On the Relationship between a Computational Natural Logic and Natural Language

Troels Andreasen¹, Henrik Bulskov¹, Jørgen Fischer Nilsson² and Per Anker Jensen³

¹Computer Science, Roskilde University, Roskilde, Denmark
²Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
³International Business Communication, Copenhagen Business School, Frederiksberg, Denmark

Keywords: Computational Semantics of Natural Languages, Models of Computation for Natural Language Processing, Bio-Information and Natural Language.

Abstract: This paper makes a case for adopting appropriate forms of natural logic as target language for computational reasoning with descriptive natural language. Natural logics are stylized fragments of natural language where reasoning can be conducted directly by natural reasoning rules reflecting intuitive reasoning in natural language. The approach taken in this paper is to extend natural logic stepwise with a view to covering successively larger parts of natural language. We envisage applications for computational querying and reasoning, in particular within the life-sciences.

"For better or for worse, most of the reasoning that is done in the world is done in natural language."

1 INTRODUCTION

Traditionally, computational reasoning with information given in natural language is carried out by conducting a translation of sentences into first order predicate logic, see e.g. (Fuchs et al., 2008; Kuhn et al., 2006), or derivatives thereof such as a description logic dialect, as in (de Azevedo et al., 2014; Thorne et al., 2014). There are also natural logic approaches which extend syllogistic proof systems (Pratt-Hartmann and Moss, 2009) or which call on forms of logical type theory, thereby taking advantage of an assumed compositional semantics for natural language drawing on higher order denotations (Fyodorov et al., 2003).

The project described here relies on appropriate forms of natural logic decomposed into graph-structured knowledge bases. Natural logics are tiny, stylized fragments of natural language in which the deductive logical reasoning can be carried out directly by simple, intuitive rules, that is, without taking resort to predicate-logical reasoning systems such as resolution. Natural logic originates from the traditional Aristotelian categorial syllogistic logic (van Benthem, 1986; Klíma, 2010; Nilsson, 2015), which became further developed and refined in late medieval times. However, in the course of the late 19th century development, forms of logic coming close to natural language were largely deemed obsolete by Frege’s introduction of the more general, mathematically inclined quantifier-based predicate logic. As is well-known, the latter subsequently prevailed throughout the 20th century.

This paper pursues the idea of choosing natural logic as a target language for dealing computationally with appropriately constrained and regimented, yet rich, forms of affirmative sentences in natural language. The purported methodological advantage of the present approach lies in the proximity of natural logic to natural language, very much in contrast to predicate logic. Indeed then, the translation of the considered natural language fragments becomes a partial recasting of the considered sentences into an even smaller language fragment, namely natural logic sentences. Obviously, the chosen natural logic then determines and confines the semantic range for partial coverage of the considered sentences. A related use of natural logic principles for partial computational understanding of natural language is found in (MacCartney and Manning, 2009). The language translational relationships are planned to be initially implemented using the well-known, rather unsophisticated definite
clauses (clause grammars).

The paper is structured as follows: In section 2 we describe the semantic basis of the considered dialect of natural logic presented in section 3. In section 4 we discuss various mainly conservative extensions of the natural logic in order to accommodate expression forms common in natural language. Section 5 discusses various sentence cases and the problems involved in approaching free natural language formulations. Finally, in section 6 a summary concludes the paper.

2 SEMANTIC MOTIVATION

Our semantic framework comprises a selection of stated classes of entities together with binary relationships between the classes akin to the popular entity-relationship models. First of all, there is a fundamental isa subclass relationship known from formal ontologies. In addition, class-class relationships may be be introduced according to needs, as discussed in (Smith et al., 2005; Schulz and Hahn, 2004; Bittner and Donnelly, 2007; Yu, 2006).

It is a key feature of our approach that the given named classes may be used to form subclasses ad libitum by restriction with relationships to other classes in the natural logic. As an example, given the classes cell and hormone and the relation(transitive verb) produce, one may form the subclass cell that produce hormone. This is a phrase in the applied natural logic forming a new class which is a subclass of cell.

Unlike what is the case in predicate logic, in our framework the entities belonging to the classes are not dealt with explicitly. Individual entities may, however, if necessary, be dealt with as stipulated singleton classes (having no subclasses in so far as the empty class is left out in our setup).

This basis, while being application-neutral at the outset, appears to be particularly useful for applications within the bio-sciences as discussed in (Smith et al., 2005; Schulz and Hahn, 2004) as well as in our (Andreasen et al., 2014a; Andreasen et al., 2014b; Andreasen and Nilsson, 2014; Nilsson, 2015; Andreasen et al., 2015). General, natural language descriptions in natural sciences abound with classes, let us just mention the Linnean chemical and medical taxonomies. The class-relationship framework might also find more innovative use for ontology-structured knowledge base concept organization and specification in semi-exact sciences, e.g. in linguistics.

3 CORE NATURAL LOGIC

Having introduced the semantic motivation, we turn next to the logical sentences serving the mentioned class-relationship setup. We consider a natural logic which has the general form of expression shown in (1):

\[Q_1 \text{Cterm'} R Q_2 \text{Cterm''} \]

where

- \(Q_i \) are quantifiers (determiners) every/all, some/a,
- the grammatical subject term \(\text{Cterm'} \) and the grammatical object term \(\text{Cterm''} \) are class expressions, and
- \(R \) is a relation name.

In linguistic parlance, the \(\text{Cterms} \) are noun phrases, and \(R \) is a transitive verb. In simpler cases \(\text{Cterms} \) are just class names (nouns) \(C \). Among the quantifier options here, we focus on the quantifier structure

\[\text{every Cterm'} R \text{ some Cterm''} \]

This form is pivotal in our treatment because it represents the default interpretation of sentences like betacells produce insulin in ordinary descriptive language. Further, it conforms with the functioning of the class restrictions as to be described. Example: every betacell produce some insulin. An explication of this form in predicate logic with quantifier structure \(\forall \exists \) is straightforward, cf. our references above, and therefore not repeated here. The inherent linguistic structural ambiguity corresponding to the scope choice \(\forall \exists \) versus \(\exists \forall \) is overcome by stipulating the \(\forall \exists \) reading, which is the useful one in practice. See also (2). Accordingly, we have

\[\forall x (\text{betacell}(x) \rightarrow \exists y (\text{produce}(x, y) \land \text{insulin}(y))) \]

Observe that we are not going to translate the sentences into their predicate logical form with individual variables. Rather, it is a crucial feature of our approach that we decompose the sentences into simpler constituents forming a graph without variables as explained in section 3.4.

Our natural logic notations rely on the convention that if no quantifiers are mentioned explicitly, the interpretation follows the scope pattern \(\forall \exists \). Thus, the sentence betacell produce insulin is semantically equivalent to our sample sentence above, every betacell produce some insulin. Note further that we persistently use uninflected forms of nouns and verbs rather than morphologically correct forms in our natural logic expressions.
3.1 Subclass Through Copula Sentence

Within the above natural logic affirmative sentence template in (1), there is an extremely important subclass relation:

\[C_{term} \text{ isa } C_{term}' \]

(3)

known from categorial syllogistic logic. cf. (Nilsson, 2013). Using the symbol \(C \) in class names as in \(C' \text{ isa } C'' \) we say that the class \(C' \) specializes the class \(C'' \), and, conversely, that \(C'' \) generalizes the class \(C' \).

As explained in (Nilsson, 2013) the copula form (3) may actually be understood as a special case of the above general form (2) with the relation being equality. For example, the sentence betacell isa cell is predicated logically construed as

\[\forall x(\text{betacell}(x) \rightarrow \exists y(x = y \land \text{cell}(y)) \]

giving in turn

\[\forall x(\text{betacell}(x) \rightarrow \text{cell}(x)) \]

Note once again that we are not using these predicate logical forms in our reasoning with natural logic. The categorial syllogistic no \(C' \text{ isa } C'' \) is not made available, since class disjointness is assumed initially for pairs of classes by default in our setup, cf. (Nilsson, 2015), which also discusses the relation to the well-known square of opposition in traditional logic. The upshot of our convention is that two classes are disjoint unless one is stipulated as a subclass of the other, or that they have a common subclass introduced by the copula form. This default convention conforms with use of classes in scientific practice as reflected in formal ontologies. However, one may observe that the convention deviates from the description logic principle, which follows predicate logic with the open world assumption.

3.2 Simple and Compound Class Terms

Compound terms \(C_{term} \) in the natural logic take the form of a class name \(C \) adorned with various forms of restrictions giving rise to a virtually unlimited number subclasses of \(C \). Linguistically, this “generativity” is provided by constructions like restrictive relative clauses and adnominal prepositional phrases (PPs).

Accordingly, in the present context we consider \(C_{term} \) in the form of a class name (noun) \(C \) optionally followed by

- a stylized relative clause: that \(R \) \(C_{term} \)
- or optionally by
- a PP in the logical form \(R_{prep} \) \(C_{term} \), in turn optionally followed by a relative clause.

The relation \(R_{prep} \) is to be provided by the entry for the pertinent preposition in the applied vocabulary.

Sample class terms illustrating these patterns:

- cell
- cell that produce hormone
- cell in pancreas
- cell in pancreas that produce hormone

Ontologically, these four classes form a (trans-hierarchical) diamond by the isa subclass relation:

The sample class term cell in pancreas that produce hormone is aligned as in cell (in pancreas) (that produce hormone).

For the moment we disregard the more tricky restrictions provided by adjectives (even when assumed to behave restrictively), noun-noun compounds\(^1\), and genitives. This is because these constructs, unlike the case of relative clauses and PPs, do not explicitly yield a specific relation \(R \), cf. the discussions in (Jensen and Nilsson, 2006; Vikner and Jensen, 2002).

The natural logic sub-language where \(C_{term} \) is simply a class name we call atomic natural logic.

As described below, in due course we shall also admit conjointed constructions with the conjunction \(\text{and} \) in class terms, and, further, compound relation terms, \(R_{term} \) for \(R \), linguistically comprising selected adverbs and adverbal PPs modifying verbs and verb phrases. See also (Andreasen et al., 2014b) for various extensions of the natural logic.

3.3 Reasoning with Natural Logic

The key inference rules for the considered natural logic are the so-called monotonocity rules (van Bentheim, 1986). They very intuitively admit specialization of the grammatical subject class and generalization of the grammatical object class. Accordingly, given \(A \text{ isa } B \) and \(\{\text{every}\} \ B \ R \{\text{some}\} \ C \), one may derive \(\{\text{every}\} \ A \ R \{\text{some}\} \ C \).

\[A \text{ isa } B \{\text{every}\} \ B \ R \{\text{some}\} \ C \]

\[\{\text{every}\} \ A \ R \{\text{some}\} \ C \]

and given \(\{\text{every}\} \ B \ R \{\text{some}\} \ C \) and \(C \text{ isa } D \), one may

\(^1\)Some class names (given terms) in an application may consist of more than one word, but are still to be considered as simple, fixed terms.
In our framework and prototype system, the core natural logic introduced above is decomposed into atomic natural logic graph devoid of compound class names, that is, C_{term} is simply a class name C. This is accomplished by introduction of fresh, internal class names such as cell-that-produce-hormone, which is formally conceived of as a class name. In turn, this is defined by two atomic natural logic sentences

$$C_{term}\text{-produce-hormone isa cell}$$

$$C_{term}\text{-produce-hormone produce hormone}$$

The knowledge base of the decomposed sentences may be viewed as one single labeled graph whose nodes are uniquely labeled with classes. Except for those relationships that follow from transitivity, we make sure that all valid isa relationships between nodes are materialized in the graph by the subsumption rule, so that for instance

$$cell\text{-that-produce-insulin isa cell}\text{-that-produce-hormone}$$

is recorded. As such, the graph appears as an extended formal ontology with the isa relationship forming the skeleton, as it were.

In our system, besides deductive querying the graph is used for pathfinding between classes (Andreasen et al., 2015). Actually, in our system the atomic natural logic graph is embedded in function-free logical clauses (e.g., DATALOG). This embedding approach means that natural logic sentences become encoded as variable-free logical terms. The logical variables in the clauses then range over class and relationship terms enabling formulation of the inference rules and hence reasoning and deductive querying. The clausal embedding also facilitates formulation of domain specific inference rules such as transitivity of causation (Andreasen et al., 2014b).

4 EXTENDING CORE NATURAL LOGIC

We now turn to a partial treatment of natural language sentences using natural logic as a vantage point. In a conventional approach, one may proceed by devising a (partial) translation from the considered natural language text sentence by sentence into natural logic. Here, we choose to proceed by introducing a series of conservative extensions to core natural logic. Thus, these extensions do not increase the semantic range of the core natural logic as stipulated above. However, the extensions provide paraphrases commonly encountered in natural language. These extensions, when taking jointly, form an extended natural logic coming closer to free natural language formulations, remaining however, within the confines of the semantics of core natural logic. The extensions may be used in turn in developing a partial translator from natural language into core natural logic.

4.1 Extension with Conjunctions

Let us first consider conjunctions of C_{terms} including the linguistic conjunction and assuming distributive (in contrast to collective) readings. Conjunctions in the grammatical subject

$$C_{term}^1 \land C_{term}^2 \land C_{term}^3$$

as in

pancreas contain betacell and alphacell

straightforwardly give rise to the decomposition:

$$C_{term}^1 R C_{term}^2 \land C_{term}^3$$

Conjunctions in the grammatical subject

$$C_{term}^1 \land C_{term}^2 R C_{term}^3$$

as in

betacell and alphacell is-contained-in pancreas

are conventionally interpreted as disjunction rather than overlap of the two classes and therefore decomposed into

$$C_{term}^1 R C_{term}^2 \lor C_{term}^3$$
These conventions are justified by the underlying predicate logical explication of core natural logic.

The linguistic disjunction or in the linguistic subject seems irrelevant from the point of view of the considered domains. It may be considered a case where predicate logic covers more than needed.

More interesting are disjunctions in the grammatical object, viz.

\[\text{Cterm}_1 \text{R} \text{Cterm}_2 \text{ or } \text{Cterm}_3 \]

which cannot simply be decomposed into two core natural logic sentences. One approach is to appeal to a common general term \(\text{Cterm}_{sup} \) for \(\text{Cterm}_1 \) and \(\text{Cterm}_2 \) if one is available in the KB. More precisely, one seeks a \(\text{Cterm}_{sup} \), such that

\[\text{Cterm}_1 \text{ is a } \text{Cterm}_{sup} \]

\[\text{Cterm}_2 \text{ is a } \text{Cterm}_{sup} \]

and such that for all different \(\text{Cterm}_\alpha \) having these properties \(\text{Cterm}_{sup} \text{ is a } \text{Cterm}_\alpha \). This supremum requirement seems reasonable in cases where the considered disjunction is pragmatically relevant at all.

Notice that all of the above reductions of conjunctions endorse the desired commutativity and associativity properties.

It goes without saying that the presence of conjunctions together with relative clauses and prepositions gives rise to structural ambiguities. Introduction of appropriate default readings and/or addition of auxiliary parentheses are the simplest ways to eliminate these.

Collective, i.e. non-distributive, readings such as co-presence of \(A \) and \(B \) cause \(C \) call for separate treatment, which goes beyond the scope of the present approach.

4.2 Extension with Appositions and Parenthetical Relative Clauses

Let us consider natural logic sentences

\[\text{Cterm}_1 \text{R} \text{Cterm}_2 \]

extended with appositions bounded by commas

\[\text{Cterm}_1 , \text{[a/an]} \text{Cterm}_{appo} , \text{R} \text{Cterm}_2 \]

This is paraphrased into the pair

\[\text{Cterm}_1 \text{R} \text{Cterm}_3 \]

\[\text{Cterm}_1 \text{ is a } \text{Cterm}_{appo} \]

Analogously for the grammatical object, \(\text{Cterm}_\alpha \), as in

betacell produce insulin, a peptide hormone

In this extended natural logic, the pronoun 'that' is formally set off for restrictive relative clauses as accounted for above.

By contrast, consider the case of parenthetical relative clauses for which in the formal natural logic we use 'which' together with commas

\[\text{Cterm}_1 , \text{which } \text{R}_{par} \text{Cterm}_{par} , \text{R} \text{Cterm}_2 \]

as in

insulin, which is a peptide hormone, ...

Retaining logical equivalence, this can be paraphrased into the joint pair

\[\text{Cterm}_1 \text{R} \text{Cterm}_2 \]

\[\text{Cterm}_1 \text{R}_{par} \text{Cterm}_{par} \]

and similarly and recursively for \(\text{Cterm}_\alpha \) and \(\text{Cterm}_{par} \).

4.3 Beyond Core Natural Logic

From the point of view of application functionalities, verbs should be allowed extensions with adverbial PPs yielding restricted relations, \(\text{Rterm}_\alpha \), for plain \(R \), say, as in

\[A \text{ produce in pancreas } B \]

with variants \(A \text{ produce in pancreas } B \) in pancreas \(A \text{ produce } B \), with obvious additional structural ambiguity problems.

On our agenda for non-conservative extensions of core natural logic, let us mention passive voice verb forms, nominalisation, and plural formation. As far as negation is concerned we rely throughout on the closed world assumption in the query answering.

Of course there are numerous genuine (that is, non-conservative) language extensions which go beyond the semantic range of core natural logic, even within the given scope of monadic and dyadic relations in affirmative sentences. Thus admission of anaphora as in the infamous donkey sentences breaks the boundaries as mentioned in (Kl´ıma, 2010). An example of this is seen in every cell that has a nucleus is-controlled by it. The point is that in the applied natural logic, the subject noun term and the object noun term are independent, connected solely by the relator verb and unconnected by anaphora.

5 COMPUTING NATURAL LOGIC FROM SENTENCES

Methodologically, rather than the usual forward or bottom-up translation following the phrase structure, we devise a top down processing governed by the natural logic. In this process we try to cover as much as possible of the considered sentence in a (partial) “best fit” process.

A prototype is under development and is currently functioning in a preliminary version. In the present approach natural language input is processed sentence by sentence. Thus sentential context is not exploited. Each input sentence is preprocessed for markup, and the result is further processed by a parser that also
functions as a natural logic generator. During the preprocessing the sentence is tokenised into a list of lists, where each word from the sentence is represented by a list of possible lexemes specifying base form of word and word category (part of speech) for each word. A lexeme is included as possible if it matches the lemma of the input form of the word. Finally, the preprocessing applies a domain specific vocabulary to identify multiword expressions in the input sentence. To ensure that multiwords are treated as inseparable units they are replaced by unique symbols. A preprocessing of the sentence: **Insulin is a peptide hormone produced by betacells in the pancreas** returns the following tagged and lemmatised word list, where the word sequences ‘is a’, ‘peptide hormone’ and ‘produced by’ are replaced by symbols:

\{
 \{insulin/NN\}, \{isa/VB\}, \{peptide_hormone/NN\},
 \{produced_by/VB\}, \{betacell/NN\}, \{in/JJ, in/NN, in/RB, in/IN\}, \{pancreas/NN\}\}

Each possible lexeme for a word (and multiword) \(W_i\) is included as an element \(L_{ij}/C_{ij}\) if \(W_i\) has lemma \(L_{ij}\) for category \(C_{ij}\). The categories are denoted using Penn Treebank POS-tags. VB, NN, RB, JJ and IN correspond to verb, noun, adverb, adjective and preposition, respectively.

Our approach to recognizing and deriving natural logic expressions from natural language texts can be considered a knowledge extraction task where the goal is to extract expressions that cover as much as possible of the meaning content from the source text. The search is guided by a natural logic grammar, and the aim is to create propositions that comprise well-formed natural logic expressions. The “best fit” approach is basically a guiding principle aiming for largest possible coverage of the input text. Thus, if an expression, that covers the full input sentence can be derived, it would be considered the “best”, and if not, the aim is a partial coverage where larger means “better”.

In the prototype, we apply a simple approach to deriving a partial coverage. A “best fit” is provided by iterating through a series of “sub-sentences” of the input sentence of repeatedly smaller size until one is found from which a proposition can be derived. A sub-sentence arises from removing zero, one or more words from the input sentence. This approach has obvious drawbacks, most importantly, it’s quite inefficient – especially due to load from forcing the parser to repeat identical subtasks over and over again. However, it has one important advantage as a prototype approach – it allows a clear separation of parsing and selection of partial expressions.

As far as parsing is concerned, and as already mentioned, our approach is a top down processing governed by the natural logic. The word list given as input is ambiguous due to the multiple categories assigned to each word. Thus, the parser should be able to recognize an input proposition if such exists for at least one combination of possible lexemes of the input words. Therefore, in addition to processing the grammar (given below), the parser must ensure that all combinations are tried before failing the recognition of a proposition.

Core natural logic, as described in section 3, without the extensions sketched in section 4, can be specified by the following grammar.

\[
\begin{align*}
\text{Prop} & \ ::= \ Cterm \ R \ Cterm \\
\text{Cterm} & \ ::= \ NN [\text{RelClauseterm} | \text{Prepterm}] \\
\text{RelClauseterm} & \ ::= \ [\text{that}[\text{which}[\text{who}]] \ R \ Cterm \\
\text{R} & \ ::= \ VB \\
\text{R}_{\text{Prep}} & \ ::= \ \text{IN} \\
\text{Prepterm} & \ ::= \ R_{\text{Prep}} \ Cterm
\end{align*}
\]

Notice that terminals are specified as either specific words or word categories using Penn Treebank-tags.

Example 1: The preprocessing result of the example sentence **insulin is a peptide_hormone produced**
by betacells in pancreas is shown above. In this case, the full sentence can be recognized as a proposition with the given grammar and the following arcs can be derived from the parse tree:

- insulin isa peptide hormone-produced by betacell-in pancreas
- peptide hormone-produced by betacell-in pancreas
- produced by betacell-in pancreas
- isa peptide hormone
- betacell-in pancreas in pancreas
- betacell-in pancreas isa betacell

The corresponding graph is shown in graph form in figure 2.

Example 2: Preprocessing the sentence *cells that produce insulin are located in the pancreatic gland* leads to:

\[
\{\text{cell/NN}, \{\text{that/WDT}\}, \{\text{produce/VB}, \text{produce/NN}\}, \{\text{insulin/NN}\}, \{\text{locatedin/VB}\}, \{\text{pancreatic_gland/NN}\}\}
\]

where ‘is located in’ and ‘pancreatic gland’ are replaced by symbols. As it appears, again the full sentence can be recognized as a proposition. From the corresponding parse tree the following 3 arcs can be derived:

- cell-produce-insulin located in pancreatic gland
- cell-produce-insulin produce insulin
- cell-produce-insulin isa cell

The result is shown in graph form in figure 3.

Example 3: The grammar above does not cover conjunctions. Thus *pancreas contains betacells and alphacells* will not be recognized as a proposition. However, the best-fit principle will iterate through partial-cover sub-sentences (where one or more words are left out). Among these are pancreas contain beta-cell and pancreas contain alphacell, which will both be recognized. Thus, in this case continued best-match iteration will lead to a result that complies with the conjunction.

6 SUMMARY AND CONCLUSION

We have described how to use dedicated forms of natural logic for partial computational comprehension of natural language with a particular view to descriptive scientific corpora within the life sciences. The applied natural logic, called core natural logic, has a well-defined semantic foundation in predicate logic, and we have devised an appropriate inference engine for query answering functionalities. Core natural logic is extended in the paper with common paraphrase schemes.

Our approach features – as explained and illustrated with the figures – a shared graph representation of all sentences. In this representation concepts are (at least ideally) uniquely represented as nodes. The directed arcs represent atomic natural logic sentences, and appropriate labelling conventions ensure that the individual natural logic sentences can be reconstructed from their atomic components in the graph, modulo paraphrasing. The graph representation eases pathfinding between concepts and serves deductive querying.

Finally, we illustrate processing of sentences from the text using core natural logic. As a next step, we are going to try our prototype on selected life science corpora.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their careful reading of the draft with suggestions for improvements and clarifications, and for provision of further comprehensive references for our continuing work.

REFERENCES

