCi), to indicate: (1) the size of
corresponding source code, we used the SLOC
metric, and (2) the size of corresponding test code,
we used the TLOC metric. The SLOC and TLOC
metrics are defined as follows:

Source Lines Of Code (SLOC): This metric defines
the cumulative number of lines of source code
related to a use case (all of its scenarios). It is used
to indicate the total size, in terms of lines of source
code, of the parts of software corresponding to a use
case.
Test Lines Of Code (TLOC): This metric defines the
cumulative number of lines of code of the JUnit test
cases related to a use case (all of its scenarios). This
number includes only the test cases related to
classes/methods involved in the realization of the
use case.

We conducted an experimental study using data
collected from four open source Java projects. The
selected case studies are from different domains and
developed by different teams. Moreover, knowing
that the OCP method is applied on UML class
diagrams, we deliberately chose case studies that
have been developed using (strictly) the object
paradigm (in order to avoid biasing the OCP
results). The use case models have been collected
for each project by reverse engineering the source
code. The goal was, because the use case models
were not available, to produce (or reproduce) these
models (and particularly the system sequence
diagrams) as accurately as possible (without
alteration) from code analysis. In fact, we have used
the source code of the projects as well as the
available documentation (particularly the detailed
user guides).

Moreover, as the OCP method requires metrics
that are computed from the class diagram, we also
reverse engineered the source code of the selected
systems to obtain class diagrams. In order to
compare the two methods on the same basis, and
knowing that the use case metrics are computed for
each use case, we considered for the calculation of
the OCP values all the classes (and methods)

required for the implementation of the use case. So,
for the calculation of the OCP values, we
considered for each use case the corresponding part
of the class diagram. Moreover, for the two first
case studies, we developed the corresponding JUnit
test cases. For the two other case studies, we used
the JUnit test cases that were available on their
respective web sites. For each system, we related to
each use case the corresponding source code and
JUnit test cases. For each use case, we calculated
the values of the use case metrics and the global
value of the OCP method. We also used the metric
SLOC to quantify the source code corresponding to
each use case, and the metric TLOC to quantify the
JUnit test cases corresponding to each use case. In
order to compare empirically the two methods, in
terms of predicting SLOC and TLOC, we used both
simple and multiple linear regression methods to
build the prediction models.

Table 1: Descriptive statistics.

Variables Obs Min Max Mean SD
NIC 33 1,000 15,000 4,424 3,307
NEO 33 1,000 36,000 3,333 6,352
NS 33 1,000 32,000 3,455 5,391
NT 33 1,000 67,000 5,818 11,359
OCP 33 2,000 134,000 21,485 23,630
SLOC 33 4,000 399,000 66,061 76,652
TLOC 33 11,000 777,000 130,818 206,393

The selected projects are: ATM, NextGen,
CommonsEmail and JODA-Time. The first case
study ATM1 is a simulator system allowing
performing basic banking operations (withdrawal,
deposit, transfer, balance, etc.). We adapted the case
study for our purposes. The second case study
NextGen is an extension of the application
developed by Larman in (Larman, 2004). The
original application has been extended for our
purposes by adding features about accounts
receivable management, suppliers, and employees.
We also added features to support billing and rental
payments by debit and credit. The third case study
Commons Email2 aims to provide an API for
sending email. It is built on top of the Java Mail
API, which it aims to simplify. The fourth case
study JODA-Time3 is the de facto standard library
for advanced date and time in Java. It provides a
quality replacement for the Java date and time

1 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
2 https://commons.apache.org/proper/commons-email/
3 http://www.joda.org/joda-time/

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

174

classes. Because the main data set was
heterogeneous, and in order to have a significant
sample of data, we decided to perform our study on
the whole data set obtained by grouping the use
cases of the four case studies. We have then a total
of 33 use cases. Table 1 lists the descriptive
statistics for the use case metrics, the global value
of OCP and the size metrics SLOC and TLOC.

4.2 Correlation Analysis

In order to investigate the relationships between use
case metrics (noted UCMi), including the OCP
global value, and the size metrics SLOC and TLOC,
we performed statistical tests using correlation. The
null and alternative hypotheses that our study has
tested were:
H0: There is no significant correlation between a
use case metric UCMi (OCP) and SLOC (TLOC).
H1: There is a significant correlation between a use
case metric UCMi (OCP) and SLOC (TLOC).

For the analysis of the collected data, and in
order to test the correlation between a use case
metric (and OCP) and SLOC (TLOC), we used two
correlation analysis techniques: Pearson and
Spearman techniques. We used these techniques
mainly for completeness. The Pearson r correlation
is widely used in statistics to measure the degree of
the relationship between linear related variables.
The variables should be normally distributed. The
Spearman rank correlation is a non-parametric test
that is used to measure the degree of association
between two variables. Spearman rank correlation
test does not assume anything about the distribution
of the variables.

Correlation is a bivariate analysis that measures
the strengths of association between two variables.
In statistics, the value of the correlation coefficient
varies between +1 and -1. A positive correlation is
one in which the variables increase together. A
negative correlation is one in which one variable
increases as the other variable decreases. A
correlation of +1 or -1 will arise if the relationship
between the variables is exactly linear. A
correlation close to zero means that there is no
linear relationship between the variables.

We used the XLSTAT4 tool to measure the two
types of correlations. We applied the typical
significance threshold (alpha = 0.05) to decide
whether the correlations where significant. For each
pair < UCMi, SLOC (TLOC)>, we analyzed the

4 http://www.xlstat.com/

Table 2: Pearson’s correlation values between the use
case metrics (and OCP) and SLOC (and TLOC).

Variables NIC NEO NS NT OCP SLOC TLOC

NIC 1 0,494 0,650 0,583 0,815 0,668 0,170

NEO 0,494 1 0,872 0,972 0,824 0,772 0,790

NS 0,650 0,872 1 0,962 0,907 0,850 0,528

NT 0,583 0,972 0,962 1 0,893 0,841 0,695

OCP 0,815 0,824 0,907 0,893 1 0,937 0,577

Table 3: Spearman’s correlation values between the use
case metrics (and OCP) and SLOC (and TLOC).

Variables NIC NEO NS NT OCP SLOC TLOC

NIC 1 0,324 0,512 0,402 0,794 0,673 0,190

NEO 0,324 1 0,243 0,759 0,477 0,582 0,365

NS 0,512 0,243 1 0,705 0,686 0,757 0,385

NT 0,402 0,759 0,705 1 0,703 0,820 0,612

OCP 0,794 0,477 0,686 0,703 1 0,923 0,497

collected data set by calculating the (Pearson’s and
Spearman’s) correlation coefficients. Table 2 and
Table 3 summarize the results (respectively
Pearson’s and Spearman’s correlation coefficients).
The correlation coefficients that are significant
(alpha = 0.05) are set in boldface in the two tables.

The first global observation that we can make
from Table 2 and Table 3 is that there is a
significant relationship (the correlation values are in
bold face) between all the use case metrics,
including the OCP global value, and the size
metrics SLOC and TLOC, except for the pair (NIC,
TLOC) in the case of the two techniques. According
to the obtained results, we can therefore reasonably
reject the null hypothesis H0. The other global
observations that we can make from these tables are
that:
- According to the Pearson technique, the use case

metrics (including OCP) that are the most
correlated to SLOC are respectively OCP (0.937),
NS (0.850) and NT (0.841), and the use case
metrics (including OCP) that are the most
correlated to TLOC are respectively NEO (0.790),
NT (0.695), which are both much better correlated
to TLOC than the OCP metric (0.577).

- According to the Spearman technique, the use case
metrics (including the OCP value) that are the
most correlated to SLOC are respectively OCP
(0.923), NT (0.820) and NS (0.757), and the use
case metric that is the most correlated to TLOC is
NT (0.612), which is much better correlated to
TLOC than the OCP metric (0.497).

We can also see from Table 2 and Table 3 that

Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class Points

175

the correlation measures are positive. This means
that one variable (a use case metric (OCP))
increases as the other variable (SLOC, TLOC)
increases. Overall, results suggest that the use case
metrics (and OCP) can be used to predict SLOC
(TLOC). This must, however, be validated.

4.3 Source and Test Code Size
Prediction

We present, in this section, the different steps of the
empirical study we conducted in order to compare
the two approaches, UCM and OCP, in terms of
predicting SLOC and TLOC. The goal here is to
evaluate how accurately the two methods predict
the size metrics SLOC and TLOC. We used
different modeling techniques to build the
prediction models: (1) we used the simple linear
regression method to evaluate the individual effect
of each use case metric (and OCP) on the size
metrics SLOC and TLOC, identifying which
metrics are significantly related to SLOC and
TLOC, and (2) we used the multiple linear
regression method to explore the combined effect of
the use case metrics on SLOC and TLOC,
investigating if the combination of the use case
metrics will improve the accuracy of the prediction
of the size metrics SLOC and TLOC.

Linear regression is a commonly used statistical
technique that is widely used to model (linearly
approximate) the relationship between a dependent
variable y and one or more explanatory variables
denoted X. Linear regression analysis is of two
types: The case of one explanatory variable is called
simple linear regression (SLR). For more than one
explanatory variable, it is called multiple linear
regression (MLR). The simple linear regression
analysis is based on the equation:

Y = β0 + β1 X, (1)

where Y is the dependent variable (SLOC or
TLOC) and X is the independent variable (use case
metric or OCP). The multiple linear regression
analysis is based on the equation:

Y = β0 + β1 X1 + β2 X2 +…+ βn Xn, (2)

where Y is the dependent variable (SLOC or
TLOC) and the Xi are the independent variables
(use case metrics).

4.3.1 Hypotheses

The study tested various hypotheses, which relate

the use case metrics (including OCP) to SLOC
(TLOC). For each use case metric UCMi:

The null hypothesis was: A use case with a high
UCMi (OCP) value is no more likely to have a high
value of SLOC (TLOC) than a use case with a low
UCMi (OCP) value.

The hypothesis was: A use case with a high UCMi
(OCP) value is more likely to have a high value of
SLOC (TLOC) than a use case with a low UCMi
(OCP) value.

4.3.2 Simple Linear Regression Analysis

In the SLR analysis, and therefore in each SLR
model, we considered only one predictor variable.
The SLR models for predicting SLOC (and TLOC)
based on the value of a use case metric (or OCP)
have the form of the equation (1) presented in the
introduction of section 4.3. We used the XLSTAT
tool to perform the simple linear regression analysis
and derive the simple linear regression models.

Table 4 summarizes the results of the SLR
analysis for predicting SLOC. From Table 4, it can
be seen that all the SLR models are significant
(according to the corresponding p-value). The
performances of the models vary, however, from
one model to the other. From Table 4, we can see
that the SLR model based on the metric OCP is the
most accurate in terms of SLOC prediction (the
corresponding R2 value is 87.9%), followed by the
SLR model based on the metric NS (the
corresponding R2 value is 72.3%), and in a third
position the SLR model based on the metric NT (the
corresponding R2 value is 70.7%).

Table 5 summarizes the results of the SLR
analysis for predicting TLOC. From Table 5, it can
be seen that all the SLR models are here also
significant (according to the corresponding p-
value), except the one based on the use case metric
NIC. The performances of the models vary here
also from one model to the other. From Table 5, we
can see that the SLR model based on the metric
NEO is the most accurate in terms of TLOC
prediction (the corresponding R2 value is 62.4%),
followed by the SLR model based on the metric NT
(the corresponding R2 value is 48.3%), and in a

Table 4: SLR analysis – Predicting SLOC - Results.

 NIC NEO NS NT OCP

R2 44.6% 59.7% 72.3% 70.7% 87.9%

b 0.668 0.772 0.850 0.841 0.937

p-value < 0.0001 <0.0001 <0.0001 < 0.0001 < 0.0001

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

176

third position the SLR model based on the metric
OCP (the corresponding R2 value is 33.3%)

Table 5: SLR analysis – Predicting TLOC - Results.

 NIC NEO NS NT OCP

R2 2.9% 62.4% 27.8% 48.3% 33.3%

b 0.170 0.790 0.528 0.695 0.577

p-value 0.343 <0.0001 0.002 < 0.0001 0.000

4.3.3 Multiple Linear Regression Analysis

The main purpose of the MLR analysis here is to
explore the potential of the combined effect of the
use case metrics (as predictor variables) on the size
metrics SLOC and TLOC (as dependent variables).
The question here is whether the combination of the
use case metrics will improve the accuracy of
SLOC (TLOC) prediction. The MLR model for
predicting SLOC (TLOC) based on the values of
the use case metrics has the form of the equation (2)
presented in the introduction of section 4.3. We
used the XLSTAT tool to perform the multiple
linear regression analysis and derive the multiple
linear regression model based on the combination of
the use case metrics.

Table 6 gives the results of the MLR analysis
for the prediction of SLOC. From Table 6, it can be
seen that the MLR model based on the use case
metrics is significant (according to the
corresponding p-value). From Table 6 and Table 4,
we can see that the MLR model is most accurate in
terms of SLOC prediction (the corresponding R2
value is 93.6%) than all the SLR models based on
each use case metric, including the one based on the
OCP metric. So, it is clear that, when the use case
metrics are combined, the prediction quality visibly
increased.

Table 7 gives the results of the MLR analysis
for the prediction of TLOC. From Table 7, it can be
seen that here also the MLR model based on the use
case metrics is significant (according to the
corresponding p-value). From Table 7 and Table 5,
we can see that here also the MLR model based on
the use case metrics is most accurate in terms of
TLOC prediction (the corresponding R2 value is
81.0%) than all the SLR models based on each use
case metric, including the one based on the OCP
metric. So, it is clear here also that, when the use

Table 6: MLR analysis – Predicting SLOC - Results.

 NIC, NEO, NS, NT
 R2 93.6%
 p-value < 0.0001

case metrics are combined, the prediction quality
visibly increased.

Table 7: MLR analysis – Predicting TLOC - Results.

NIC, NEO, NS, NT
R2 81.0%
p-value < 0.0001

4.4 Threats to Validity

The study presented in this paper should be
replicated using many other OO software systems in
order to draw more general conclusions. Indeed,
there are a number of limitations that may affect the
results of the study or limit their interpretation and
generalization.

The achieved results are based on the data set
we collected from only four open source Java
projects. To perform our study, we grouped the use
cases of the four case studies to build our data set.
Even if the collected data set is statistically
significant, we do not claim that our results can be
generalized.

The use case models and class diagrams have
been collected by reverse engineering the source
code of the applications. In fact, we have used the
source code of the projects as well as the available
documentation (particularly the detailed user
guides). By analyzing both source code and the
documentation of the projects, we were able to
reproduce the models (particularly the use case
models) needed for our study. The collection of the
models has been performed by the same person
(third author of the paper). To reduce the effect of
this threat, results were discussed, checked and
validated by all the authors.

The complexity of use cases is determined in
part by the number of transactions. The simplest
way to count the number of transactions was to
count the number of events included in the flow of
events. The number of events may be affected by
the style adopted (by developers during the analysis
phase) in the design of use cases (use case model).
So, it is important to clarify that a key prerequisite
to applying the proposed approach (this is also valid
for the other use cases based prediction methods) is
that use cases of the target system have been
identified (structured and documented) at a suitable
level of detail, where each transaction is specified.

Furthermore, the MLR analysis has been
performed using all the use case metrics. The goal
was especially to explore (in comparison to the SLR
models, particularly the one based on the OCP
metric) the combined effect of the use case metrics

Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class Points

177

on the size metrics. The fact that the use case
metrics (according to the data collected) are in some
cases highly correlated (correlation analysis)
suggest that there is a redundancy in the
information captured by the use case metrics
(multicollinearity between the use case metrics as
predictor variables), which may lead to an over
fitting of the multiple regression model. The
simplest way to resolve this problem is to reduce
the number of use case metrics (collinear predictor
variables) to a subset of independent predictor
variables. In fact, the goal here was not to build the
best multiple regression model based on a subset of
independent use case metrics. So, the findings in
this paper should be viewed as exploratory and
indicative rather than conclusive. Results show at
least that use case metrics offer a potential and
simple way that can be used in early stages of the
software development lifecycle to predict the source
code and test code size. Moreover, the study has
been performed on simple case studies. It is
necessary to replicate the study on large systems.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we focused on the early prediction of
both SLOC and TLOC for OO software
development. The study aimed basically at
comparing empirically the Use Case Metrics
(UCM) method, which is a use case model based
prediction method that we proposed in previous
work, and the Objective Class Points (OCP) method
in terms of early prediction of SLOC and TLOC.
We used both simple and multiple linear regression
methods to build the prediction models. We
conducted an empirical comparison using data
collected from four open source Java projects.

In a first step, we investigated the relationships
between use case metrics (including OCP) and size
metrics SLOC and TLOC. The goal here was to
evaluate the capacity of use case metrics (and OCP)
to predict SLOC and TLOC. In a second step, we
used the simple linear regression method to evaluate
the individual effect of each use case metric
(including OCP) on SLOC (TLOC), and the
multiple linear regression method to explore the
combined effect of use case metrics on SLOC
(TLOC).

In order to assess the relationships between the
use case metrics, including the OCP global value,
and SLOC (TLOC), we performed statistical tests

using correlation. We used two correlation analysis
techniques: Pearson and Spearman techniques. We
observed a significant and (in some cases) a high
correlation between the use case metrics (and OCP)
and SLOC (TLOC). These correlations suggest that
use case metrics (and OCP) can be used to predict
the final source code (test code) size.

We also derived several simple linear regression
models to relate SLOC (TLOC) to the use case
metrics (and OCP), and a multiple linear regression
model based on the use case metrics to predict
SLOC (TLOC). Overall, results provide evidence
that the multiple linear regression model, based on
the combination of the use case metrics, is more
accurate in terms of early prediction of SLOC and
TLOC than: (1) the simple linear regression models
based on each use case metric, and (2) the simple
linear regression model based on the OCP metric.
The combination of the use case metrics highly
increased the accuracy of SLOC (TLOC)
prediction. The main limitations of the observations
made in this study are basically related to the small
size (and number) of the considered set of projects.

The performed study should be replicated using
many other OO software systems in order to draw
more general conclusions. The findings in this
paper should be viewed, in fact, as exploratory and
indicative rather than conclusive. As future work,
we plan to extend the present study by using other
methods (machine learning methods particularly) to
explore the individual and combined effect of the
use case metrics on the source code (test code) size
(and software development effort), compare our
approach to other development effort prediction
approaches, and finally replicate the study on
various OO software systems to be able to give
generalized results.

ACKNOWLEDGMENTS

This work was (partially) supported by NSERC
(Natural Sciences and Engineering Research
Council of Canada) grant.

REFERENCES

Abrahao, S., Poels, G., Pastor, O.: A Function Size
Measurement Method for Object-Oriented
Conceptual Schemas: Design and Evaluation Issues,
Software and System Modeling, 5(1), 2006. lokan,
c.j.: Function Points, Advances in Computers, 65,
2005.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

178

Albrecht, A.: Measuring Application Development
Productivity, in IBM Application Development
Symposium, 1979.

Albrecht, A.J., Gaffney, J.E.: Software function, Source
Lines of Code and Development effort Prediction: a
Software Science Validation, IEEE Transactions on
Software Engineering, 9 (6), 1983.

Antoniol, G., Lokan, C., Caldiera, G., Fiutem, R.: A
Function Point-Like Measure for Object-Oriented
software, Empirical Software Engineering, 4 (3), 1999.

Antoniol, G., Lokan, C., Fiutem, R.: Object-Oriented
Function Points: An Empirical Validation, Empirical
Software Engineering, 8 (3), 2003.

Badri, M., Badri, L., Flageol, W.: Predicting the Size of
Test Suites from Use Cases: An Empirical
exploration, H. Yenigün, C. Yilmaz, and A. Ulrich
(Eds.): ICTSS 2013, LNCS 8254, November, 2013.

Badri, M., Badri, L., Flageol, W.: Simplifying Test Suites
Size Prediction Using Use Case Metrics: An
empirical comparison, Submitted to the International
Journal of Software Engineering and Knowledge
Engineering (IJSEKE), September 2015.

Badri, M., Toure, F.: Empirical Analysis of Object-
Oriented Design Metrics for Predicting Unit Testing
Effort of Classes, Journal of Software Engineering
and Applications, 5(7), July 2012.

Bianco, V.D, Lavazza, L.: An Assessment of Function
point-like metrics for object-oriented Open-Source
Software, International Conference on Software
Process and Product Measurement, 2006.

Bianco, V.D, Lavazza, L.: Object-Oriented Model Size
Measurement: Experiences and a Proposal for a
Process, Workshop on Model Size Metrics, ACM-
IEEE International Conference on Model Driven
Engineering Languages and Systems, 2006.

Boehm, B., Abts, C., Brown, A.W. et al.: Software Cost
Estimation with COCOMO II, Prentice-Hall,
Englewood Cliffs, NJ, 2000.

Boehm, B., Abts, C., Chulani, S.: Software Development
Cost Estimation Approaches – A survey, Annals of
Software Engineering, 10, 2000.

Boehm, W.B.: Software Engineering Economics,
Prentice-Hall, 1981.

Bourque, P., Côté, V.: An experiment in software sizing
structured analysis metrics, Journal of Systems and
Software, 15 (2), 1991.

Bruntink, M., Van Deursen, A.: Predicting Class
Testability Using Object-Oriented Metrics. In:
Proceedings of the 4th IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM
2004), pp. 136–145, September 2004.

Bruntink, M., Van Deursen, A.: An Empirical Study into
class testability, Journal of Systems and Software,
79(9), 1219–1232, 2006.

Carbone, M., Santucci, G.: Fast & Serious: A UML based
Metric for Effort Estimation, 6th International
ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, 2002.

Chen, Y., Boehm, B.W., Madachy, R., Valerdi, R.: An

EMPIRICAL Study of eServices Product UML
Sizing Metrics, International Symposium on
Empirical Software Engineering, 2004.

Carroll, E.R.: Estimating Software Based on Use case
Points, OOPSLA’05, San Diego, California, USA,
October 16-20, 2005.

Costagliola, G., Ferruci, F., Tortora, G., Vitiello, G.:
Class Point: an Approach for the Size Estimation of
Object-Oriented Systems, IEEE Transactions on
Software Engineering, 31(1), 2005.

Hastings, T.E., Sajeev, A.S.M.: A vector-Based Approach
to Software Size Measurement and Effort Estimation,
IEEE Transactions on Software Engineering, 27 (4),
2001.

Henderson-Sellers, B.: Corrigenda: Software Size
Estimation of Object-Oriented Systems, IEEE
Transactions on Software Engineering, 23 (4), 1997.

Jacobson, I., Christerson, M., Jonson, P., Overgaard, G.:
Object-Oriented Software Engineering: A Use Case
Driven Approach, Addison-Wesley, 1993.

Jahan, M.V., Sheibani, R.: A new Method for Software
Size Estimation based on UML Metrics, The First
Conference on Software Engineering, Islamic Azad
University, 2005.

Janaki Ram, D., Raju, S.V.G.K.: Object-Oriented Design
Function Points, 1st Asia-Pacific Conference on
Software Quality, 2000.

Jorgensen, M., Shepperd, M.: A systematic Review of
Software Development Cost Estimation Studies,
IEEE Transactions on Software Engineering, 33 (1),
2007.

Jorgensen, M., Boehm, B.: Software Development Effort
Estimation: Formal Methods or Expert Judgment?,
IEEE Software, 2009.

Kemerer, C.F.: An empirical validation of software cost
estimation, Communications of the ACM, 30 (5),
1987.

Kim, S., Lively, W., Simmons, D.: An effort Estimation
by UML Points in the Early Stage of Software
development, International Conference on Software
Engineering Research & Practice, 2006.

Lagerstrom, R., Marcks von Wurtemberg, L., Holm, H.,
Luczak, O.: Identifying factors affecting software
development cost and productivity, Software Quality
Journal, 2012.

Larman, C.: Applying UML and Design Patterns, An
Introduction to Object-Oriented Analysis and Design
and the Unified Process, Prentice Hall, 2004.

Leung, H., Fan, Z.: Software Cost Estimation, Handbook
of Software Engineering and Knowledge
Engineering, Vol. 2, World Scientific Publishing,
2002.

Matson, J.E., Barrett, B.E., Mellichamp, J.M.: Software
Development Cost Estimation using Function Points,
IEEE Transactions on Software Engineering, 20 (4),
1994.

McDonell, S.G.: Software Source Code Sizing using
Fuzzy Logic Modeling, Information and Software
Technology, 45 (7), 2003.

Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class Points

179

Mishra, S., Tripathy, K.C., Mishra, M.K.: Effort
Estimation based on Complexity and Size of
relational database system, International Journal of
Computer Science & Communication, 1 (2), 2010.

Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying
effort estimation based on Use Case Points,
Information and Software Technology, 53, 200–213,
2011.

Pfleeger, S.L., Wu, F., Lewis, R.: Software cost
estimation and sizing methods: Issues and Guidelines,
RAND Corporation, 2005.

Singh, Y., Kaur, A., Malhota, R.: Predicting Testability
effort using Artificial Neural Network, In:
Proceedings of the World Congress on Engineering
and Computer Science, WCECS, San Francisco, USA,
2008.

Singh, Y., Saha, A.: Predicting Testability of Eclipse: a
Case Study, Journal of Software Engineering, 4(2),
2010.

Trendowicz, A., Munch, J., Jeffery, R.: State of the
Practice in Software Effort Estimation: A survey and
Literature Review, CEE-SET 2008, LNCS 4980,
2008.

Verner, J., Tate, G.: A software size model, IEEE
Transactions on Software Engineering, 38 (5), 2012.

Zhao, Y., Tan, H.B.K.: Software Cost Estimation through
Conceptual Requirement, 3rd International
Conference on Software Quality, 2003.

Zhou, Y., Leung, H., Song, Q., Zhao, J., Lu, H., Chen, L.
and Xu, B.: An In-Depth Investigation into the
Relationships between Structural Metrics and Unit
Testability in OOS, Information SCIENCES, 55(12)
Science China, 2012.

Zhou, Y., Yang, Y., Xu, B., Leung, H., Zhou, X.: Souce
Code Size Estimation Approaches for Object-
Oriented systems from UML Class Diagrams: A
Comparative study, Information and Software
Technology, 56, 2014.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

180

