
Conceptual Mappings to Convert Relational into NoSQL Databases

Myller Claudino de Freitas1, Damires Yluska Souza2 and Ana Carolina Salgado1
1Center for Informatics, Federal University of Pernambuco, Professor Luis Freire ave, Recife, Brazil

2Academic Unit of Informatics, Federal Institute of Education, João Pessoa, Brazil

Keywords: Relational Databases, NoSQL Systems, Conceptual Mappings, Data Conversion.

Abstract: Sometimes, data belonging to Relational databases need to be transferred to NoSQL ones. However, the
data conversion process between Relational to NoSQL databases is considered as not trivial, since it is
necessary to have considerable knowledge about the data models at hand. Regarding the structural
heterogeneity underlying this problem, we propose an approach, named as R2NoSQL, which defines
conceptual mappings to enhance the data conversion process. In this paper, we present our approach and
some implementation and experimental results, which show that, by using the defined conceptual mappings,
we obtain a consistent target NoSQL database with respect to a source Relational one.

1 INTRODUCTION

Due to the increasing amount of data generated by
user interactions on the Web or by big data
requirements, some companies are focusing on using
non-relational databases, usually referred to as
NoSQL systems, standing for ’Not only SQL’ (Han
et al., 2011). This term has been used to categorize
databases characterized by horizontal scalability,
less constrained structure or schema-less, and faster
access compared to traditional relational databases
(RDBMS) (McMurtry et al., 2013).

Experts comment that despite the rise of NoSQL
databases during the past years, NoSQL is not
necessarily a replacement for relational databases
(McMurtry et al., 2013). Instead, NoSQL databases
comply with big or social data demands or specific
projects which strain Relational ones. Nevertheless,
sometimes, data belonging to Relational databases
need to be transferred to NoSQL ones in order to be
used in specific projects. However, the data
conversion process is not trivial, since it is necessary
to have considerable knowledge about the data
models at hand.

In this scenario of structural heterogeneity, we
define our research problem as follows:

Let RDB be a Relational database and NSDB =
{NSDB1, ..., NSDBn} a set of databases belonging
to NoSQL models, where each NSDBi uses one
of the following NoSQL approaches A = {Key-
value, Column, Document, Graph}. We need to

establish conceptual mappings between RDB
elements and the different data structures
underlying NSDBi in such a way that RDB can be
converted to NSDBi.
With this in mind, and considering the structural

heterogeneity between Relational and NoSQL
models, this paper presents the R2NoSQL approach
for converting data between the referred models. To
this end, it compares the data structures belonging to
the Relational model with the four main NoSQL
approaches (key-value, columns, documents and
graphs), identifying a set of possible conceptual
mappings between RDB and a NSDBi. Also, it
provides a tool prototype, which implements a case
study with a Relational database and a Document
based NoSQL system. Experiments have been done
to evaluate the consistency of the generated
mappings by analysing the results obtained from the
same set of queries executed on both systems.

This paper is organized as follows: Section 2
introduces some concepts; Section 3 presents the
approach; Section 4 describes some obtained results.
Related work is discussed in Section 5. Section 6
draws our conclusions and points out future work.

2 NoSQL MODELS

NoSQL systems are a category of databases that do
not follow principles of the Relational Model (Han
et al., 2011). The term “NoSQL” does not relate to a

174
Freitas, M., Souza, D. and Salgado, A.
Conceptual Mappings to Convert Relational into NoSQL Databases.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 174-181
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

specific data model, but to a group of data models
that differ from the relational approach and may
have in common some features such as: they are
usually open-source, distributed and horizontally
scalable, and they present schema flexibility or even
no schema (Han et al., 2011). NoSQL systems are
classified in some categories in which the four main
are: Key-value, Columns, Documents, and Graph.
Indeed, their implementations may differ from each
other, even when the systems belong to a similar
category. In order to base our descriptions, we have
chosen one example of each NoSQL category. They
are briefly discussed in the following.

2.1 Key-value Model

The Key-value Model is the one with the simplest
representation. Its structure consists of a list of pairs
composed by a key and a value (Istvan et al., 2013).

Usually, Key-value NoSQL implemented
systems allow, besides simple data types (e.g.,
numerals and strings), the use of lists and sets of
values of simple types. This is what happens, for
instance, in Redis (Redis, 2015), our example of
Key-value system. A Key-value system such as
Redis tends to support large volumes of data. Since
it does not present data schemas, the developer may,
by hand, introduce some metadata by naming the
keys. On the other hand, it does not support queries
to be performed on the data, but only on the search
keys. Thus, all access is done through the search
keys and only with the key it is possible to access
the value. This access usually is accomplished with
lower response times, one of its main benefits. This
model does not support relationships in terms of
reference keys and no referential integrity constraint.

2.2 Column Model

At a first sight, this model may be considered as
similar to the Relational one, since it is also
organized in terms of rows and columns. However,
this approach deals with data in a non normalized
way, i.e., by allowing nesting of tables inside tables
(Lakshman and Malik, 2010). In this approach, rows
do not store a tuple, but a set of attributes of the
same type, while the set of attributes of a column
contains the information from a given instance. Such
feature allows queries to be performed more
efficiently, although when recovering a complete
instance it may become more costly.

Another important concept regards a “family of
columns”, which means a set of instances of a given
entity. In this structure, it is possible to have non-

atomic attributes through the representation of value
lists. Instances may have a different number of
attributes, since there is no need to book storage
space for null values. Also, there is no need to use
join operations in order to query diverse entities.

2.3 Document Model

In Document Model, the data entities are grouped in
documents as objects, which are composed by keys
(properties) and values. These documents are usually
serialized in JSON syntax (McMurtry et al., 2013).

A document is a collection of objects that are
related to a data instance. The various documents
belonging to the same data domain are stored in a
collection of documents.Considering the MongoDB
document system (Mongo, 2015), an instance key
(called as an “objectId”) can be set at persistence
time, or may have its value generated randomly by
the database. It can provide uniqueness values for
other fields by the specification of an index.

This model allows more complex queries
involving different collections of documents. To this
end, it is necessary that a document has a DBRef
(Database Reference) to another related document or
establish a reference. Despite allowing references,
DBRef does not guarantee referential integrity
constraint. A query may consider these references or
use data embedded within the same document.

2.4 Graph Model

The Graph model is mainly concerned with
representation and access, where data items are
connected by relationships by means of a graph
structure (McMurtry et al., 2013). The elements
underlying a graph are, namely (McMurtry et al.,
2013): nodes, edges and properties. Nodes
correspond to data instances, edges refer to
maintained relationships among node instances, and
properties relate to data values. Some systems of
such category allow the definition of their properties
with the guarantee of unique values. One example
regards the Neo4j system (Neo4j, 2015).

Nodes and edges can contain labels (terms which
indicate a category) that classify them into more
specific groups. For the nodes, these labels can be
used to differentiate instances. On edges, labels may
also be used to determine the type of relationship
that is occurring.

An edge has an input node and an output node
linking them. This feature, besides supporting
references, also guarantees referential integrity by
ensuring that the input node always makes reference

Conceptual Mappings to Convert Relational into NoSQL Databases

175

to the output node. The access keys to the nodes are
automatically set by the system. However, it is
possible to establish unique constraints for other
node properties.

3 THE R2NoSQL APPROACH

In this section, we present some definitions along
with the proposed approach.

3.1 Some Definitions

At first, we provide some definitions regarding the
concepts underlying E-R and Relational models that
we consider in our approach. Since we need to
think about mappings between concepts, we define
what we consider by “Concept” in each one of the
working data models. Regarding the E-R Model, we
may summarize a Concept as follows.

Definition 1 – E-R Concept. The set of
concepts of an E-R conceptual model we are dealing
with are CE = {Entity, Simple Attribute, Multi-valued
Attribute, Composed Attribute, Relationship,
Specialization}.

In the light of the Relational Model, we define a
Concept as follows.

Definition 2 – Relational Concept. Concepts of
a relational structure are CR = {Table, Simple
Attribute, Primary Key (PK), Foreign Key (FK)}.

As discussed in Section 2, we observe that each
NoSQL database model has specific data structures.
Thereby, we provide the definition of the main
Concepts of the four categories of NoSQL systems
described previously.

Definition 3 – Key-value NoSQL Concept. A
concept in a Key-value Model may be CK = {Search
Key, Value, Value List, Value Set}.

Definition 4 – Column NoSQL Concept. In a
Column Model, a concept may be CC = {Column
Family, Line, Column, Value Set, Value List,
Primary Key (PK)}.

Definition 5 – Document NoSQL Concept. In a
Document Model, a concept may be CD =
{Document Collection, Document, Field, Embedded
Field, Field List, ObjectId, DBRef}.

Definition 6 – Graph NoSQL Concept. A
Graph model concept CG = {Label, Data Node,
Property, Property Set, Id, Edge, Value Set, Value
List}.

Data indeed are instantiated differently in each
one of the referred databases. Nevertheless, we can
think about a data item or a data instance, in a
general way, as follows.

Definition 7 - Data Item. A data item is an
instance or an individual of a real entity in the data
set at hand.

In the Relational Model, a data item is a tuple. In
NoSQL approaches, it can be a data node, a data
document, a column of a column family or simply a
value from the key value model.

3.2 Our Proposal

As discussed in the previous sections, each database
model has specific data structures and concepts,
what provides structural heterogeneity conflicts
among them. These conflicts occur because different
choices of construct representation or integrity
constraints are adopted in accordance with the
options underlying each data model. Thereby, in this
work, the task we are dealing with is concerned with
what is necessary to convert concepts of a given
RDB (a Relational database) to a NSDBi (a NoSQL
one). Thus, it becomes necessary to specify
conceptual mappings between concepts Cr ∈ RDB
and concepts Cn ∈ NSDBi.

Our proposal, named as R2NoSQL approach, is
based on three aspects: (i) defining conceptual
mappings between RDB and NSDBi; (ii) using these
conceptual mappings to allow metadata and data
conversion between the referred databases, and (iii)
classifying source tables to help understanding their
meaning in the database design. In the following, we
provide the definitions underlying these issues.

3.2.1 Conceptual Mappings

Our approach deals with the structural heterogeneity
of the data models and some aspects of database
design. In order to cope with these issues, our
mapping language handles the different existing
concepts, which belong to the data models, but as a
design reference, we consider some concepts not
only from the Relational model but also from the E-
R conceptual model. Thereby, we consider concepts
from the Conceptual E-R model, which are not
directly implemented in a Relational database, but
they are close to real world and can be implemented
in NoSQL systems. This conceptual mapping is the
base for our conversion solution and without it, the
process could not happen. These concepts regard
particularly the composed and multi-valued
attributes, and also specializations. By establishing
that, we deal with a source model and a target model
and we define the set of possible source Concepts, to
be considered in a Mapping, as the following:

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

176

Definition 8 – Source Concept. A source concept
Cs is the set of possible E-R or Relational concepts
which may be used to compose a Mapping. Thus, CS
= CE U CR. Proceeding with the union operation, the
final set results in CS = {Entity, Simple Attribute,
Multi-valued Attribute, Composed Attribute,
Relationships, Specialization, Table, Primary key
(PK), Foreign key (FK)}. Since a conceptual Entity
always results in a relational Table, we abstract both
ones only in the concept Table.

In the same way, we establish a target Concept,
as the following.

Definition 9 – Target Concept. A target concept
CT is the set of possible NoSQL concepts which may
be used to compose a Mapping. CT = CK | CC | CD |
CG.

Thus, the set of target concepts is composed by
the possible concepts which belong to one of the
NoSQL systems instantiated by a specific model.

With these definitions in mind, we define, firstly,
in a general way, a Conceptual Mapping, as follows.

Definition 10 – Conceptual Mapping. A
conceptual mapping M represents an association
between a concept CS and a concept CT of a given
NSDSi, where NSDSi ∈ A, and A = {Key-value,
Column, Document, Graph}. M defines a level of
similarity between CS and CT.

A conceptual mapping M may be understood as a
way of converting a given CS into a CT. Depending
on the target NSDSi, to a given CS, there may be no
corresponding CT, i.e., there may be no concept in
the target model that can be used for data
conversion. When this fact happens, we point it as
an empty or non existing target concept (∄).

Based on the previous definitions, we establish
specific conceptual mappings between CS and CT,
according to the NSDSi at hand. To this end, we
consider the possibility of employing a table
denormalization technique, which is the process of
adding redundant data or grouping data, previously
fragmented in a number of relational tables.
Thereby, we may have nested tables or multi-valued
attributes in one or more target structures, which
may be sets, lists, documents or other ones,
depending on the data model.

Let RDB be a source database composed by CS
and NSDBK, a Key-value NoSQL system, composed
by CK. Specific structural conceptual mappings
between CS and CK may be defined, as follows.

RDB:Table ≡ NSDBK: ∄
RDB:SimpleAttribute ≡ NSDBK:Value
RDB:ComposedAttribute ≡ NSDBK:ValueList
RDB:Multi-valuedAttribute ≡ NSDBK:ValueList
RDB:PK ≡ NSDBK:SearchKey

RDB:FK ≡ NSDBK: ∄ RDB:Specialization ≡ NSDBK:ValueSet
Regarding data items, we may establish a

mapping in the following way:
RDB:DataItem ≡ NSDBK:Value |

NSDBK:ValueList
Although there is no corresponding concept to a

Table, it is possible to simulate such concept by
using composed search keys. In this case, keys are
composed by a prefix together with the name of a
given property, in such a way that we may identify
to which entity it is associated. Indeed, it is not a
defined standard, but one of our proposals.

The representation of relationships occurs with the
storage of the search key values of a given data item
inside another one. In many-to-many relationships,
this happens in both sides of the data items at hand.

Now let RDB be a source database composed by
CS and NSDBC, a Column NoSQL system, composed
by CC. Specific structural conceptual mappings
between CS and CC are defined, as follows. RDB:Table ≡ NSDBC:ColumnFamily

RDB:SimpleAttribute ≡ NSDBC:Column
RDB:ComposedAttribute ≡ NSDBC:ValueSet
RDB:Multi-valuedAttribute ≡ NSDBC:ValueList
RDB:PK ≡ NSDBC:PK
RDB:FK ≡ NSDBC: ∄ RDB:Specialization ≡ NSDBK: ValueSet
Regarding data items, we may establish a

mapping in the following way:
RDB:DataItem ≡ NSDBC:Line
In terms of relationships, a NSDBC allows their

implementation by two options: (i) a column family
may compose information from different but related
tables; or (ii) data items may have a reference to
other data items by storing the target primary key.
The former is the most common option, since it
allows a better response time.

Now let RDB be a source database composed by
CS and NSDBD, a Document NoSQL system,
composed by CD. Structural conceptual mappings
between CS and CD are defined, as follows.

RDB:Table ≡ NSDBD:DocumentCollection
RDB:SimpleAttribute ≡ NSDBD:Field
RDB:ComposedAttribute ≡

NSDBD:EmbeddedField
RDB:Multi-valuedAttribute ≡ NSDBD:FieldList
RDB:PK ≡ NSDBD:ObjectId
RDB:FK ≡ NSDBD:DBRef |

NSDBD:EmbeddedField RDB:Specialization ≡ NSDBD: EmbeddedField
Regarding data items, we may establish a

mapping in the following way:
RDB:DataItem ≡ NSDBD:Document

Conceptual Mappings to Convert Relational into NoSQL Databases

177

Relationships are implemented by defining
object references between objects belonging to
documents. Thereby, queries may take into account
these references to get related objects information.

Now let RDB be a source database composed by
CS and NSDBG, a Graph NoSQL system, composed
by CG. Specific structural conceptual mappings
between CS and CG are defined, as follows.

RDB:Table ≡ NSDBG:LabelNode
RDB:SimpleAttribute ≡ NSDBG:Property
RDB:ComposedAttribute ≡ NSDBG:ValueSet
RDB:Multi-valuedAttribute ≡ NSDBG:ValueList
RDB:PK ≡ NSDBG:Id
RDB:FK ≡ NSDBG:Edge RDB:Specialization ≡ NSDBK:ValueList
Regarding data items, we may establish a

mapping in the following way:
RDB:DataItem ≡ NSDBG:Node
In the next section, we provide the way we

classify identified tables in a given RDB.

3.2.2 Table Classification

Regarding the set of concepts CR ∈ RDB, the main
one is always a Table. Since a table may be the
result of E-R conceptual entities, relationships,
specializations, multi-valued or composed attributes,
we need to understand what a Table means, and its
importance, to the RDB at hand. We have defined a
classification of the source Tables as follows.

 Main Tables: These are the main tables in a
RDB design. They usually correspond to
entities found in the conceptual model.

 Subclasses: These tables are a complement to
the definition of a main table. They represent
specializations of the main tables, but do not
exist independently.

 Relationships: This classification typifies a
specific kind of table, which implements a
many-to-many (N:N) relationship in the
conceptual model.

 Common Tables: The other types of tables are
defined as common in a source RDB schema.

Our proposed algorithms take into account such
table classification in order to identify the
conceptual mappings to be used.

3.2.3 Conversion Algorithm

Based on the specified conceptual mappings
between CS and CT, and on the table classification,
some algorithms have been developed to allow data
conversion. A main algorithm, named as
Algorithm1-Data Conversion, receives a RDB
enriched with a Table Classification as input and

generates a NSDBi as output.
--

Algorithm1: Data Conversion.
--
Input: RDB rel;
Output: NSDSi ns;
Begin
 //Looks for main tables
1: For Each table of rel Do
2: If (table.classification() is “main”)
 Then
3: get all table attributes to object
4: For Each table referencing table Do
 //looks for related tables
5: goDeep(table, object);
 //persists object on ns
6: persist(object) ;
7: End For;
8: End If;
9: End For;
End Data_Conversion;
--

In our approach, the input RDB is composed by
its metadata and data. Tables were already classified
and this classification is also used as input. Based on
that, the algorithm verifies the kinds of existing
tables and, for each type, extracts the set of data
items. Through references (FKs), data tables are
traversed and analyzed. At such verification time,
decisions are taken according to each type of table.
--

Algorithm2: goDeep.
--
Input: table, object;
Output: table, object;
Begin
 //Looks for tables that reference table
1: table2 := findTableDeep(table);
 2: Do Switch table2.classification
3: case “common”:
4: get all table2 attributes to object;
5: goDeep(table2);
6: case “subclass”:
7: get all table2 attributes to object;
8: goDeep(table2);
11: End Switch;
 //looks for related tables
10: goUp(table, object);
End goDeep;
--

Main tables constitute the basis for the analysis.
With a main table at hand, the algorithm verifies if it
is related with other ones. In this case, it calls
another algorithm (Algorithm2–goDeep) where
existing relating tables are identified. Regarding
these selected tables, some options may be taken,
namely: (i) If the table is another main table, no
other procedure is accomplished because, later, the
opposite direction of the relationship will be
considered. At this later time, the second table will
refer to the first one; (ii) If the table is a relationship

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

178

table, no action is taken because, only when all the
data items are persisted, relationships can be
analyzed; (iii) If the table is a common one, it is
possible to add its attributes in that main table as
part of its structure; (iv) If the table is a subclass,
then its attributes are added to the main table. It is
understood that it is a specialization of the main one.

Each time a new table is found in-depth analysis,
the algorithm selects this table and repeats the
process until there are no more tables, or a stop
condition happens. This process is responsible for
the denormalization of the data, in which the data
related to the main table are included in a data item.
--

Algorithm3: goUp.
--
Input: table, object;
Output: object, reference_list,
referenced_list;
Begin
 //Looks for tables that reference table
1: table2 := findTableUp(table);
2: Do Switch table2.classification
3: case “common”:
4: get all table2 attributes to object;
5: goUp(table2);
6: case “subclass”:
 //saves data items to set relationship
7: reference_list.add(table);
8: referenced_list.add(table2);
8: goDeep(table2);
9: case “relationship”: break;
10: case “main”:
11: reference_list.add(table);
12: referenced_list.add(table2);
13: End Switch;
End goUp;
--

After the identification of in-depth relationships,
the tables that the main table refers are searched up
(Algorithm3 – goUp). According to the identified
relationships, one of the following options will be
considered: (i) to capture the attributes and move up
or (ii) to save identified instances in a list. This
function separates tables in which there could be
composed or multi-valued attributes. It may also
show that a new entity has been found, and a
relationship should happen. The procedure is
repeated until a stop condition is reached.

After the main table and its related tables of a
data item are analyzed, the whole set of attributes is
persisted as an entity in the target database
(Algorithm1, line 6). Just after all instances have
been persisted, the algorithm must define the
relationships among them.

To establish the one-to-one or one-to-many
relationships, generated lists (when a main table
mentioned another one) are used. These lists are
included in the data items that have references, and

the data items that are referenced. For each type of
implemented target database, the algorithm must
implement a specific procedure. In this work, we
show one regarding the MongoDB system. This
algorithm, named as oneTo, was implemented to
provide DBRef storage. It stores in the
corresponding document of Table 1 a reference to
list2, and in the one corresponding to Table 2, a
reference to list1. In terms of many-to-many
relationships, it is necessary to identify the double
meaning of these references (manyToMany
algorithm). In MongoDB case, a DBRef of each
document involved in the corresponding document
is stored. For instance, the student Bill Gates held a
publication. Thus there is a publication document
reference in the student's document, and there is a
student document reference in the publication
document. Other solution would be to embed all
related data into one document. However, this
approach can let the execution of queries harder. For
instance, if student documents contain publication
information, more effort would be necessary to
retrieve people involved in a specific publication.

4 RESULTS AND EXPERIMENTS

In this section, we present some implementation and
experimental results.

4.1 Implementation and Example of use

We have developed the R2NoSQL approach in the
Java language. The main functional requirements
underlying the tool’s development are the following:

 Set Source Database: it includes the definition
of the relational DBMS to be used as well as
the metadata and data extraction step.

 Classify Table: The tables extracted from the
Relational database will be classified by the user.

 Set Target Database: The user chooses the
target NoSQL database.

 Execute Data Conversion: It analyzes the
extracted metadata and data from the source
database, verifies tables’ classification and
possible conceptual mappings, identifies the
target NoSQL concepts and persists
corresponding data in the target database.

In this current version, we have developed a
prototype which deals with a RDB (e.g., MySQL) as
a source database and a NSDBD as a target one. To
the latter, we have used the MongoDB system.

We provide an example in the following. As
source RDB, we have used a database with 15 tables

Conceptual Mappings to Convert Relational into NoSQL Databases

179

(e.g., Person, Publication, Student). Among them,
there are some relationships (e.g., between Person
and Publication), and some specializations (e.g.,
Student is a specialization of Person).

The Table classification is accomplished by the
user, since, in this version, we have a semi-
automated tool with respect to this functionality.
Thus, after extracting the source RDB metadata, the
tool asks the user to classify the extracted tables.

After table classification, the R2NoSQL tool is
able to proceed with the data conversion, in
accordance with the defined algorithms (Section
3.2.3). The tool selects instances of each table
classified as main, storing the table attributes and
their associated values. This happens according to
the existing mappings. When this process finishes,
the tool looks for instances related to what was
analyzed as a complement to the main tables. These
related tables can be a representation of a complex
value as a composed attribute, a multi-valued
attribute or even a specialization.

Considering a fragment of the source database at
hand, we show some instances belonging to tables
Person and Student in Table 1 and Table 2,
respectively. Taking into account the data presented
in Table 1 and Table 2, the tool produces a
document as depicted in Figure 1. The resulting
collection of documents is named by using the name
of the main table of that entity. The attributes and
values of the tables were converted into document
fields. However, new fields were introduced as
depicted in Figure 1: AR_master regards the key
attribute of table Master, a specialization of Student;
Person_X_Publication represents the many-to-many
relationship between Person and Publication.

4.2 Experiments

We have conducted some experiments to verify the
effectiveness of our approach. The goal of our
experiments was twofold: (i) to check whether a set
of queries formulated and executed in a RDB may be
either formulated and executed in a generated
NSDBD, and (ii) to verify if the query results
obtained from both databases are similar, i.e., if the

used mappings and algorithms have generated a
consistent target NSDBD. In order to verify the latter
goal, we checked both obtained query results and
compared the ones obtained in a NSDBD with respect
to the corresponding ones from a RDB.

Figure 1: Document obtained after data conversion.

The working data scenario was the same
presented in the example of Section 4.1. This
database was populated with 45 tuples, and queries
were specified to be executed over them. Table 3
shows an examples of query used in our
experiments, which shows all professor attributes
according to his name. It is presented in SQL and in
MongoDB query language.

The first experiment goal was accomplished,
since, by using the tool, we could submit and
execute the same set of queries in both source and
target databases.

Regarding the latter goal, we have compared the
obtained query results in terms of data items
(instances) and their properties. For each query
submitted and executed in MongoDB, we measured
the degree of similarity of the answers with respect
to the set of answers obtained in the relational
database (which acted as a gold standard).

All queries returned similar instances with
identical property values (100%). Differences were

Table 1: Table Person with a tuple.

CPF RG name Bdate Natural
From nationality e_mail url user pword profile

74852963214 10987312 Bill
Gates

10-28-
1955

Washing
ton American gates@ms.

com
http://gatesnotes.

com gates gates U

Table 2: Table Student with a tuple.

AR CPF Additional_info Adm_semester Adm_year Egressiondate
790099 74852963214 Co author of 19 articles. 1 1981 03-19-1981

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

180

obtained only in terms of query results presentation,
but not regarding the set of obtained data items.

Therefore, we can see that the goals of this
experiment were achieved. It was possible to require
the same information from both source and target
databases. In addition, it was possible to obtain the
same set of query results from both ones.

Table 3: A query example used in the experiment.

SQL MongoDB
query language

select pe.*, pf.*
from Person pe inner join Professor
pf on pe.cpf=pf.cpf
inner join IC_Professor i on
pf.cpf=i.cpf
where pe.cpf = '95175368429'
union
select pe.*, pf.*
from Person pe inner join Professor
pf on pe.cpf=pf.cpf
inner join Invited_Professor ip on
pf.cpf= ip.cpf
where pe.cpf = '95175368429'

db.Person.find({cpf:
"98632541754",
$or:[{type: "ic"},{
type: "invited"}]},
{cpf:1, rg:1,
name:1, birth_date:1,
naturalness:1,
nationality:1, user:1,
password:1,
profile:1, e_mail:1,
type:1,
additional_info:1})

5 RELATED WORK

Data conversion approaches regarding Relational and
NoSQL models have been tackled. Zhao et al. (2014)
propose an automatic approach for converting
relational database schemas to NoSQL ones, which
establishes conceptual rules for the denormalization of
the original data. Potey et al. (2015) provide a tool to
perform data conversion, in which the target database is
an equivalent relational schema in a Document
structure. Karnitis and Arnicans (2015) instead provide
a semi-automatic approach, which allows a
comprehension of the relationships that the tables carry
one over the other by a classification strategy. Mpinda
et al. (2015) present a data conversion process that
aggregates data tables, which are analyzed along with
the established relationships.

Our proposal extends some of these concepts.
We provide a denormalization technique and we
deal with some kinds of conceptual relationships, by
producing references when possible. We have a
table classification strategy to enrich the overall
process. Finally, our approach may be applied to any
of the target NoSQL models.

6 CONCLUSIONS

We presented the R2NoSQL approach, which allows
data conversion between relational and NoSQL

databases. This approach is based on conceptual
mappings defined between structural concepts from
relational and NoSQL ones.

Experiments have shown that obtained NoSQL
database is consisted with the source relational one,
by executing the same set of queries in both source
and target databases. In fact, they produced similar
query results.

As future work, some enhancements will be
done: (i) the tool will be extended to accomplish
data conversion by considering other categories of
NoSQL systems, and (ii) an automated query
conversion process will also be taken into account.

REFERENCES

Han, J., Haihong, E., Le, G., Du, J., 2011. Survey on
NoSQL database. In: Pervasive computing and
applications (ICPCA), 2011 6th international
conference on. IEEE. p. 363-366.

Istvan, Z., Alonso, G., Blott, M., Vissers, K., A flexible
hash table design for 10Gbps key-value stores on
FPGAs. In: Field Programmable Logic and
Applications (FPL), 2013 23rd International
Conference on. IEEE. p. 1-8.

Karnitis, G. and Arnicans, G., 2015. Migration of relational
database to document-oriented database: Structure
denormalization and data transformation. Communication
Systems and Networks (CICSyN), 7th International
Conference on Computational Intelligence. p. 114–118.

Lakshman, A., Malik, P., 2010. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating
Systems Review, v. 44, n. 2, p. 35-40.

McMurtry, D., Oakley, A., Sharp, J., Subramanian, M.,
and Zhang, H., 2013. Data access for highly-scalable
solutions: Using sql, nosql, and polyglot persistence.
Microsoft patterns & practices.

MongoDB, 2015. Available at https://www.mongodb.org/.
Last access on December, 2015.

Mpinda, S. A. T., Maschietto, L. G., and Bungama, P. A.,
2015. From relational database to columnoriented
nosql database: Migration process. International
Journal of Engineering Research & Technology
(IJERT), 4. p. 399–403.

Neo4j, 2015. Available at http://neo4j.com. Last access on
December, 2015.

Potey, M., Digrase, M., Deshmukh, G., and Nerkar, M.,
2015. Database migration from structured database to
non-structured database. International Conference on
Recent Trends & Advancements in Engineering
Technology (ICRTAET 2015), p. 1–3.

Redis, 2015. Available at http://redis.io/. Last access on
December, 2015.

Zhao, G., Lin, Q., Li, L., Li, Z. 2014. Schema Conversion
Model of SQL Database to NoSQL. In: P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2014
Ninth International Conference on. IEEE. p. 355-362.

Conceptual Mappings to Convert Relational into NoSQL Databases

181

