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Ontologies are an essential component of semantic knowledge bases and applications, and nowadays they are

used in a plethora of domains. Despite the maturity of ontology languages, support tools and engineering
techniques, the testing and validation of ontologies is a field which still lacks consolidated approaches and
tools. This paper attempts at partly bridging that gap, taking a first step towards the extension of mutation
testing techniques to ontologies expressed in a widely-used format. Mutation testing techniques, revisited
in the light of the peculiar features of the ontology language and structure, can help in the engineering and
refinement of ontologies and software based on them.

1 INTRODUCTION

The use of semantics in information technology is
greatly enhancing the expressiveness of knowledge
bases, especially with respect to information repre-
sentation and retrieval. Information is classified ac-
cording to domain-specific structures which describe
the concepts and the relations between them, and this
organization allows an efficient access to such infor-
mation. Cross-domain organization is also made pos-
sible through the use of formal languages to describe
the domains. Nowadays, knowledge bases structured
according to description logic (Quillian, 1967) are
popular, and they can also be generated using Natu-
ral Language Processing (NLP) techniques to classify
unstructured documents.

Semantic knowledge is a wide field of research
and application, and it is based on a multi-layered
framework of components and technologies. How-
ever, at the very basic level, there is the need to de-
scribe the domains. This result is achieved by means
of ontologies. Ontologies are a general concept to de-
note the definition of a domain, describing it at vari-
ous level of abstraction.

Of course, to be used in computer systems, on-
tologies need to be described according to some for-
mal language. Early attempts at defining a language
to structure knowledge resulted in the Resource De-
scription Framework (RDF) language (World Wide
Web Consortium (W3C), 2014a). However, the pur-
pose of RDF is mainly to describe resources by means
of metadata, and it is too low level to provide an effi-
cient means of describing an ontology. For that pur-
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pose, the Web Ontology Language (OWL) specifica-
tion (World Wide Web Consortium (W3C), 2012) has
been defined.

OWL, that was developed starting from another
ontology language (Antoniou and van Harmelen,
2004) called DAML+OIL (Horrocks, 2002), is a fam-
ily of abstract languages which are expressed in sev-
eral different syntaxes, some of which are based on
eXtensible Markup Language (XML). The primary
syntax is RDF/XML, which easily maps onto RDF
concepts and integrates with other XML languages.

It is widely known that there is no “right” way of
defining an ontology. Its definition really depends on
the domain, the desired level of abstraction, the pur-
pose for which the ontology is intended, and a number
of choices by the developer. In other words, the same
domain could be represented by several totally differ-
ent ontologies, which would result in different struc-
tures of the respective knowledge bases (and conse-
quently, with different results when classifying and
querying information). However, for ontology-based
applications to be integrated, it is necessary that they
are based on the same ontology.

Ontologies have a number of uses, primarily that
of describing some domain of knowledge from a spe-
cific perspective. In this sense, they act much like a
vocabulary, similarly to a database. They have found
their place as the basis of knowledge representation
in many application fields, from web searches to the
medical and legal domains (Horrocks, 2013).

Ontologies are also used for decision sup-
port (Rospocher and Serafini, 2013), therefore it is
important that they are as complete as possible (within
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their domain and purpose), and also that they do not
contain errors. Previous experiences (Kershenbaum
et al., 2006) have highlighted the risks of using an in-
correct ontology as a structure for a knowledge base.
However, despite the acknowledged importance of
the correctness of ontologies, few methodologies and
tools exist for the testing and validation of ontologies.

This paper aims at partly filling this void by
proposing a mutation testing methodology for OWL
ontologies. Mutation testing is a well-known testing
method that assesses the validity of a test suite by gen-
erating mutants, i.e., incorrect versions of the Sys-
tem Under Test (SUT), by introducing single errors
in the trustworthy version. The ontology-based soft-
ware could then be linked to the mutants generated in
this way, and run against the test suite. The mutants
thus killed can provide important information about
the ontology and the program using it, including cov-
erage details and fault detection.

The paper is organized as follows. Section 2 pro-
vides a survey of existing literature in ontology test-
ing and mutation testing. Section 3 offers a high-level
description of mutation testing. Section 3.1 describes
the proposed methodology, explaining the various op-
erators used for the mutation of an OWL ontology.
It also contains a high-level description of the imple-
mentation of the mutation tool. Section 4 shows the
methodology in action, applying the mutation oper-
ators to various ontologies in different domains. Fi-
nally, Section 5 summarizes the results and envisions
some directions for future research.

2 RELATED WORK

Although knowledge bases and semantic applications
are a very consolidated domain nowadays, it appears
that there has been little attention to the validation of
ontologies (Blomgvist et al., 2012).

The World Wide Web Consortium (W3C) pro-
vides a set of test cases for evaluating the OWL on-
tology from a structural point of vies (World Wide
Web Consortium (W3C), 2004b). (Wang et al., 2005)
defines an algorithm to “debug” ontologies in search
of inconsistent classes. (Garcia-Ramos et al., 2009)
offer a means of ontology validation through user-
defined test cases, whereas (McGuinness et al., 2000)
defines an approach to merge large ontologies and
find inconsistencies.

A lot of research addresses metrics and
benchmarks for ontologies. The work proposed
by (Gangemi et al., 2006) defines some measures for
assessing an ontology, and evaluates these measures
by means of a meta-ontology against which the
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ontology under validation is compared. This work
does not seem to address the semantic correctness of
the ontology but mainly its structure and engineering
methodology. A similar approach, but with a greater
attention to semantics, is proposed by (Burton-Jones
et al., 2005). (Ma et al., 2006) defines a benchmark
for the analysis of ontologies based on two different
semantics, OWL Lite and OWL DL.

In (Blomgvist et al., 2012), the authors propose
a methodology and tool for testing an ontology. The
methodology addresses three main perspectives: veri-
fication of the Competency Questions (CQs) to which
the ontology is supposed to provide an answer, veri-
fication of the inferences by means of an OWL rea-
soner, and provocation of errors. The last perspective
differs significantly from the current work because it
does not modify the ontology structure, but rather in-
troduces test data that are inconsistent with the ontol-
ogy.

An interesting approach is described in (Poveda-
Villalén et al., 2012). The authors have built a testing
tool which tries to search for potential pitfalls in on-
tology development. The list pitfalls has been intro-
duced by the authors in (Poveda-Villalén et al., 2010).
Although different from the idea of introducing er-
rors in the ontology, their work can provide interest-
ing suggestions for the definition of mutation opera-
tors.

An approach that combines ontology evaluation
with software engineering techniques is described
by (Denny Vrandecié, 2006), which introduces a pro-
posal to adapt unit testing to OWL ontologies. In the
past, several tools have been developed for ontology
unit testing, although it does not appear to be a main-
stream testing approach for ontologies. Another in-
teresting approach is presented in (Granitzer et al.,
2007): instances are generated from an ontology, and
hypotheses are formulates on these instances. The
validation of the generated hypotheses is then fed as
an input to refine the ontology.

Some previous work concerning mutation testing
in the OWL language can be found in (Lee et al.,
2008). The methodology does not apply to the gen-
eral ontology language OWL, but rather to a specific
ontology called OWL-S (World Wide Web Consor-
tium (W3C), 2004a) which can be used as a seman-
tic descriptor web services, and it applies mutation to
classes, conditions, control flows and data flows. The
purpose of that paper is not to improve an ontology
and its related test suite, but rather to detect errors in
the web service specification. However, some of the
concepts introduced in that work are similar to those
introduced in the current work.



3 MUTATION TESTING

Mutation testing is a testing technique originally pro-
posed in (DeMillo et al., 1978; Hamlet, 1977), al-
though allegedly the initial idea can be traced back to
a few years earlier (Lipton, 1971). It is classified ei-
ther among the syntax-based testing techniques (Am-
mann and Offutt, 2008), or among the error-based or
fault-based testing techniques (Howden, 1982; Jia and
Harman, 2011). It is normally, but not exclusively,
meant for unit testing (Offutt, 1994).

In its essence, it is a methodology in which small
parts of a software code are changed. Its main pur-
pose is not to test the SUT proper, but the quality of
its test suite. However, it has an indirect benefit on the
SUT, because the detection of faults in the test suite
can often also lead to detecting errors in the SUT.

According to the description provided by (Am-
mann and Offutt, 2008), mutation is carried out by ap-
plying a set of mutation operators to a ground string.
The ground string is expressed in the grammar, and
a mutation operator is “[a] rule that specifies syntac-
tic variations of strings generated from a grammar”.
These operators can also be applied directly to the
grammar if no ground string exists. Mutation can be
used to generate both invalid strings and strings that
are valid but different from the ground string. In both
cases, the strings thus generated are called mutants.

The mutants generated from the SUT are then ex-
ecuted on the test suite, and the test results are com-
pared against those of the original code. Those mu-
tants which behave differently with respect to the test
suite are killed by the test suite. An ideal test suite
would kill n out of n generated mutants. The whole
process is generally automated by means of batch
scripts, because the generation of a high number of
mutants and the execution of the test suite on each is
a complex and tedious process which is well-suited
for automatization. Mutation can be also carried out
by introducing simplifications that reduce the number
of mutants (Offutt and Untch, 2001; Bartolini et al.,
2008) to lower the complexity of the testing process.

Mutation testing has generally been applied to
software code, particularly to Java (Ma et al., 2005;
Ma et al., 2005). Previous research (Offutt et al.,
1996; Ammann and Offutt, 2008) has identified a set
of operators for mutation.

Traditional mutation testing operates at the syn-
tax level, by introducing errors in the code. However,
semantic mutation testing has also been defined (Of-
futt and Hayes, 1996; Mottu et al., 2006; Clark et al.,
2010), in which mutation operators affect the seman-
tics of the code. In other words, the code is still
syntactically correct, but its functionality is different
from the intended one.

Mutating OWLs: Semantic Mutation Testing for Ontologies

3.1 Mutation Testing Applied to OWL

To apply the mutation testing methodology to an on-
tology, some premises are in order.

First off, the mutation operators will be applied to
the ontology. However, the testing can be carried out
in two different ways: either by viewing the ontology
as the SUT, independently of what it is used for; or
when the SUT is the knowledge base or software that
relies upon the ontology. Choosing either perspective
has significant consequences in the testing and the test
suite that is used.

The mutation proposed in this paper is a kind of
semantic mutation. The syntax of an ontology is man-
aged satisfactorily by the various parsers and editors
available, so unless the SUT is a new OWL editor or
parser there would be little need for a syntactic mu-
tation testing. What is significantly more interesting
is the evaluation of the ontology definition. Addition-
ally, using OWL as the underlying specification, there
is no point in working at the syntax level because
OWL does not have a syntax per se, but can be built
according to different syntaxes. In fact, the proposed
methodology has been executed using the OWL/RDF,
OWL/XML and Manchester (Horridge et al., 2006)
syntaxes with identical results.

The mutation operators have therefore been de-
fined as a set of operations that conceptually modify
the ontology. An ontology refers to entities, which
are the main building blocks used to represent real-
world objects. The ontology does not define the enti-
ties, which are defined by the domain itself. For the
purposes of this work, the following entity types have
been used as the ground string for mutation:

Classes: represent the core concepts in the ontology.

A class is the abstraction which subsumes all in-

dividuals of a given type;

Individuals: are the real-world objects, single in-
stances of a class;

Object Properties: describe the relationships be-
tween individuals;

Data Properties: are used to associate information
data to classes.

In addition to entity-specific mutation operators,
it is also possible to define some general operators.
In particular, some static information can be added to
any entity by means of annotations. Typical annota-
tions include label and comment, which are part of
RDF Schema (RDFS) and are language specific.

All mutation operators affect some axiom, which
is the base expression in the ontology. Axioms are
connections between entities, and some examples of
axioms are:
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e a subclass relationship between two classes;
o the belonging of an individual to a class;

o the domain or the range of an object or data prop-
erty;

e association of an annotation with its entity.
3.2 Mutation Operators

This section describes the various classes of mutation
operators defined for OWL mutation testing. Enti-
ties in OWL can be declared using either a human-
readable Internationalized Resource Identifier (IRI),
or an auto-generated one. When using the latter nam-
ing convention, which is recommended by the Protégé
software, the domain-specific names must be referred
to by means of label annotations. This solution is very
versatile, because it does not force a naming, but an
entity can have a number of names, also in different
languages. However, when referring to entities using
labels, the absence of a label can cause errors.

Table 1 offers an overview of all the mutation op-
erators.

Some of the mutation operators produce identical
mutants: for instance, the ORI operator, when applied
to a class and to its inverse, generates two identical
mutants.

3.2.1 Entities

Some mutation operators are general and can be ap-
plied to any entity:

ERE. Remove entity. This operator deletes the dec-
laration of an entity from the ontology, be it a
class, property, or individual. All axioms concern-
ing the deleted entity are removed as well.

ERL. Remove label. This operator removes a label
annotation from an entity.

ECL. Change label language. A label annotation is
composed by the actual label and a language at-
tribute. This operator removes the language at-
tribute, setting it to a meaningless value.

While it is possible to also apply mutation oper-
ators to comment annotations, comments are gener-
ally not meant for processing purposes, but only to
provide a description to the human user. Therefore,
no mutation on comment annotations has been intro-
duced in this work. Similarly, no mutation operators
have been defined for other annotations such as ver-
sionInfo or seeAlso.
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3.2.2 Classes

Classes are entities which describe the conceptual ab-
straction of real-world objects. Class relations can be
described in hierarchical terms, from the general to
the particular. In other words, a class can be defined
as the subclass of another class, by means of an “is
a” relationship. Classes can be subclasses of more
than one superclass. If a class is not defined as a sub-
class, then it is implicitly a subclass of the top-level
class, Thing. A class can also be the subclass of an
anonymous class, i.e., a class defined “on the fly” us-
ing properties.

In addition to the mutation operators applicable to
all entities, the following operators have been defined
for class entities:

CRS. Remove subclass axiom. This operator re-
moves a subclass axiom, thus changing the hier-
archical structure of the ontology. If the class has
a single superclass, then it will become a subclass
of the top-level class.

CSC. Swap subclass axiom. This operator ex-
changes a class with one of its superclasses. Sim-
ply put, it reverses part of the hierarchical struc-
ture.

CRD. Remove disjoint class. A class can be declared
as being disjoint from other classes. This operator
erases a disjoint declaration, so the two classes are
no longer disjoint.

CRE. Remove equivalent class. A class can be de-
clared as being equivalent to other classes. This
operator erases an equivalent declaration, so the
two classes are no longer equivalent.

3.2.3 Object Properties

Object properties represent relations between classes
which cannot be in hierarchical terms. All relations
except “is a” must be defined in terms of object prop-
erties.

An object property normally has at least one do-
main and one range. The domain represents the
classes (which can also be anonymous classes, de-
fined for example using set operations) to which the
object property applies. A range represents the possi-
ble values that the property can have. In other words,
domain and ranges are limitations to the individuals
to which the property can be applied and to the indi-
viduals that it can have as its values, respectively.

The following mutation operators specific to ob-
ject properties have been defined:

OND. Remove domain. One domain (set of entities
to which the property can apply) is removed from
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Table 1: List of mutation operators.

Entity Operator | Effect

ERE Remove the entity and all its axioms
Any entity ERL Remove entity labels

ECL Change label language

CRS Remove a single subclass axiom
Class CSC Swap the class with its superclass

CRD Remove disjoint class

CRE Remove equivalent class

OND Remove a property domain

ONR Remove a property range

ODR Change property domain to range

ORD Change property range to domain
Object property | ODP Assign domain to superclass

ODC Assign domain to subclass

ORP Assign range to superclass

ORC Assign range to subclass

ORI Remove inverse property

DAP Assign property to superclass
Data property DAC Assign property to subclass

DRT Remove data type

IAP Assign to superclasses
Individual IAC Assign to subclasses

IRT Remove data type

the object property. Since the actual domain is the
intersection of all ranges, this operator actually
widens the possible entities to which the property
can apply.

ONR. Remove range. One range is removed from
the object property. Since the actual range is the
intersection of all ranges, this operator actually
widens the possible values that the property can
have.

ODR. Change domain to range. One of the domains
of the property is changed to a range, actually
restricting its possible values but increasing the
classes it can apply to.

ORD. Change range to domain. One of the ranges of
the property is changed to a domain.

ODP. Assign to superclass. One of the domains
of the property is replaced with one of the su-
perclasses of that domain. This operator cannot
be applied to anonymous domains or to domains
which are only subclass of the top-level class.

ODC. Assign to subclass. One of the domains of the
property is replaced with one of the subclasses of
that domain. This operator cannot be applied to
anonymous domains.

ORP. Set range to superclass. One of the ranges of
the property is replaced with one of the super-
classes of that range. This operator cannot be ap-

plied to anonymous ranges or to range which are
only subclass of the top-level class.

ORC. Set range to subclass. One of the ranges of
the property is replaced with one of the subclasses
of that range. This operator cannot be applied to
anonymous ranges.

ORI. Remove inverse property. The property can be
declared as being inverse to another one. This op-
erator removes the inverse declaration, but it does
not remove the other property.

3.2.4 Data Properties

Data properties are used to describe additional fea-
tures of an entity. Technically, they represent a con-
nection between entities and literals (such as XML
strings and integers). Data properties have a domain
which limits the entities it can be applied to, and a
range which limits the set of possible literals it can
have as values.

In addition to the general operators, the following
operators have been defined for data properties:

DAP. Assign to superclass. One of the domains
of the property is replaced with one of the
superclasses of that domain. This operator cannot
be applied to anonymous domains or to domains
which are only subclass of the top-level class.
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DAC. Assign to subclass. One of the domains of the
property is replaced with one of the subclasses of
that domain. This operator cannot be applied to
anonymous domains.

DRT. Remove data range. One of the data ranges of
the property is removed, and it is implicitly re-
placed with the top-level literal rdfs:Literal, actu-
ally increasing the set of possible literals that this
property can have.

3.2.5 Individuals

Individuals represent single instances of a class (in-
cluding anonymous classes). Individuals are very
similar to classes, but they represent a single object
and not an abstract generalization. Therefore, they
can be defined as belonging to one or more classes.

The following specific operators have been de-
fined for individuals.

IAP. Assign to superclass. One of the types of the
individual is replaced with one of its superclasses.
This operators can be applied only to those types
which have a superclass different from the top-
level class.

IAC. Assign to subclass. One of the types of the in-
dividual is replaced with one of its subclasses.

IRT. Remove type. One of the types to which the
individual belongs is removed (both named and
anonymous classes). If the individual is of a single
type, then it becomes an individual of the top-level
class.

4 EXPERIMENTS

The proposed mutation testing methodology has been
implemented and executed on several existing ontolo-
gies. This section describes the test platform, the ref-
erence ontologies and the results of the application of
the methodology.

4.1 Experimental Setup

The implementation of the proposed mutation testing
approach was done using Eclipse 4.5 (Mars) as a de-
velopment environment. The programming language
used is Java (Sun Java 1.8). The setup is platform-
independent and has been successfully tested on Win-
dows 7, Ubuntu Linux 14.04 and Mac OS X 10.10
machines, both at 32 and 64 bit.

The implementation is lightweight and only re-
quires the OWL API libraries!, managed through

I'smallhttp://owlapi.sourceforge.net/.

48

Maven?.

The mutation testing tool, called Mutating OWLs,
is available as a Git repository>. The repository also
contains the test ontologies described below.

4.2 Reference Ontologies

The proposed methodology has been executed on
three different ontologies.

4.2.1 Data Protection

The data protection ontology has been introduced
in (Bartolini and Muthuri, 2015; Bartolini et al.,
2015). The European Union is currently undergo-
ing a reform of the protection of personal data. The
main legislative document of the reform is the Gen-
eral Data Protection Regulation (GDPR), which will
introduce significant changes in the duties of the con-
troller (Reding, 2010). The ontology has been defined
to describe the upcoming reform; however, it does not
aim at modeling the whole domain of data protection
in the European Union, but only focuses on the re-
quirements of the data controller.

The ontology is preliminary and subject to change,
especially given that the reform is not finalized yet. It
is mainly made up of hierarchical relations, and con-
tains a number of object properties that relate the du-
ties of the controller with the corresponding rights of
the data subject.

Entities in the ontology are named using an auto-
generated IRI, and labels contain the human-readable
names.

4.2.2 Passenger Rights

The second ontology used as an experimental base has
been introduced in (Rodriguez-Doncel et al., 2014a;
Rodriguez-Doncel et al., 2014b) to describe the legal
framework for flight incidents. In particular, the on-
tology addresses the perspective of the rights of the
passenger.

This ontology has a more complex structure, and
is split into three files. Since the import links were
actually broken, some changes had to be made to the
ontology to allow the OWL API to access local files.
Specifically, the ontology had to be converted from
Turtle syntax (World Wide Web Consortium (W3C),
2014b) to an XML serialization because of some lim-
itations of OWL API in parsing non-XML syntaxes.

The naming convention differs from the previous
ontology in that the IRIs are human-readable terms in

Zhttps://maven.apache.org/.
3https://bitbucket.org/guerret/lu.uni.owl.mutatingowls.
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Table 2: Summary of the test ontologies.

Passenger

Data protection . Pizza
rights
Total number of axioms 680 541 940
Classes 87 89 100
Object properties 41 26 8
Data properties 4 31 0
Individuals 12 14 5
Subclass axioms 114 83 259
Table 3: Mutants by mutation operator.
. Passenger .
Operator Data protection rights Pizza
ERE 142 67 113
ERL 142 0 96
ECL 142 0 96
CRS 114 33 259
CSC 101 33 84
CRD 18 0 796
CRE 28 0 41
OND 39 10 6
ONR 34 8 7
ODR 39 10 6
ORD 34 8 7
ODP 29 8 6
ODC 239 54 254
ORP 29 5 7
ORC 119 22 257
ORI 0 0 0
DAP 2 29 0
DAC 5 3 0
DRT 3 13 0
IAP 12 0 0
IAC 30 0 0
IRT 12 0 10

English language, and no labels are used throughout
the ontology.

4.2.3 Pizza

Finally, the proposed methodology has been run
against the well-known pizza ontology®, which is the
one provided as a standard example for OWL and
Protégé tutorials. The naming convention used in this
ontology is based on English-language identifiers for
the entities, but entities also feature label annotations
in Portuguese.

“http://protege.stanford.edu/ontologies/pizza/pizza.owl.

4.2.4 Summary

Table 2 displays a summary of the features of the three
ontologies used.

4.3 Experimental Results

The mutation operators defined in Section 3.2 have
been applied to the three test ontologies, generating
mutants for each. The total number of mutants per
mutation operator is displayed in Table 3.

Some considerations are offered by the very struc-
ture of the three ontologies. For example, the data
protection ontology, as mentioned earlier, uses auto-
generated IRIs as identifiers, and labels for descrip-
tive purposes. The pizza ontology uses English terms
as identifiers, but entities also have Portuguese la-
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bels. Finally, the passenger rights ontology does not
use label annotations. For this reason, the ERL and
ECL operators do not generate any mutant in the lat-
ter. Similarly, no mutant is generated by the IAP, IAC
and IRT operators in the passenger rights ontology be-
cause the individuals are not assigned to any class.

The data protection ontology makes a very limited
use of data properties, so very few mutants are gener-
ated from the data property entity; the same is not true
for the passenger rights entity, which has a significant
number of data properties but less object properties.
The pizza ontology does not have any data properties
at all, and few object properties. However, the classes
that make up the domain and range of some of the
object properties have a large number of subclasses,
hence many mutants from the ODC and ORC opera-
tors.

4.4 Validation

The proposed approach was validated by testing an
ontology itself and not an application running on top
of it. For the SUT to be an ontology, the simplest
approach to test it is to have a set of SPARQL Protocol
and RDF Query Language (SPARQL) queries (World
Wide Web Consortium (W3C), 2008) which retrieve
data from the ontology.

Unfortunately, none of the ontologies used pro-
vide a SPARQL test suite. A set of queries for the
pizza ontology exists as the test suite for an alterna-
tive query language®. As minimal as this test suite is,
it has been used as a starting point to assess the valid-
ity of the approach. The queries in that test suite were
thus converted back to SPARQL. However, two more
queries were added to the test suite, because the ex-
isting queries only search for very small parts of the
ontology?®.

The results of the validation is shown in Table 4,
and a summary of killed mutants is shown in Figure 1.

A brief analysis of the results elicits some inter-
esting considerations. First, it is clear that the test
suite mainly addresses classes, with little tests cover-
ing the properties. Thus, additional tests, especially
for the object properties, are required. Also, con-
cerning the classes, the tests mostly cover a particular
branch of the hierarchy, while almost no tests search
other branches of the ontology. Finally, some con-
siderations can be done on the ontology itself. For
example, by examining the live mutants in the ERE
operator, it emerges that some object properties are

Shttps://code.google.com/p/twouse/wiki/SPARQLASExamp
les

5The complete setup is available in the repository (see foot-
note 3).
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Table 4: Results of the mutation testing.

Operator Ml.ltants Total
killed mutants
ERE 108 112
ERL 95 95
ECL 95 95
CRS 255 255
CSC 83 83
CRD 471 753
CRE 41 41
OND 0 6
ONR 0 7
ODR 0 6
ORD 0 7
ODP 0 6
OoDC 1 250
ORP 0 7
ORC 1 253
IRT 0 10
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Figure 1: Overview of mutants killed.

not used anywhere. Depending on the purposes of the
ontology, this might suggest that those properties are
irrelevant. Of course, such a small test suite does not
yield a lot of results, but a richer test suite would al-
low a more significant analysis.

S CONCLUSIONS AND FUTURE
WORK

The work presented in this paper extends and adapts
mutation testing techniques to ontologies defined us-
ing the OWL language. The essentials of OWL on-
tologies are described, to introduce a methodology
and operators for mutation testing. The work then
presents an implementation of the mutation testing
technique and some basic experiments on previously-
defined ontologies.



The benefits of mutation testing are manifold: by
analyzing the patterns of killed and alive mutants,
testers can detect errors in the SUT and in the test
suite. Equivalent mutants can help detect redundan-
cies in the ontology, which may not be errors but still
facilitate errors, for example when creating instances
of the ontology.

More in general, the extension of software engi-
neering and testing approaches to ontologies and se-
mantic knowledge bases can pave the way to the for-
malization of integrated design and testing patterns in
for semantics-based applications.

This work is at its initial stages, with many op-
portunities for future development. First off, the pro-
posed methodology needs to be expanded to support
a full test suite: a significant set of SPARQL queries,
if the SUT is the ontology itself; or, if the SUT is an
ontology-based software, testing it with its own test
suite. The purpose would be to compare the outputs
of the test suite when executed against the original
ontology and against the mutants. In this phase, it is
possible that the complexity of the mutation testing
is excessive and causes performance problems, and
it might be necessary to apply or develop algorithms
designed to reduce the number of mutants.

Second, the mutation methodology can be im-
proved, by extending it with additional mutation op-
erators. For example, the mutation operators do not
currently address annotations other than labels, or the
value and cardinality constraints. Some of these fea-
tures of the OWL language can have a significant ef-
fect in the ontology definition, and mutants thus cre-
ated might be useful in assessing the ontology.

Third, the mutation testing should take into ac-
count the peculiarities of ontology engineering. In
particular, while the domain certainly imposes some
constraints on the ontology developer, many decisions
are based on discretionary choices, balancing differ-
ent aspects such as human readability and efficiency
of the ontology. Traditional mutation testing tech-
niques might be extended to embrace these features,
for example by separating those mutant operators that
are likely to introduce errors in the domain (for exam-
ple swapping a class with its parent) from those that
simply change the ontology structure without making
it inconsistent with the domain. If such a partition
were possible, then mutation testing techniques could
be used not only to detect errors in the design, but also
to suggest different ontology architectures that the de-
signer might overlook.

Finally, stretching along the line of the previous
point, an extended mutation technique could be de-
signed which alters the structure of the ontology. For
example, there might be circumstances where using a

Mutating OWLs: Semantic Mutation Testing for Ontologies

hierarchical relationship (subclass axiom) might be an
alternative to using an object property. An extended
mutation technique that generates mutants based on a
different structure of the ontology might offer a fast
way to compare a wide number of ontology designs.
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