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Abstract: In this paper we address the problem of extracting dynamics from multi-dimensional time-evolving data. To 
this end, we propose a linear dynamical model (LDS), which is based on the higher order decomposition of 
the observation data. In this way, we are able to extract a new descriptor for analyzing data of multiple 
elements coming from of the same or different data sources. Each sequence of data is modeled as a 
collection of higher order LDS descriptors (h-LDSs), which are estimated in equally sized temporal 
segments of data. Finally, each sequence is represented as a term frequency histogram following a bag-of-
systems approach, in which h-LDSs are used as feature descriptors. For evaluating the performance of the 
proposed methodology to extract dynamics from time evolving multidimensional data and using them for 
classification purposes in various applications, in this paper we consider two different cases: dynamic 
texture analysis and human motion recognition. Experimental results with two datasets for dynamic texture 
analysis and two datasets for human action recognition demonstrate the great potential of the proposed 
method. 

1 INTRODUCTION 

Machine learning problems often involve sequences 
of real-valued multivariate observations. To model 
the statistical properties of such data, it is assumed 
that each observation is correlated to the value of an 
underlying latent variable that is evolving over the 
course of the sequence. If the state is real-valued and 
the noise terms are assumed to be Gaussian, the 
model is called a linear dynamical system (LDS) 
(Boots, 2009). Thus, a linear dynamical system is 
associated with a first order ARMA process with 
white zero means IID Gaussian input (Doretto et al., 
2003). Linear dynamical systems are an important 
tool for modeling time series in engineering, 
controls and economics, as well as the physical and 
social sciences and they have been successfully used 
in the past for various vision tasks such as: dynamic 
texture analysis, synthesis, segmentation, 
registration and categorization (Soatto et al., 2001). 
They have also been employed for the categorization 
of video sequences in multimedia databases and 
more recently in human action recognition tasks.  

More specifically, in the field of video 
categorization a lot of methods have adopted LDSs 

focusing mainly on the definition of a suitable 
distance or kernel between the model parameters of 
two dynamical systems (Doretto et al., 2003); (Chan 
and Vasconcelos, 2005); (Chan and Vasconcelos, 
2007); (Vishwanathan et al., 2007). In addition, 
Turaga et al., (2011) showed that the parameters of 
linear dynamic models are finite dimensional linear 
subspaces that can be described using the unified 
framework of Grassmann and Stiefel manifolds and 
proposed algorithms for supervised and 
unsupervised clustering for activity recognition, face 
recognition and video clustering. More recently, a 
new method was introduced by Ravichandran et al., 
(2013) aiming to model video sequences with a 
collection of LDSs, which are then used as features 
in a bag of systems approach, while Luo et al., 
proposed the modelling of motion dynamics with 
robust LDSs using the model parameters as motion 
descriptors. 

Nevertheless, a limitation of linear dynamical 
systems is that they exploit information from only 
one element, i.e., channel, thus, in the case of 
multidimensional data the concatenation of different 
components into one single element is required. To 
this end, in this paper we propose a more efficient 
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way to model dynamics by taking advantage of the 
multidimensionality of data. More specifically, we 
present a higher-order LDS model in order to extract 
a new descriptor for analyzing data coming from 
multiple elements, e.g., channels in the case of video 
sequences or joint coordinates in the case of skeleton 
animation data. The proposed model is based on the 
higher order decomposition of the multidimensional 
data and enables the analysis of dynamic time-series 
using information from the same or different data 
sources, e.g., colour visible range cameras, infrared 
sensors of various spectral ranges, or even 
synthesized images. 

The proposed h-LDS descriptors are estimated in 
equally sized temporal segments, while a bag of 
systems approach is adopted, in which the h-LDSs 
are used as feature descriptors. For the formation of 
the codebook, a k-medoids (Kaufman and 
Rousseeuw, 1987) classification method is applied, 
where the K codewords correspond to K 
representative higher order LDSs. Each data 
sequence is then represented as a Term Frequency 
(TF) histogram of the predefined codeword of h-
LDSs and is provided to a SVM classifier. 

For evaluating the performance of the proposed 
methodology to extract dynamics from time series 
and using them for classification, in this paper we 
deal with the problems of dynamic texture analysis 
and human action recognition. 

2 HIGHER-ORDER LINEAR 
DYNAMICAL ANALYSIS 

2.1 Estimation of the h-LDS Descriptor 

As was mentioned above a linear dynamical system 
is associated with a first order ARMA process with 
white zero mean IID Gaussian input. More 
specifically, the stochastic modeling of both 
dynamics and appearance is encoded by two 
stochastic processes, in which dynamics are 
represented as a time-evolving hidden state process 
x(t)	∈ ܴ and observed data y(t)	∈ ܴௗ as a linear 
function of the state vector: 

ݐሺݔ  1ሻ ൌ ሻݐሺݔܣ  ሻ (1)ݐሺݒܤ

ሻݐሺݕ ൌ തݕ  ሻݐሺݔܥ  ሻ (2)ݐሺݓ
 

where	ܣ ∈ ܴ௫ is the transition matrix of the 
hidden state (n is the dimension of hidden state with 
n≤d), while ܥ ∈ ܴௗ௫is the mapping matrix of the 
hidden state to the output of the system. The 
quantities w(t) and Bv(t) are the measurement and 

process noise respectively, with w(t)~N(0,R) and 
Bv(t)~N(0,Q). The main advantage of the LDS 
descriptor ܯ ൌ ሺܣ,  ሻ, is that it contains both theܥ
appearance information of the data segment, which 
is modeled by ܥ, and its dynamics that are 
represented by ܣ. 

In the case of multidimensional data, 
observations can be represented by a tensor Y	∈
ܴௗଵ௫ௗଶ௫….ௗ of order n, where d1, d2,....,dn are integer 
numbers indicating the number of elements in each 
dimension. For instance, if we consider a colour 
video sequence of F frames, the order of tensor Y (in 
the rest of the paper the term 'tensor' is used to 
indicate a matrix of order higher than two) is four, 
where d1 and d2 indicate the width and height of the 
image respectively, d3 is the number of image 
elements (d3=3) and d4 is the number of frames. In 
order to estimate the matrices A and C containing the 
dynamics and appearance information respectively 
(see Figure 1), we need to decompose the n-order 
tensor Y, so that the columns of the mapping matrix 
C are orthonormal (Doretto et al., 2003). 

 

 

Figure 1: A graphical representation of the h-LDS model. 

To satisfy the aforementioned requirement, we 
use the HOSVD (Kuo, 2013), which is a 
generalization of the singular value decomposition 
for higher order tensors. More specifically, we first 
subtract from Y the temporal data average തܻ in order 
to construct a zero mean matrix in the time axis, 
where the temporal average is computed as: 

 

തܻ ൌ
1
ܨ
 ௗܻభ,ௗమ,…..,ௗషభ,௧

ி

௧ୀଵ

 (3)

 

and then we decompose tensor Y as follows: 
 

ܻ ൌ ܵ ൈଵ ܷሺଵሻ ൈଶ ܷሺଶሻ …ൈ ܷሺሻ (4)
 

where U(1),U(2),....U(n) are orthogonal matrices 
containing the orthonormal vectors spanning the 
column space of the i-mode matrix unfolding Y(i) and 
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ൈ denotes the i-mode product between a tensor and 
a matrix (Kuo, 2013), with i=1,2...n. Since, the 
choice of matrices A, C and Q in equations (1) and 
(2) is not unique, in the sense that there are infinitely 
many such matrices that give rise to exactly the 
same sample paths starting from suitable initial 
conditions (Doretto et al., 2003), we can consider 

C=
)(nU , where 

)(nU  is an orthogonal matrix and  
 

X=ܵ ൈଵ ܷሺଵሻ ൈଶ ܷሺଶሻ …ൈିଵ ܷሺିଵሻ (5)
 

Hence, equation (4) can be reformulated as follows: 
 

ܻ ൌ ܺ ൈ (6) ܥ
 

The n-mode product of tensor X	∈ ܴௗଵ௫ௗଶ௫….ௗ with 
matrix C∈ ܴௗ௫ௗ can be defined as: 

 

ܻ ൌ ܺ ൈ ܥ ⇔ ሺܻሻ ൌ ሺሻ (7)ܺܥ
 

The transition matrix A, containing the dynamics of 
the multidimensional data, can then be easily 
computed by using least squares: 
 

ܣ ൌ ܺଶ ଵܺ
்ሺ ଵܺ ଵܺ

்ሻିଵ (8)
 

where the matrices ଵܺ ൌ ሾݔሺ1ሻ, ,ሺ2ሻݔ … , ܨሺݔ െ 1ሻሿ and 
ܺଶ ൌ ሾݔሺ2ሻ, …,ሺ3ሻݔ ,  ሻሿ are formed from theܨሺݔ
unfolding X(n) of tensor X along the nth dimension. 

2.2 Codebook Creation and 
Classification 

For the formation of the codebook, k-medoids 
clustering is applied, however, before that we need 
to define a similarity metric between two descriptors 
ଵܯ ൌ ሺܣଵ, ଶܯ ଵሻ andܥ ൌ ሺܣଶ,  ଶሻ that will beܥ
applicable to the non-Euclidean space of h-LDSs. 

Since h-LDS descriptor consists of a pair of two-
dimensional matrices, we can easily use as a 
similarity metric the Martin distance between ܯ

ଵ 
and ܯ

ଶ: 

ெܦ
ሺܯ

ଵ,ܯ
ଶሻଶ ൌ െ lnෑܿݏଶߠ



 (9)

where θi are the subspace angles (Cock and Moor, 
2002) between the two models. The cosine of θi can 
be calculated as the square root of the i-th 
eigenvalue of the matrix PଵଵିଵPଵଶPଶଶ

ିଵPଶଵ: 

cosଶθ୧ ൌ i୲୦eigenvalueሺPଵଵିଵPଵଶPଶଶ
ିଵPଶଵሻ (10)

 

where the estimation of matrix 
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is performed by solving the Lyapunov equation 
APA െ P ൌ െCC, where 
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The codebook can then be created by using h-LDS 
as feature descriptors. Specifically, the training 
dataset of the h-LDS descriptors is fed into k-
medoids algorithm for the creation of a codebook of 
K codewords corresponding to K representative h-
LDSs, as shown in Figure 2. Finally, each data 
segment is then represented as a Term Frequency 
(TF) histogram of the predefined codeword of h-
LDSs. 

 

Figure 2: h-LDS codebook creation and classification. 

3 EXPERIMENTAL RESULTS 

For evaluating the performance of the proposed 
methodology to extract dynamics from time 
evolving multidimensional data and using them for 
classification, in this paper we consider two different 
applications: i) dynamic texture analysis and ii) 
human motion recognition. In the former case, the 
proposed high order LDS descriptor is used to model 
the temporal evolution of pixels intensities, while in 
the latter the evolution of skeleton joints positions 
during the performance of a motion is considered as 
a multidimensional time series. 

3.1 Dynamic Texture Analysis 

In this section we present experimental results using 
two video datasets for dynamic texture analysis. 
More specifically the first dataset (Dimitropoulos et 
al., 2015) contains videos with flame and flame-
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colored objects, while the second one contains 
videos with smoke and non-smoke frames 
(Barmpoutis et al., 2014). In both cases, each frame 
of the video sequence is divided into image patches 
of size 16x16, which is a typical approach in video-
based fire detection systems and then a pre-
processing step is applied aiming to identify 
candidate image patches i.e., patches containing a 
sufficient number of flame or smoke colored moving 
pixels. To this end, we initially apply an Adaptive 
Median algorithm (McFarlane and Schofield, 1995), 
(Dimitropoulos et al., 2012), which is fast and very 
efficient algorithm for detecting moving pixels, and 
then we use a fire probability model (Dimitropoulos 
et al., 2015) or a HSV smoke color model 
(Avgerinakis et al., 2012) to identify candidate flame 
or smoke image patches respectively. 
 

 

Figure 3: Comparison of LDS and h-LDS with grayscale, 
RGB and RGBH data using the dataset containing flame 
and flame colored objects. 

 

Figure 4: Comparison of LDS and h-LDS with grayscale, 
RGB and RGBH data using the dataset containing smoke 
and smoke colored objects. 

For each candidate image patch we estimate a h-
LDS descriptor using a temporal length of 16 
frames. In addition, for the classification of each 
frame, we create histogram representations 
corresponding to the sub-sequences of T previous 
frames (in our experiments T=100). In the 
experimental results, we estimated the number of 

correctly detected frames out of the total number of 
frames in each dataset. As can be seen in Figures 3 
and 4, the proposed descriptor outperforms standard 
LDSs in both cases i.e., flame and smoke 
identification respectively. In order to validate the 
performance of both descriptors with a different 
number of elements, apart from the use of grayscale 
and RGB data (i.e., three elements), we also created 
a fourth channel by visualizing the feature space of 
HOG descriptor as in (Vondrick et al., 2013) (i.e., 
RGBH data). Especially in the case of smoke, the 
fourth channel seems to improve significantly the 
results, while LDS descriptor does not seem to 
change significantly its detection rate.  

3.2 Human Action Recognition 

In this section we deal with the problem of human 
action recognition in game-like applications. More 
specifically, for capturing the human motion, depth 
sensors are used, while the evolution of skeleton 
joints positions during the performance of a motion 
is considered as a multidimensional time series. To 
extract the dynamics of the body motion, we 
segment the multidimensional signal into equally 
sized elementary segments using a sliding time 
window of 16 frames. In this way we accomplish a 
better representation of human motion, instead of 
using the whole non-linear sequence of data, as each 
elementary segment can be efficiently modelled by a 
linear dynamical system.  

Experimental results with two datasets for human 
action recognition show that the proposed method 
outperforms the different variants of LDSs on the 
recognition task of body motion. More specifically, 
for the validation of the proposed method we created 
a new Kinect gesture dataset consisting of 360 
motions, while we also used a well-known dataset 
such as MSRC-12 (Fothergill et al., 2012). More 
specifically the new dataset contains 6 actions (bend 
forward, left kick, right kick, raise hands, hand 
wave, push with hands) performed by 6 subjects, 
each repeated 10 times (360 motions in total) and the 
Microsoft Research Cambridge-12 Kinect gesture 
data set (MSRC-12) comprises of 594 sequences 
collected from 30 people performing 12 gestures. 
The MSRC-12 dataset is partitioned along different 
methods of instruction given to the subjects such as 
text and video. We used the part of the dataset where 
video only instructions were given. Both datasets 
contain tracks of 20 skeleton joint position 
coordinates estimated using the Kinect Pose 
Estimation pipeline. 
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Figure 5: Comparison of LDS and H-LDS descriptor 
performance on our dataset. 

 

Figure 6: Comparison of LDS and H-LDS descriptor 
performance on MSRC-12 dataset. 

As seen in Figures 5 and 6 the histogram of 
LDSs offer an improvement in classification results 
compared to using a single descriptor for the whole 
motion. Additionally, the h-LDS descriptor clearly 
outperforms the simple LDS descriptor in each case. 
This extends to the case of histogram of LDSs, 
where the same behavior can be observed. 

4 CONCLUSIONS 

In this paper, we introduced a higher order linear 
dynamical systems (h-LDS) descriptor for extracting 
dynamics from multidimensional time evolving data. 
By applying higher order decomposition in the 
observation data, we showed that we can achieve 
higher detection rates than standard linear dynamical 
systems both in the case of dynamic texture analysis 
and human action recognition. In the future, we are 
planning to use data from different sources, e.g., 
multispectral imaging in the case of flame detection 
or skeletal data and depth data in the case of human 
action recognition. 
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