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Abstract:  Source code size, in terms of SLOC (Source Lines of Code), is an important parameter of many parametric 
software development effort estimation methods. Moreover, test code size, in terms of TLOC (Test Lines of 
Code), has been used in many studies to indicate the effort involved in testing. This paper aims at 
comparing empirically the Use Case Metrics (UCM) method, a use case model based method that we 
proposed in previous work, and the Objective Class Points (OCP) method in terms of early prediction of 
SLOC and TLOC for object-oriented software. We used both simple and multiple linear regression methods 
to build the prediction models. An empirical comparison, using data collected from four open source Java 
projects, is reported in the paper. Overall, results provide evidence that the multiple linear regression model, 
based on the combination of the use case metrics, is more accurate in terms of early prediction of SLOC and 
TLOC than: (1) the simple linear regression models based on each use case metric, and (2) the simple linear 
regression model based on the OCP method. 

1 INTRODUCTION 

Software development is a time and resource 
consuming process. Furthermore, software testing, 
which plays a crucial role in software quality 
assurance, takes an important part of the software 
development effort. It is, therefore, important to 
estimate as soon as possible, ideally in the early 
stages of the software development lifecycle, the 
effort required to develop and test software. In this 
way, activities can be planned and resources can be 
optimally allocated in order to ensure a successful 
software development (and testing) management. 

Many software development effort estimation 
methods have been proposed in the literature over 
the years (Albrecht, 1979; Albrecht and Gaffney, 
1983;  Antoniol et al., 1999; Antoniol et al., 2003; 
Bianco and Lavazza, 2006a; Bianco and Lavazza, 
2006b; Boehm, 1981; Boehm et al., 2000a; Boehm 
et al., 2000b; Bourque and Côté, 1991; Carbone and 
Santucci, 2002; Carroll, 2005; Chen et al., 2004; 
Hastings and Sajeev, 2001; Henderson-Sellers, 
1997; Jahan and Sheibani, 2005; Janaki and Raju, 
2000;  Jorgensen and Boehm, 2009; Jorgensen and 
Shepperd, 2007; Kemerer, 1987; Lagerstrom et al., 

2012; Kim et al., 2006; Leung and Fan, 2002; 
Matson et al., 1994;  McDonnel, 2003; Mishra et 
al., 2010; Ochodek et al., 2011; Pfleeger et al., 
2005; Trendowicz et al., 2008; Verner and Tate, 
2012; Zhao and Tan, 2003; Zhou et al., 2014). 
Source code size, in terms of SLOC (Source Lines 
of Code), is an important parameter of many 
parametric software development effort estimation 
methods. The testing effort is unfortunately often 
estimated as a part of the overall software 
development effort. However, test code size, in 
terms of TLOC (Test Lines of Code), has been used 
in many studies to indicate the effort involved in 
unit testing (Badri and Toure, 2012; Bruntik and 
Van Deursen, 2004; Bruntik and Van Deursen, 
2006; Singh et al., 2008; Singh and Saha, 2010; 
Zhou et al., 2012). 

In this paper, we focus on the early prediction of 
both SLOC and TLOC for object-oriented (OO) 
software development, which is used extensively in 
the industrial projects. The study aims basically at 
comparing empirically the Use Case Metrics 
(UCM) method, which is a use case model based 
prediction method that we proposed in a previous 
work (Badri et al., 2013), and the Objective Class 
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Points (OCP) method (Kim et al., 2005) in terms of 
early prediction of SLOC and TLOC. The UCM 
method has already been compared in (Badri et al., 
2015) to the Use Case Points (UCP) method, which 
is also a use case model based estimation method. 
Results show that the UCM method is more 
accurate, in terms of predicting test suites size, than 
the UCP method. In this work, we wanted to 
compare the UCM method to a class diagram based 
method. We used both simple and multiple linear 
regression methods to build the prediction models. 
An empirical comparison, using data collected from 
four open source Java projects, is reported in the 
paper. Overall, results provide evidence that the 
multiple linear regression model, based on the 
combination of the use case metrics, is more 
accurate in terms of early prediction of SLOC and 
TLOC than: (1) the simple linear regression models 
based on each use case metric, and (2) the simple 
linear regression model based on the OCP metric. 

The rest of this paper is organized as follows: 
Section 2 presents summarily the Objective Class 
Points method. The use case metrics are introduced 
in Section 3. Section 4 presents the different steps 
of the empirical study we conducted to evaluate 
comparatively the Use Case Metrics and the 
Objective Class Points approaches in terms of 
SLOC and TLOC prediction accuracy. Finally, 
Section 5 concludes the paper and outlines some 
future work directions. 

2 OBJECTIVE CLASS POINTS 
METHOD 

The Objective Class Points (OCP) method counts 
the number of class points in a UML class diagram 
(Kim et al., 2005). The OCP method, unlike other 
class points based approaches such as (Costagliola 
et al., 2005; Abrahao et al., 2006), does not involve 
any subjective factors (Zhou et al., 2014). For a 
class diagram, the OCP value is computed as 
follows (Kim et al., 2005; Zhou et al., 2014): 

OCP = NC + NGen + NDep + NORR + NM + NA 
+ NAssoc + NAgg + NComp 

where: NC: the total number of classes, NGen: the 
total number of generalization relationships, NDep: 
the total number of dependency relationships, 
NORR: the total number of realization 
relationships, NM: the total number of methods, 
NA: the total number of attributes, NAssoc: the 
total number of association relationships, NAgg: the 

total number of aggregation relationships, and 
NComp: the total number of composition 
relationships. 

3 USE CASE METRICS 

A use case model defines the functional scope of 
the system to be developed (Jacobson et al., 1993; 
Larman, 2004). A use case is a collection of related 
success and failure scenarios that describe actors 
using a system to support a goal. Use cases describe 
how external actors interact with the software 
system. These interactions generate events to the 
software system, known as input system events, 
which are usually associated with system 
operations. A scenario, also called a use case 
instance, is a specific sequence of actions and 
interactions between actors and the system. It is one 
particular story of using the system, or one path 
through the use case. We present, in what follows, 
the use case metrics that we used in our study, 
metrics that we introduced in previous work (Badri 
et al., 2013; Badri et al., 2015), to quantify different 
characteristics related to size and complexity of use 
cases: 

Number of Involved Classes (NIC): This metric 
defines the total number of analysis classes 
participating in a use case, which have been 
identified during the analysis phase. 

Number of External Operations (NEO): This metric 
defines the total number of system operations 
associated with the system events related to a use 
case. These operations are easily identifiable from 
UML system sequence diagrams. 

Number of Scenarios (NS): This metric gives the 
total number of the different scenarios of a use case. 
One use case can, in fact, have one or more 
scenarios. This metric is related to the cyclomatic 
complexity of the use case. 

Number of Transactions (NT): This metric gives the 
total number of transactions of a use case. A 
transaction is an event (a set of activities in a use 
case scenario) that occurs between an actor and the 
target system, the event being performed entirely or 
not at all. The complexity of a use case is also 
determined by the number of transactions. 
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4 EMPIRICAL STUDY 

4.1 Goals, Selected Projects and Data 
Collection 

The study aims at comparing empirically the Use 
Case Metrics and the Objective Class Points 
approaches in terms of predicting both source code 
size (SLOC) and test code size (TLOC). For a use 
case (noted UCi), to indicate: (1) the size of 
corresponding source code, we used the SLOC 
metric, and (2) the size of corresponding test code, 
we used the TLOC metric. The SLOC and TLOC 
metrics are defined as follows: 

Source Lines Of Code (SLOC): This metric defines 
the cumulative number of lines of source code 
related to a use case (all of its scenarios). It is used 
to indicate the total size, in terms of lines of source 
code, of the parts of software corresponding to a use 
case. 
Test Lines Of Code (TLOC): This metric defines the 
cumulative number of lines of code of the JUnit test 
cases related to a use case (all of its scenarios). This 
number includes only the test cases related to 
classes/methods involved in the realization of the 
use case. 

We conducted an experimental study using data 
collected from four open source Java projects. The 
selected case studies are from different domains and 
developed by different teams. Moreover, knowing 
that the OCP method is applied on UML class 
diagrams, we deliberately chose case studies that 
have been developed using (strictly) the object 
paradigm (in order to avoid biasing the OCP 
results). The use case models have been collected 
for each project by reverse engineering the source 
code. The goal was, because the use case models 
were not available, to produce (or reproduce) these 
models (and particularly the system sequence 
diagrams) as accurately as possible (without 
alteration) from code analysis. In fact, we have used 
the source code of the projects as well as the 
available documentation (particularly the detailed 
user guides).  

Moreover, as the OCP method requires metrics 
that are computed from the class diagram, we also 
reverse engineered the source code of the selected 
systems to obtain class diagrams. In order to 
compare the two methods on the same basis, and 
knowing that the use case metrics are computed for 
each use case, we considered for the calculation of 
the OCP values all the classes (and methods) 

required for the implementation of the use case. So, 
for the calculation of the OCP values, we 
considered for each use case the corresponding part 
of the class diagram. Moreover, for the two first 
case studies, we developed the corresponding JUnit 
test cases. For the two other case studies, we used 
the JUnit test cases that were available on their 
respective web sites. For each system, we related to 
each use case the corresponding source code and 
JUnit test cases. For each use case, we calculated 
the values of the use case metrics and the global 
value of the OCP method. We also used the metric 
SLOC to quantify the source code corresponding to 
each use case, and the metric TLOC to quantify the 
JUnit test cases corresponding to each use case. In 
order to compare empirically the two methods, in 
terms of predicting SLOC and TLOC, we used both 
simple and multiple linear regression methods to 
build the prediction models. 

Table 1: Descriptive statistics. 
 

Variables Obs Min Max    Mean        SD 
NIC 33 1,000 15,000 4,424 3,307
NEO 33 1,000 36,000 3,333 6,352
NS 33 1,000 32,000 3,455 5,391
NT 33 1,000 67,000 5,818 11,359
OCP 33 2,000 134,000 21,485 23,630
SLOC 33 4,000 399,000 66,061 76,652
TLOC 33 11,000 777,000 130,818 206,393

 

The selected projects are: ATM, NextGen, 
CommonsEmail and JODA-Time. The first case 
study ATM1 is a simulator system allowing 
performing basic banking operations (withdrawal, 
deposit, transfer, balance, etc.). We adapted the case 
study for our purposes. The second case study 
NextGen is an extension of the application 
developed by Larman in (Larman, 2004). The 
original application has been extended for our 
purposes by adding features about accounts 
receivable management, suppliers, and employees. 
We also added features to support billing and rental 
payments by debit and credit. The third case study 
Commons Email2 aims to provide an API for 
sending email. It is built on top of the Java Mail 
API, which it aims to simplify. The fourth case 
study JODA-Time3 is the de facto standard library 
for advanced date and time in Java. It provides a 
quality replacement for the Java date and time 

                                                            
1 http://www.math-cs.gordon.edu/courses/cs211/ATMExample/ 
2 https://commons.apache.org/proper/commons-email/ 
3 http://www.joda.org/joda-time/ 
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classes. Because the main data set was 
heterogeneous, and in order to have a significant 
sample of data, we decided to perform our study on 
the whole data set obtained by grouping the use 
cases of the four case studies. We have then a total 
of 33 use cases. Table 1 lists the descriptive 
statistics for the use case metrics, the global value 
of OCP and the size metrics SLOC and TLOC. 

4.2 Correlation Analysis 

In order to investigate the relationships between use 
case metrics (noted UCMi), including the OCP 
global value, and the size metrics SLOC and TLOC, 
we performed statistical tests using correlation. The 
null and alternative hypotheses that our study has 
tested were: 
H0: There is no significant correlation between a 
use case metric UCMi (OCP) and SLOC (TLOC). 
H1: There is a significant correlation between a use 
case metric UCMi (OCP) and SLOC (TLOC). 

For the analysis of the collected data, and in 
order to test the correlation between a use case 
metric (and OCP) and SLOC (TLOC), we used two 
correlation analysis techniques: Pearson and 
Spearman techniques. We used these techniques 
mainly for completeness. The Pearson r correlation 
is widely used in statistics to measure the degree of 
the relationship between linear related variables. 
The variables should be normally distributed. The 
Spearman rank correlation is a non-parametric test 
that is used to measure the degree of association 
between two variables. Spearman rank correlation 
test does not assume anything about the distribution 
of the variables. 

Correlation is a bivariate analysis that measures 
the strengths of association between two variables. 
In statistics, the value of the correlation coefficient 
varies between +1 and -1. A positive correlation is 
one in which the variables increase together. A 
negative correlation is one in which one variable 
increases as the other variable decreases. A 
correlation of +1 or -1 will arise if the relationship 
between the variables is exactly linear. A 
correlation close to zero means that there is no 
linear relationship between the variables. 

We used the XLSTAT4 tool to measure the two 
types of correlations. We applied the typical 
significance threshold (alpha = 0.05) to decide 
whether the correlations where significant. For each 
pair  < UCMi,  SLOC  (TLOC)>,  we   analyzed  the 

                                                            
4 http://www.xlstat.com/ 

Table 2: Pearson’s correlation values between the use 
case metrics (and OCP) and SLOC (and TLOC). 
 

Variables NIC NEO NS NT OCP SLOC TLOC 

NIC 1 0,494 0,650 0,583 0,815 0,668 0,170 

NEO 0,494 1 0,872 0,972 0,824 0,772 0,790 

NS 0,650 0,872 1 0,962 0,907 0,850 0,528 

NT 0,583 0,972 0,962 1 0,893 0,841 0,695 

OCP 0,815 0,824 0,907 0,893 1 0,937 0,577 

Table 3: Spearman’s correlation values between the use 
case metrics (and OCP) and SLOC (and TLOC). 

Variables NIC NEO NS NT OCP SLOC TLOC 

NIC 1 0,324 0,512 0,402 0,794 0,673 0,190 

NEO 0,324 1 0,243 0,759 0,477 0,582 0,365 

NS 0,512 0,243 1 0,705 0,686 0,757 0,385 

NT 0,402 0,759 0,705 1 0,703 0,820 0,612 

OCP 0,794 0,477 0,686 0,703 1 0,923 0,497 
 

collected data set by calculating the (Pearson’s and 
Spearman’s) correlation coefficients. Table 2 and 
Table 3 summarize the results (respectively 
Pearson’s and Spearman’s correlation coefficients). 
The correlation coefficients that are significant 
(alpha = 0.05) are set in boldface in the two tables. 

The first global observation that we can make 
from Table 2 and Table 3 is that there is a 
significant relationship (the correlation values are in 
bold face) between all the use case metrics, 
including the OCP global value, and the size 
metrics SLOC and TLOC, except for the pair (NIC, 
TLOC) in the case of the two techniques. According 
to the obtained results, we can therefore reasonably 
reject the null hypothesis H0. The other global 
observations that we can make from these tables are 
that: 
- According to the Pearson technique, the use case 

metrics (including OCP) that are the most 
correlated to SLOC are respectively OCP (0.937), 
NS (0.850) and NT (0.841), and the use case 
metrics (including OCP) that are the most 
correlated to TLOC are respectively NEO (0.790), 
NT (0.695), which are both much better correlated 
to TLOC than the OCP metric (0.577). 

- According to the Spearman technique, the use case 
metrics (including the OCP value) that are the 
most correlated to SLOC are respectively OCP 
(0.923), NT (0.820) and NS (0.757), and the use 
case metric that is the most correlated to TLOC is 
NT (0.612), which is much better correlated to 
TLOC than the OCP metric (0.497). 

We can also see from Table 2 and Table 3 that 
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the correlation measures are positive. This means 
that one variable (a use case metric (OCP)) 
increases as the other variable (SLOC, TLOC) 
increases. Overall, results suggest that the use case 
metrics (and OCP) can be used to predict SLOC 
(TLOC). This must, however, be validated. 

4.3 Source and Test Code Size 
Prediction 

We present, in this section, the different steps of the 
empirical study we conducted in order to compare 
the two approaches, UCM and OCP, in terms of 
predicting SLOC and TLOC. The goal here is to 
evaluate how accurately the two methods predict 
the size metrics SLOC and TLOC. We used 
different modeling techniques to build the 
prediction models: (1) we used the simple linear 
regression method to evaluate the individual effect 
of each use case metric (and OCP) on the size 
metrics SLOC and TLOC, identifying which 
metrics are significantly related to SLOC and 
TLOC, and (2) we used the multiple linear 
regression method to explore the combined effect of 
the use case metrics on SLOC and TLOC, 
investigating if the combination of the use case 
metrics will improve the accuracy of the prediction 
of the size metrics SLOC and TLOC. 

Linear regression is a commonly used statistical 
technique that is widely used to model (linearly 
approximate) the relationship between a dependent 
variable y and one or more explanatory variables 
denoted X. Linear regression analysis is of two 
types: The case of one explanatory variable is called 
simple linear regression (SLR). For more than one 
explanatory variable, it is called multiple linear 
regression (MLR). The simple linear regression 
analysis is based on the equation:  

Y =  β0 + β1 X, (1)

where Y is the dependent variable (SLOC or 
TLOC) and X is the independent variable (use case 
metric or OCP). The multiple linear regression 
analysis is based on the equation:  

Y =  β0 + β1 X1 + β2 X2 +…+ βn Xn, (2)

where Y is the dependent variable (SLOC or 
TLOC) and the Xi are the independent variables 
(use case metrics). 

4.3.1 Hypotheses 

The study tested various hypotheses, which relate 

the use case metrics (including OCP) to SLOC 
(TLOC). For each use case metric UCMi: 

The null hypothesis was: A use case with a high 
UCMi (OCP) value is no more likely to have a high 
value of SLOC (TLOC) than a use case with a low 
UCMi (OCP) value. 

The hypothesis was: A use case with a high UCMi 
(OCP) value is more likely to have a high value of 
SLOC (TLOC) than a use case with a low UCMi 
(OCP) value. 

4.3.2 Simple Linear Regression Analysis 

In the SLR analysis, and therefore in each SLR 
model, we considered only one predictor variable. 
The SLR models for predicting SLOC (and TLOC) 
based on the value of a use case metric (or OCP) 
have the form of the equation (1) presented in the 
introduction of section 4.3. We used the XLSTAT 
tool to perform the simple linear regression analysis 
and derive the simple linear regression models. 

Table 4 summarizes the results of the SLR 
analysis for predicting SLOC. From Table 4, it can 
be seen that all the SLR models are significant 
(according to the corresponding p-value). The 
performances of the models vary, however, from 
one model to the other. From Table 4, we can see 
that the SLR model based on the metric OCP is the 
most accurate in terms of SLOC prediction (the 
corresponding R2 value is 87.9%), followed by the 
SLR model based on the metric NS (the 
corresponding R2 value is 72.3%), and in a third 
position the SLR model based on the metric NT (the 
corresponding R2 value is 70.7%).  

Table 5 summarizes the results of the SLR 
analysis for predicting TLOC. From Table 5, it can 
be seen that all the SLR models are here also 
significant (according to the corresponding p-
value), except the one based on the use case metric 
NIC. The performances of the models vary here 
also from one model to the other. From Table 5, we 
can see that the SLR model based on the metric 
NEO is the most accurate in terms of TLOC 
prediction (the corresponding R2 value is 62.4%), 
followed by the SLR model based on the metric NT 
(the   corresponding  R2  value  is 48.3%),  and  in  a 

Table 4: SLR analysis – Predicting SLOC - Results. 

 NIC NEO NS NT  OCP  

R2 44.6% 59.7% 72.3% 70.7% 87.9% 

b 0.668 0.772 0.850 0.841 0.937 

p-value < 0.0001 <0.0001 <0.0001 < 0.0001 < 0.0001 
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third position the SLR model based on the metric 
OCP (the corresponding R2 value is 33.3%) 

Table 5: SLR analysis – Predicting TLOC - Results. 

 NIC NEO NS NT  OCP  

R2 2.9% 62.4% 27.8% 48.3% 33.3% 

b 0.170 0.790 0.528 0.695 0.577 

p-value 0.343 <0.0001 0.002 < 0.0001  0.000 

4.3.3 Multiple Linear Regression Analysis 

The main purpose of the MLR analysis here is to 
explore the potential of the combined effect of the 
use case metrics (as predictor variables) on the size 
metrics SLOC and TLOC (as dependent variables). 
The question here is whether the combination of the 
use case metrics will improve the accuracy of 
SLOC (TLOC) prediction. The MLR model for 
predicting SLOC (TLOC) based on the values of 
the use case metrics has the form of the equation (2) 
presented in the introduction of section 4.3. We 
used the XLSTAT tool to perform the multiple 
linear regression analysis and derive the multiple 
linear regression model based on the combination of 
the use case metrics.  

Table 6 gives the results of the MLR analysis 
for the prediction of SLOC. From Table 6, it can be 
seen that the MLR model based on the use case 
metrics is significant (according to the 
corresponding p-value). From Table 6 and Table 4, 
we can see that the MLR model is most accurate in 
terms of SLOC prediction (the corresponding R2 
value is 93.6%) than all the SLR models based on 
each use case metric, including the one based on the 
OCP metric. So, it is clear that, when the use case 
metrics are combined, the prediction quality visibly 
increased.  

Table 7 gives the results of the MLR analysis 
for the prediction of TLOC. From Table 7, it can be 
seen that here also the MLR model based on the use 
case metrics is significant (according to the 
corresponding p-value). From Table 7 and Table 5, 
we can see that here also the MLR model based on 
the use case metrics is most accurate in terms of 
TLOC prediction (the corresponding R2 value is 
81.0%) than all the SLR models based on each use 
case metric, including the one based on the OCP 
metric.  So,  it  is  clear  here also that, when the use 

Table 6: MLR analysis – Predicting SLOC - Results. 

 NIC, NEO, NS, NT 
 R2 93.6% 
 p-value < 0.0001 

 

case metrics are combined, the prediction quality 
visibly increased. 

Table 7: MLR analysis – Predicting TLOC - Results. 

NIC, NEO, NS, NT 
R2 81.0% 
p-value < 0.0001 

4.4 Threats to Validity 

The study presented in this paper should be 
replicated using many other OO software systems in 
order to draw more general conclusions. Indeed, 
there are a number of limitations that may affect the 
results of the study or limit their interpretation and 
generalization. 

The achieved results are based on the data set 
we collected from only four open source Java 
projects. To perform our study, we grouped the use 
cases of the four case studies to build our data set. 
Even if the collected data set is statistically 
significant, we do not claim that our results can be 
generalized. 

The use case models and class diagrams have 
been collected by reverse engineering the source 
code of the applications. In fact, we have used the 
source code of the projects as well as the available 
documentation (particularly the detailed user 
guides). By analyzing both source code and the 
documentation of the projects, we were able to 
reproduce the models (particularly the use case 
models) needed for our study. The collection of the 
models has been performed by the same person 
(third author of the paper). To reduce the effect of 
this threat, results were discussed, checked and 
validated by all the authors. 

The complexity of use cases is determined in 
part by the number of transactions. The simplest 
way to count the number of transactions was to 
count the number of events included in the flow of 
events. The number of events may be affected by 
the style adopted (by developers during the analysis 
phase) in the design of use cases (use case model). 
So, it is important to clarify that a key prerequisite 
to applying the proposed approach (this is also valid 
for the other use cases based prediction methods) is 
that use cases of the target system have been 
identified (structured and documented) at a suitable 
level of detail, where each transaction is specified. 

Furthermore, the MLR analysis has been 
performed using all the use case metrics. The goal 
was especially to explore (in comparison to the SLR 
models, particularly the one based on the OCP 
metric) the combined effect of the use case metrics 
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on the size metrics. The fact that the use case 
metrics (according to the data collected) are in some 
cases highly correlated (correlation analysis) 
suggest that there is a redundancy in the 
information captured by the use case metrics 
(multicollinearity between the use case metrics as 
predictor variables), which may lead to an over 
fitting of the multiple regression model. The 
simplest way to resolve this problem is to reduce 
the number of use case metrics (collinear predictor 
variables) to a subset of independent predictor 
variables. In fact, the goal here was not to build the 
best multiple regression model based on a subset of 
independent use case metrics. So, the findings in 
this paper should be viewed as exploratory and 
indicative rather than conclusive. Results show at 
least that use case metrics offer a potential and 
simple way that can be used in early stages of the 
software development lifecycle to predict the source 
code and test code size. Moreover, the study has 
been performed on simple case studies. It is 
necessary to replicate the study on large systems. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we focused on the early prediction of 
both SLOC and TLOC for OO software 
development. The study aimed basically at 
comparing empirically the Use Case Metrics 
(UCM) method, which is a use case model based 
prediction method that we proposed in previous 
work, and the Objective Class Points (OCP) method 
in terms of early prediction of SLOC and TLOC. 
We used both simple and multiple linear regression 
methods to build the prediction models. We 
conducted an empirical comparison using data 
collected from four open source Java projects. 

In a first step, we investigated the relationships 
between use case metrics (including OCP) and size 
metrics SLOC and TLOC. The goal here was to 
evaluate the capacity of use case metrics (and OCP) 
to predict SLOC and TLOC. In a second step, we 
used the simple linear regression method to evaluate 
the individual effect of each use case metric 
(including OCP) on SLOC (TLOC), and the 
multiple linear regression method to explore the 
combined effect of use case metrics on SLOC 
(TLOC). 

In order to assess the relationships between the 
use case metrics, including the OCP global value, 
and SLOC (TLOC), we performed statistical tests 

using correlation. We used two correlation analysis 
techniques: Pearson and Spearman techniques. We 
observed a significant and (in some cases) a high 
correlation between the use case metrics (and OCP) 
and SLOC (TLOC). These correlations suggest that 
use case metrics (and OCP) can be used to predict 
the final source code (test code) size. 

We also derived several simple linear regression 
models to relate SLOC (TLOC) to the use case 
metrics (and OCP), and a multiple linear regression 
model based on the use case metrics to predict 
SLOC (TLOC). Overall, results provide evidence 
that the multiple linear regression model, based on 
the combination of the use case metrics, is more 
accurate in terms of early prediction of SLOC and 
TLOC than: (1) the simple linear regression models 
based on each use case metric, and (2) the simple 
linear regression model based on the OCP metric. 
The combination of the use case metrics highly 
increased the accuracy of SLOC (TLOC) 
prediction. The main limitations of the observations 
made in this study are basically related to the small 
size (and number) of the considered set of projects. 

The performed study should be replicated using 
many other OO software systems in order to draw 
more general conclusions. The findings in this 
paper should be viewed, in fact, as exploratory and 
indicative rather than conclusive. As future work, 
we plan to extend the present study by using other 
methods (machine learning methods particularly) to 
explore the individual and combined effect of the 
use case metrics on the source code (test code) size 
(and software development effort), compare our 
approach to other development effort prediction 
approaches, and finally replicate the study on 
various OO software systems to be able to give 
generalized results. 
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