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Abstract: In this paper, we address the problem of setting a discrete system specified as a Finite State Machine (FSM) 
to a known initial state. As the system behavior can be nondeterministic, we discuss the complexity of 
problems related to deriving synchronizing sequences for nondeterministic FSMs and propose a way for 
decreasing such complexity. In fact, we suggest to use adaptive synchronizing sequences instead of preset 
ones, and prove that for non-initialized nondeterministic FSMs the problem of checking the existence of an 
adaptive synchronizing sequence is in P. 

1 INTRODUCTION 

As the complexity of hardware/software systems 
increases, new methods and techniques for efficient 
checking of their functional and non-functional 
requirements need to be developed. Such checking 
can be effectively performed when the formal 
description of a system under test is provided as a 
finite state model. Finite state models are widely 
used to derive tests with the guaranteed fault 
coverage for checking functional requirements for 
various types of digital systems (see, for example, 
Gill, 1961; Chow, 1978).  

A Finite State Machine (FSM) has finite non-
empty sets of states, inputs and outputs; when an 
input is applied, the FSM moves to the next state 
producing an output. In other words, FSMs include a 
‘natural reactivity’ and that is the reason why they 
are widely used when modeling systems working in 
request-response mode. The behavior of such a 
machine is described as a set of available 
input/output sequences (traces). In general, the set of 
traces is infinite. However, under certain conditions, 
it is possible to identify a finite subset of traces such 
that the application of input sequences from this 
subset and the observation of the expected output 
responses from an implementation under test (IUT) 
allows one to conclude that the system meets the 
corresponding requirements. Such a finite set of 

traces is used to form, as it is called in the literature, 
a checking sequence or a test suite. 

Complex systems can usually have a 
nondeterministic behavior, i.e. there can be several 
output responses specified for an FSM at a given 
state when an input sequence is applied. Meanwhile, 
test generation techniques against nondeterministic 
FSMs have higher complexity (Petrenko, 
Yevtushenko, and Bochmann, 1996; Hierons, 1998) 
and they mostly remain non-applicable to ‘real-life’ 
digital systems. Moreover, most of the test 
derivation techniques for nondeterministic FSMs, 
including the derivation of a single checking 
sequence applied to an IUT rely on the fact that the 
initial state of an IUT is known. Nevertheless, it is 
not always the case and thus, effective methods and 
techniques for setting up an IUT to a known 
(current) state still remain one of the important 
research topics for machines that can have a 
nondeterministic behavior. Usually this ‘set up’ is 
made by an application of an input sequence such 
that after observing the output response (in which 
case the sequence is called a homing sequence) or 
without observing the output response (in which 
case the sequence is called a synchronizing 
sequence), one can conclude about the current state 
of an IUT. Homing and synchronizing sequences 
can either serve as preambles of checking sequences 
or they can be used to set up a system into a 
particular critical state. After such a set up, the 

Kushik, N., Yevtushenko, N. and Yenigun, H.
Reducing the Complexity of Checking the Existence and Derivation of Adaptive Synchronizing Experiments for Nondeterministic FSMs.
DOI: 10.5220/0005854500830090
In Proceedings of the International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn (AMARETTO 2016), pages 83-90
ISBN: 978-989-758-166-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

83



required input sequences can be applied for checking 
an IUT against appropriate (functional or non-
functional) test purposes such as safety, security, 
robustness, etc. However, for nondeterministic 
FSMs the length of homing and synchronizing 
sequences can be exponential w.r.t. the number of 
states (Ito and Shikishima-Tsuji, 2004; Kushik and 
Yevtushenko, 2013). Correspondingly, additional 
research should be performed for efficient derivation 
of homing and synchronizing sequences for 
nondeterministic FSMs. 

In order to simplify the derivation of homing and 
synchronizing sequences researchers turn their 
attention to so called adaptive sequences that in 
many cases can be shorter than the ordinary (preset) 
ones. A sequence is adaptive if the next input to be 
applied to an IUT is chosen based on the previously 
observed outputs, and a sequence is preset if the 
outputs need to be observed only after the 
application of the whole sequence, or need not to be 
observed at all. 

Homing and synchronizing sequences are well 
studied for deterministic FSMs and deterministic 
automata in which outputs are omitted. Both types of 
sequences allow to determine the current state of the 
machine after the application of the input sequence. 
In the case of a homing sequence, the conclusion 
about the current FSM state is made based on the 
observed output response, whereas for a 
synchronizing sequence, the final state is unique 
independently of the initial state of the FSM and the 
observed output sequence. 

For deterministic FSMs as well as for 
deterministic automata the length of both homing 
and synchronizing sequences is polynomial 
(Klyachko, Rystsov and Spivak, 1987; Cerny, 1964; 
Hibbard, 1961) when at each state a transition under 
each input is defined. Moreover, it has been shown 
that for deterministic FSMs the length of a homing 
sequence cannot be decreased when considering 
adaptive sequences instead of preset (Hibbard, 
1961). For nondeterministic machines, preset 
homing and synchronizing sequences are known to 
have exponential length (Ito and Shikishima-Tsuji, 
2004; Kushik and Yevtushenko, 2013). 
Nevertheless, it has been also shown that the length 
of a homing sequence can be decreased up to 
polynomial when considering complete 
nondeterministic FSMs (Kushik et al., 2014). 

The authors are not aware of any results 
regarding the existence check or the derivation of 
adaptive synchronizing sequences for 
nondeterministic FSMs, except for an idea presented 
in (Kushik and Yevtushenko, 2012). In this paper, a 

method is presented for checking the existence and 
for deriving such adaptive synchronizing sequences 
for a nondeterministic FSM that can have an 
arbitrary number of initial states. In this case, an 
adaptive synchronizing sequence is represented as a 
corresponding single-input output-complete acyclic 
FSM, introduced in (Petrenko and Yevtushenko, 
2005) and hereafter referred to as a Test Case. 

In this paper, necessary and sufficient conditions 
for the existence of a synchronizing test case are 
established. The obtained criterion allows to assess 
the complexity of the corresponding procedure as 
well as to determine the maximal length (height) of a 
corresponding synchronizing test (if it exists). As 
this bound is exponential, we show how this 
complexity can be decreased and show that for non-
initialized FSMs the problem of checking the 
existence of an adaptive synchronizing sequence is 
in P. Furthermore, we propose an algorithm for 
deriving a synchronizing test case for a 
nondeterministic non-initialized FSM with the 
polynomial length. The results listed above form the 
main contribution of the paper. 

The rest of the paper is organized as follows. 
Section 2 contains preliminaries. The necessary and 
sufficient conditions for the existence of an adaptive 
synchronizing test case for a weakly initialized 
nondeterministic FSM are established in Section 3. 
The complexity of the corresponding procedure is 
given in the same section. As this complexity is 
shown to be exponential, a novel method is proposed 
in Section 4 for nondeterministic non-initialized 
FSMs for which the problem of checking the 
existence of a synchronizing test case can be solved 
in polynomial time. Section 5 concludes the paper. 

2 PRELIMINARIES 

A weakly initialized Finite State Machine (FSM) S 
is a 5-tuple (S, I, O, hS, Sin), where S is a finite set of 
states with the set Sin ⊆ S of initial states; I and O are 
finite non-empty disjoint sets of inputs and outputs, 
respectively; hS ⊆ S × I × O × S is a transition 
relation, where a 4-tuple (s, i, o, s′) ∈  hS is a 
transition. If | Sin | = 1 then the FSM S is an 
initialized FSM. If Sin = S the machine is called a 
non-initialized machine. An input i is defined at a 
state s if there exists a transition (s, i, o, s′) ∈  hS. 
FSM S = (S, I, O, hS, Sin) is complete if for each pair 
(s, i) ∈  S × I there exists a pair (o, s′) ∈  O × S such 
that (s, i, o, s′) ∈  hS; otherwise, the machine is 
partial. FSM S is nondeterministic if for some pair 
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(s, i) ∈  S × I, there exist at least two transitions (s, i, 
o1, s1), (s, i, o2, s2) ∈  hS, such that o1 ≠ o2 and/or s1 ≠ 
s2. FSM S is observable if for each two transitions 
(s, i, o, s1), (s, i, o, s2) ∈  hS it holds that s1 = s2. Note 
that in this paper, we consider complete observable 
nondeterministic FSMs if the contrary is not 
explicitly stated. 

FSM S is single-input if at each state there is at 
most one defined input at the state, i.e., for each two 
transitions (s, i1, o1, s1), (s, i2, o2, s2) ∈  hS it holds 
that i1 = i2, and FSM S is output-complete if for each 
pair (s, i) ∈  S × I such that the input i is defined at 
state s, there exists a transition from s under i for 
every output in O (Petrenko and Yevtushenko, 
2005). 

A trace of S at state s is a sequence of 
input/output pairs of consecutive transitions starting 
from state s. Given a trace i1o1 … ikok at state s, the 
input projection i1 … ik of the trace is a defined input 
sequence at state s. For an observable 
nondeterministic FSM, if γ = i1o1 … ikok is a trace at 
a state s, then there exists a unique sequence of 
consecutive transitions (s, i1, o1, s1)(s1, i2, o2, 
s2)…(sk-1, ik, ok, sk). As usual, for state s and a 
sequence γ ∈ (IO)* of input/output pairs, the γ-
successor of state s is the set of all states that are 
reached from s by trace γ. If γ is not a trace at state s 
then the γ-successor of state s is empty or we simply 
say that the γ-successor of state s does not exist. For 
an observable FSM S, for any string γ ∈ (IO)*, the 
cardinality of the γ-successor of state s is at most 
one. Given a subset S′ of states, the γ-successor of S′ 
is the union of γ-successors over all states of the set 
S′. 

Given an input alphabet I and an output alphabet 
O, a test case TC(I, O) is an initially connected 
single-input output-complete observable initialized 
FSM P = (P, I, O, hP, {p0}) with an acyclic transition 
graph. Given a complete FSM S over alphabets I and 
O, a test case TC(I, O) represents an adaptive 
experiment with the FSM S (Kushik et al., 2014). 

If |I| > 1 then a test case is a partial FSM. A state 
p ∈ P is a deadlock state of the FSM P if there are 
no defined inputs at this state. In general, given a 
test case P, the length (height) of the test case P is 
defined as the length of a longest trace from the 
initial state to a deadlock state of P and it specifies 
the length of the longest input sequence that can be 
applied to an FSM S during the experiment. As 
usual, for complexity reasons, one is interested in 
deriving a test case with minimal length. 

A test case P is a homing test case for an FSM S 
if for every trace γ of P from the initial state to a 

deadlock state, the γ-successor of Sin has at most one 
state. A homing test case is a synchronizing test case 
for an FSM S, if there exists a state s such that for 
every trace γ of P from the initial state to a deadlock 
state, γ-successor of Sin is either {s} or the empty set. 
If there exists a homing/synchronizing test case for 
the FSM S then the set Sin is a homing/synchronizing 
set and the test case P is a homing/synchronizing test 
case for the set Sin. Otherwise, the set Sin is not 
homing/synchronizing. 

We further discuss how to check whether there 
exists a synchronizing test case for a given complete 
observable nondeterministic FSM in polynomial 
time. When there exists such a synchronizing test 
case, we propose a technique to derive one. We also 
provide the upper bound on the length of a 
synchronizing test case. As this technique relies on 
the presence of so called definitely-reachable state 
(Petrenko and Yevtushenko, 2011) in the equivalent 
initialized FSM, we repeat this notion here and 
briefly sketch the procedure to check the existence 
of such state in a nondeterministic FSM. 

Given a complete weakly initialized FSM S = (S, 
I, O, hS, Sin), state s′ ∈ S is definitely-reachable (d-
reachable) from state s ∈ S if there exists a test case 
P(s, s′) over alphabets I and O such that for every 
trace γ of P(s, s′) from the initial state to a deadlock 
state, the γ-successor of state s is either the empty set 
or is the set {s′}. We hereafter refer to such a test 
case as a d-transfer test case. 

If the machine is initialized and state s′ ∈ S is 
definitely reachable from the initial state then we 
simply say that state s′ ∈ S is definitely-reachable. 

In (Petrenko and Yevtushenko, 2011), necessary 
and sufficient conditions are established that allow 
to check if state s′ ∈ S is definitely reachable from 
state s ∈ S. In particular, it is proven that state s′ of 
an FSM S is definitely reachable from state s if and 
only if S has a single-input acyclic submachine S′ 
with the initial state s and the only deadlock state s′ 
such that for each input defined in some state of S′, 
the state has all the transitions of S labeled with this 
input. Moreover, in the same paper, an efficient 
method is proposed for checking whether state s′ is 
definitely reachable from a state s, and if it is, then it 
is proposed how to derive a corresponding test case 
(see Procedure 1 given below). 

Note that since any d-transfer test case P(s, s′) is 
an acyclic submachine of the machine S, then the 
length of any trace in P(s, s′) does not exceed the 
number n of states of S; in other words, one needs at 
most n – 1 inputs to adaptively transfer the possibly 
nondeterministic machine from state s to state s′. 
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Therefore, the length of a longest trace in a shortest 
test case P(s, s′) is polynomial and is at most n – 1. 

Procedure 1 for constructing a d-transfer test case 
P(s, s′)  
Input: An FSM S = (S, I, O, hS, Sin), states s, s′ ∈ S, 
s′≠ s. 
Output: a d-transfer test case P(s, s′) if the state s′ is 
definitely reachable from s or a message “the state s′ 
is not definitely reachable from s”. 
Construct an FSM P(s, s′) = (P, I, O, hP, {p0}) as 
follows 
Step 1 P := {s′}; hP := ∅; 
Step 2 
While there exist a state ŝ ∉ P and a set of inputs Iŝ , 
such that for each input i ∈ Iŝ, (ŝ, i, o, s'') ∈ hS, 
s'' ∈ P for every possible output o to an input i at 
state ŝ in FSM S 

P : = P ∪ {ŝ};  hP := hP ∪ {(ŝ, i, o, s'')} 
EndWhile 

If s ∉ P  
Then return the message “the state s′ is not 
definitely reachable from s”. 
Step 3 p0 := s; 
In the FSM P(s, s′), remove from each state with 
several defined inputs all outgoing transitions with 
the same input until each such state has a single 
defined input. 
Delete states which are unreachable from the initial 
state, add transitions to the designated deadlock state 
D for each missing output at each state (if any). 
Return P(s, s′). 

� 

3 DERIVING SYNCHRONIZING 
TEST CASES FOR 
NONDETERMINISTIC FSMs 

In this section, we discuss how a synchronizing test 
case can be derived for a complete observable 
nondeterministic FSM. In fact, the corresponding 
procedure is based on necessary and sufficient 
conditions for the existence of such test case that are 
stated in Proposition 1. The conditions rely on 
checking the existence of definitely-reachable states 
in the corresponding initialized machine. Such an 
equivalent initialized machine ES can be obtained 
through the determinization of the underlying 

automaton. The set of traces of ES is the union of 
sets of traces over all states of the set Sin. 

Proposition 1. There exists a synchronizing test 
case for a complete observable FSM S = (S, I, O, hS, 
Sin), if and only if the FSM ES has a definitely-
reachable state {s} for some s ∈ S. 

Proof. There is a trace γ at the initial state of the 
equivalent initialized machine ES if and only if such 
a trace is a trace at some initial state of FSM S. 
Correspondingly, the γ-successor of the initial state 
of ES is the γ-successor of the set Sin in FSM S. If the 
machine ES has a definitely-reachable state {s} then 
each trace of the FSM P(e0, {s}) from the initial 
state to a deadlock state where e0 = Sin is the initial 
state of ES, takes the FSM S from any initial state to 
state s. On the other hand, let there exist some state 
s ∈ S and a synchronizing test case P for FSM S 
such that each trace γ of the FSM P from the initial 
state to a deadlock state takes the FSM S from any 
initial state to state s. In this case, the γ-successor of 
the set Sin is the set {s} and the state {s} is a 
definitely-reachable state in the FSM ES with a 
corresponding d-transfer test case P.  

� 
Proposition 1 establishes necessary and sufficient 

conditions for the existence of a synchronizing test 
case P for a nondeterministic complete FSM S. 
Moreover, it also gives a hint for a procedure to 
derive such a test case (when it exists). The first step 
of this procedure is the derivation of an initialized 
complete FSM ES that is equivalent to the machine S 
under experiment. At the second step, Procedure 1 is 
called, and for each state {s} of the equivalent FSM 
ES, it is checked if {s} is definitely-reachable. 

As the number of states of the machine ES does 
not exceed 2n – 1 when | S | = n, and by construction, 
the FSM ES is always observable, the following 
statement holds. 

Proposition 2. For each synchronizing FSM S = 
(S, I, O, hS, Sin), | S | = n, there exists a synchronizing 
test case with the length that does not exceed 2n – n –
 1. 

As an example, consider an FSM S with a flow 
table in Table 1 (Kushik and Yevtushenko, 2012). 
Table 2 represents the flow table for an initialized 
observable FSM ES. Note, that for the sake of 
simplicity we denote a subset {s1, …, sk} of FSM 
states as s1,...,sk . 

By direct application of Procedure 1, one can 
check that state 3 is definitely-reachable in the 
initialized FSM ES (Table 2). 
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Table 1: The flow table of an FSM S. 

i/s 1 2 3 
a 2/1 3/0;          2/1 1/1 
b 3/0, 1 3/0;          1/2 2/0, 1 
c 2/0, 1     3/0;          1/2 3/0, 1 

Table 2: The flow table of the equivalent FSM ES. 

i/s 1, 2,3 1, 2  2,3 2  3 1 
a 1, 2 /1 

3/0 
3/0 
2 /1 

3/0 

1, 2 /1 
3/0 
2 /1 

1/1 2 /1 

b 2,3/0 
2,3/1 

1/2 

3/0 
3/1 
1/2 

2,3/0 

2 /1 
1/2 

3/0 
1/2 

2 /0 
2 /1 
 

3/0 
3/1 

c 2,3/0 
2,3/1 

1/2 

2,3/0 

2 /1 
1/2 

3/0 
3/1 
1/2 

3/0 
1/2 

3/0 
3/1 
 

2 /0,1 

In fact, at the first iteration the set P = { 3} is 

updated with state 1 due to input b. Then state 2  is 
added to the set P = { 3, 1} due to and input b or c, 
etc. In the end, the set P equals the set of states of 
the FSM ES. Therefore, there exists a synchronizing 
test case for the FSM S, and this test case is 
represented in Fig. 1. Note, that in this example the 
length of the test case equals three, i.e. the worst 
complexity case is not reached. 

 
Figure 1: A synchronizing test case P for an FSM S 
(Method 1). 

In general, the upper bound on the length of a 
synchronizing test case is exponential, and we 
further discuss how this complexity can be 
decreased. 

4 REDUCING THE LENGTH OF 
SYNCHRONIZING TEST 
CASES FOR 
NONDETERMINISTIC FSMs 

In this section, we discuss how the length of 
synchronizing test cases can be reduced for 
nondeterministic FSMs. We show that proposed 
conditions are necessary and sufficient for non-
initialized FSMs, i.e., for complete and observable 
machines where each state can be initial state. 
However, for weakly initialized machines the 
conditions are only sufficient when checking the 
existence of a synchronizing test case. 

As each synchronizing test case is a homing test 
case with additional constraints, the existence check 
as well as the derivation of such test cases relies on 
such procedures for homing test cases. In (Kushik 
and Yevtushenko, 2015), it has been shown that 
when each state of a complete observable 
nondeterministic FSM can be initial, the existence of 
a homing test case can be checked in polynomial 
time. The procedure for deriving such test cases and 
potential heuristics improving the performance of 
the corresponding algorithm are discussed in 
(Kushik and Yenigun, 2015). We further briefly 
sketch this procedure (Procedure 2) as it is used for 
deriving a synchronizing test case. 

Not every homing test case is a synchronizing 
test case for an FSM S, and moreover, even if a 
homing test case exists for S, a synchronizing test 
case may not exist for it. However, if for an 
adaptively homing non-initialized FSM S there 
exists a state s′ such that for any state s ∈ S, there 
exists a d-transfer test case P(s, s′), then a 
synchronizing test case can always be derived (and 
vice versa). 

Proposition 3. There exists a synchronizing test 
case for a complete observable FSM 
S = (S, I, O, hS, Sin), Sin = S, if and only if FSM S is 
homing and there exists a state s′ ∈ S such that for 
each state s ∈ S state s′ is definitely reachable from 
s. 

Proof. Indeed, given a homing FSM S with a 
homing test case R, consider a trace γ that takes R 
from the initial state to a deadlock state. Since R is a 
homing test case, the γ-successor of each state of the 
set S either does not exist or contains a unique state 
s. Since for any state s ∈ S, there exists a d-transfer 
test case P(s, s′), then each trace σ that takes P(s, s′) 
from the initial state to a deadlock state takes the 
FSM S from state s to state s′, i.e., the γσ-successor 
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of each state of the set S either does not exist or 
contains a unique state s′. On the other hand, if a 
synchronizing test case P exists for the FSM S then 
there exists a state s′ such that for each state s ∈ S 
the test case P is a d-transfer test case P(s, s′).  

� 
Procedure 2 for deriving a homing test case for a 
complete observable FSM 
Input: A non-initialized complete observable FSM 
S = (S, I, O, hS, S) 
Output: A homing test case P for the FSM S or a 
message “FSM S is not homing” 
Step 1 Derive a test case Rjk for each pair {sj, sk} of 
different states of S such that the set of states of 
different test cases do not intersect except for the 
designated deadlock state. If they do, without loss of 
generality, rename them. These test cases can be 
derived by calling a corresponding procedure from 
(Kushik and Yevtushenko, 2015). Represent them as 
as tree-like FSMs (where only the leaf nodes are 
allowed to have an indegree greater than 1) with 
terminal nodes r1, …, rn and designated deadlock 
state D, such that there exists a trace γ from the 
initial state of Rjk to state rj if and only if {rj} is the 
γ-successor of the pair {sj, sk}. 
If at least one pair of states is not homing  
Then Return the message “FSM S is not homing”. 
Step 2 k := 3 
While k ≤ n  
For each trace γ = α(io) that takes R12...(k-1) from the 
initial state to the deadlock state ra, a ∈ {1, …, n}, 
while taking  S from state sk to state st ; 
1. Replace in R12..(k-1)  the transition (r, i, o, ra) 

with the transition (r, i, o, Dta). 
2. Append the R12..(k-1) with Rta at state Dta always 

checking that the set of states of a test case 
under construction is different from the set of 
each Rjk except of the designated deadlock 
state D; if that is not the case, without loss of 
generality, rename the corresponding states.  

EndFor 
k++ 
EndWhile 
Step 3 Delete each state ra that is not reachable from 
the initial state. Minimize FSM R12...n in a usual way 
(if necessary).  
Return the test case R12...n.  

� 
Note, that for a weakly initialized FSM the 

conditions of Proposition 3 become only sufficient. 
The reason is that when a synchronizing test case P 

exists for a weakly initialized FSM S, there exists a 
state s′ such that for each initial state s ∈ Sin the test 
case P is a d-transfer test case P(s, s′). However, the 
latter does not necessarily hold for each state of 
FSM S.  

Checking the existence of a homing test case R 
for a complete observable FSM S = (S, I, O, hS, S) 
can be performed in polynomial time (Kushik and 
Yevtushenko, 2015). On the other hand, the 
complexity of checking the existence of a d-transfer 
test case P(s, s′) for a state pair {s, s′} is polynomial 
as well. Indeed, this complexity is ‘hidden’ in the 
maximal number of iterations at Step 2 (Procedure 
1). In the worst case, at each iteration, only one state 
is added to the set P. Therefore, after at most (n – 1) 
iterations, either a message “the state s′ is not 
definitely reachable from s” will be produced or a 
test case P(s, s′) will be returned. As the number of 
state pairs is polynomial, the problem of checking 
the existence of a state s′ ∈ S such that for each state 
s ∈ S, state s′ is definitely reachable from s, can be 
solved in polynomial time. In other words, the 
following proposition holds.  

Proposition 4. For complete observable non-
initialized FSMs checking the existence of a 
synchronizing test case can be performed in 
polynomial time. 

When an adaptive synchronizing test case exists 
it can be derived with the use of Procedure 2 (for a 
homing test case) and application of Proposition 3. 
The corresponding algorithm is presented as 
Procedure 3. 

Proposition 5. For each synchronizing FSM S = 
(S, I, O, hS, S), Sin = S, there exists a synchronizing 
test case with the length of the order O(n3). 

Proof. In fact, the length of the homing test 
R12...n (if it exists) does not exceed (n – 1) (2

n), 

where (2
n) is the number of different state pairs of 

the FSM S. The length of a d-transfer test case P(sk, 
ra) does not exceed (n – 1) if it exists. Therefore, the 
overall length of a synchronizing test case is at most 
((n – 1)2 n)/2 + (n – 1).  

� 
In the running example, we first derive a homing 

test case R1,2,3 for the set Sin = {1, 2, 3}. A homing 
test case that can be returned by Procedure 2 is 
illustrated in Fig. 2. 
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Figure 2: A homing test case R1,2,3 for an FSM S. 

Procedure 3 for deriving a synchronizing test 
case for a complete observable FSM 
Input: A non-initialized complete observable FSM 
S = (S, I, O, hS, S) 
Output: A synchronizing test case P for the FSM S 
or a message “FSM S is not synchronizing” 
Step 1 Derive a homing test case R12...n for the FSM 
S by calling Procedure 2. 
If Procedure 2 returns a message “FSM S is not 
homing” 
Then Return the message “FSM S is not 
synchronizing”  
Step 2 k := 1 
While k ≤ n  
For each terminal state ra of the homing test case 
R12...n, such that ra ≠ sk 
Call Procedure 1 to derive a d-transfer test case P(ra, 
sk) 
EndFor 
If P(ra , sk) is derived for each terminal state ra of the 
test case R12...n, i.e. each state ra is adaptively 
transferred to state sk, 
Then     
For each trace γ = α(io) that takes R12...n from the 
initial state to state ra, a ∈ {1, …, n} 
Replace in R12...n the transition (r, i, o, ra) with the 
transition (r, i, o, Da). 
Append the R12...n with P(ra , sk) at state Da.  
EndFor 
Minimize the obtained FSM in a usual way (if 
necessary) and Return the reduced FSM Rsynch.  
k++ 
EndWhile 
Step 3 
Return the message “FSM S is not synchronizing”. 

� 
 

As state 1 can be transferred to state 3 by an 
application of a single input b, the resulting 
synchronizing test case still has length 3 (Fig. 3). 

 
Figure 3: A synchronizing test case Rsynch for an FSM S 
(Method 2). 

5 CONCLUSIONS 

In this paper, the notion of an adaptive 
synchronizing test case for nondeterministic finite 
state machines has been proposed. A method for 
checking the existence of such test cases and a 
procedure for their derivation are also proposed 
whenever it is possible. As the height of the 
corresponding test case in general can be 
exponential, we discussed a possibility of reducing 
the complexity. In particular, we have proposed the 
necessary and sufficient conditions for non-
initialized FSMs for checking the existence of a 
synchronizing test case in polynomial time. The 
conditions are only sufficient when checking the 
existence of a synchronizing test case for weakly 
initialized FSMs. As a future work, we plan to 
perform experimental evaluation in order to 
investigate how ‘realistic’ is the FSM class with the 
reduced complexity of adaptive synchronizing test 
cases. We also would like to investigate more FSM 
classes for which the complexity of related problems 
is polynomial, as well as to study adaptive 
synchronizing test cases for partial machines, i.e. the 
problem of careful adaptive FSM synchronization. 
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