
Mobile Robotic JChoc DisSolver
A Distributed Constraints Reasoning Platform for Mobile Multi-robot Problems

Zakarya Erraji1, Mounia Janah1, Imade Benelallam1,2 and El Houssine Bouyakhf1

1LIMIARF− FSR, University Mohammed V, Rabat, Morocco
2INSEA, Rabat, Morocco

Keywords: Constraint Programming (CP), Mobile Robots, Multi-robot Systems, Distributed Problem Solving, Agent
Models and Architectures, Distributed Constraints Reasoning, Realistic Use, Constraint Satisfaction Problem
(CSP), Distributed CSP (DisCSP).

Abstract: Due to the computational complexity (NP-Complete) of Constraint Programming (CP), several researchers
have abandoned its use in robotic research field. In the last decade, as many approaches of real-time constraint
handling have been proposed, constraint programming has proved to be a stand-alone technology that can be
used in several research fields.
Even if mobile robotics is a complex research area, in this paper, we prove that distributed constraint reasoning
techniques can be utilized as a very elegant formalism for multi-robot decision making. First, we describe
dynamic distributed constraint satisfaction formalism, the new platform architecture ”RoboChoc” and specify
how decision making can be controlled in multi-robots environment using dynamic communication protocols.
Then we provide an example application that illustrates how our platform can be used to solve multi-robot
problems using constraint programming techniques.

1 INTRODUCTION

With increasing deployment of applications involv-
ing multiple robots and unmanned air vehicles, there
is growing need for programming platform with re-
alistic use context. Coordination between robots to
solve a combinatorial problem, is one of the most
complex research area in mobile robotics. In the
last decade, as many approaches of real-time con-
straint handling have been proposed, constraint pro-
gramming has proved to be a stand-alone technology
that can be used in several research fields. This pa-
per presents a new multi-robot platform named Mo-
bile Robotic JChoc DisSolver (RoboChoc), based on
constraint programming to solve multi-robot combi-
natorial problems in dynamically changing environ-
ments. The resolution of such problem is impacted
by the tools that are used. The RoboChoc platform is
based on a powerful constraint solver, named Choco
(Jussien et al., 2008), a multi-agent platform JADE
(JADE, 2013) that insures best management and com-
munication between agents, and a Robot Operation
System (ROS) (Quigley et al., 2009) that provides
libraries and tools to help software developers cre-
ate robot applications. RoboChoc uses a ROS Layer

that benefits from the ROS community contributions
(e.g. navigation (Zaman et al., 2011), localization
(Thomas and Ros, 2005), etc). Since a problem is
modeled using constraint programming techniques,
users can implement the application and solve it eas-
ily.

The paper is organized as follows. Section 2
presents related works. Section 3 shows a brief def-
inition of Distributed and Dynamic Constraint Satis-
faction Problems (DisCSPs and DDisCSPs). Section
4 presents the RoboChoc platform architecture. Sec-
tion 5 describes an example of application. Finally,
Section 6 presents our conclusions and perspectives.

2 RELATED WORKS

Many research focus upon the application of con-
straint programming in the robotic field. ThingLab
(Borning, 1981) proposed a software package that al-
lows users to graphically design and simulate a sys-
tem which can use constraints to define the properties
of the system and guided simulation of circuits, me-
chanical linkages, and other geometries.

304
Erraji, Z., Janah, M., Benelallam, I. and Bouyakhf, E.
Mobile Robotic JChoc DisSolver - A Distributed Constraints Reasoning Platform for Mobile Multi-robot Problems.
DOI: 10.5220/0005833003040310
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 1, pages 304-310
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The research of D. K. Pai (Pai, 1989; Pai, 1991)
describes a new framework for robot programming
using constraint satisfaction techniques. Pai defined
two special classes of CSP variable. Input variables
were used to capture current state and output variables
were defined such that their values can be taken from
the solution and translated to vehicle actuator com-
mands. For each iteration, the previous solutions were
fed into the solver, and then the input variables were
updated. A repair algorithm then fixed the solution
given the changes and the constraints.

Zhang and Mackworth (Mackworth, 1997; Zhang
and Mackworth, 1994; Zhang and Mackworth, 2002)
proposed a constraint-based system for the design of
intelligent and hybrid agents. The hybrid agents are
those which can interact continuously and discretely
with their environments. A controller based on con-
straint satisfaction drives the system toward satisfy-
ing all constraints. During the task, system detects
the dissatisfaction of any constraint, the controller can
initiate a backtrack.

Other contributions were recently proposed. the
researches of Richard S. Stansbury and Arvin Agah
(Stansbury and Agah, 2012) presents a decision mak-
ing framework that help robots to perform the best
decision at any given moment. The selected task
must satisfy all constraints. The framework models
this decision as a Constraint Satisfaction Problems
(CSPs). Where the contribution of Doru Panescu and
Carlos Pascal (Panescu and Pascal, 2014) presents a
multi-robot system planning based on a combination
between a multiagent system and a constraint satis-
faction problem approach. They make some simula-
tion tests with a multi-robot system presented by four
robots to solve an assembly goals. They use in these
simulations the coloured Petri net models, specifically
developed for a distributed constraint satisfaction al-
gorithm.

To date, no researchers have proposed a con-
straint programming platform to practically imple-
ment multi-robot application. DisCSP has been used
as a formalism for diagnosing coordination failures in
multi-robot systems (Meir et al., 2006). This work
shows that, in general, a trade-off exists between the
computational requirements of the algorithms, and
their diagnosis results. In contrast, we use sophis-
ticated APIs (JADE, ROS and Choco) to model the
ideal coordination relationships between robots. We
present results from experiments conducted in realis-
tic usage conditions. In addition, previous contribu-
tion doesn’t use standard and distributed platform, in
contrast to our work.

3 BACKGROUND

3.1 Distributed Constraint Satisfaction
Problems

Constraint Programming distinguishes between the
description of the constraints involved in a problem
on the one side, and the algorithms and heuristics
used to solve the problem on the other side. Modeling
and solving problems is through a very elegant math-
ematical formalism, called the Constraint Satisfaction
Problems CSPs.

The Distributed Constraint Satisfaction Problem
(DisCSP) is represented by a constraint network
where variables and constraints are distributed among
multiple automated agents.
Definition: A DisCSP (or a distributed constraint net-
work) has been formalized as a tuple(A,X,D,C,ψ),
where:

• A= {A1, ...,Ap} is a set of p agents.

• X = {x1, ...,xn} is a set of n variables such that
each variablexi is controlled by one agent in A.

• D = {D(x1), ...,D(xn)} is a set of current do-
mains, whereD(xi) is a finite set of possible
values for variablexi .

• C = {c1, ...,cm} is a set of m constraints that
specify the combinations of values allowed for
the variables they involve. We note that the
constraints are distributed among the automated
agents. Hence, constraints divide into two broad
classes: inter-agent and intra-agent.

• ψ : X 7−→ A is a function that maps each variable
to its agent.

A solution to a DisCSP is an assignment of a value
from its domain to every variable of the distributed
constraint network, in such a way that every constraint
is satisfied. Solutions to DisCSPs can be found by
searching through the possible assignments of values
to variables such as ABT algorithm (Yokoo et al.,
1992).

3.2 Dynamic and Distributed
Constraint Satisfaction Problems

Many hard practical multi-robot problems can be seen
as DisCSPs. Most Distributed Reasoning platform as-
sume that problems are static. This is a limitation for

Mobile Robotic JChoc DisSolver - A Distributed Constraints Reasoning Platform for Mobile Multi-robot Problems

305

dynamic problems that change over time and espe-
cially in dynamically changed environments. For ex-
ample, any robot belonging to a set of robots that ex-
plore the moon in a cooperative mission can be lost if
hit by a meteor. Thus the problem will change. Hence
in a dynamic environment a DisCSP may change over
time, these changes could be due to addition/dele-
tion of variables, constraints, or agents. The Dis-
tributed and Dynamic Constraint Satisfaction Prob-
lems (DDisCSPs) can be described as a tuple (A, X,
D, C, δ) where:

• A, X, D and C remain as described in DisCSPs.

• δ is the function that introduce changes.

Many DDisCSPs approaches (e.i : DynABT
(Omomowo et al., 2008)) are proposed to solve such
problem, and can be easily implemented in RoboChoc
platform.

4 PLATFORM ARCHITECTURE

4.1 RoboChoc Description

RoboChoc is a JADE-based platform. This platform
is a distributed constraint multi-robot system, pro-
posed for mobile robotic applications. It can also
be used to analyze and test algorithms proposed by
constraints programming community. This platform
is presented in the form of programming environ-
ment (API) and applications to help different types
of robotic users. Hence, RoboChoc can be easily
adopted by two main actors:

• Developers to design and develop multi-robot ap-
plications.

• Non-expert user can interact directly with appli-
cations based on distributed constraint program-
ming.

This proposed platform has several advantages:

• A multi-robot problem modeled as distributed
constraint problem, can be easily addressed and
solved in a realistic environment by non-expert
users;

• The performance of the proposed protocols (e.g.
ABT, AFC, Adopt, etc) can be actually tested and
proved in a realistic robot cordination, using com-
munication channel (i.e. WLAN WPAN WMAN
WWAN);

• It offers a modular software architecture which
accepts extensions easily (e.g. security, confiden-
tiality, cryptography, etc);

• Thanks to the extensibility of JADE communi-
cation model (JADE, 2013), RoboChoc allows
the development of multiagent systems and appli-
cations consistent with Foundation for Intelligent
Physical Agents (FIPA)1 standards and specifica-
tions;

• Thanks to the the robustness of Choco plat-
form (Jussien et al., 2008), complex agent (i.e.
multiple variables per agent) can easily address
and solve its local sub-problem and use solutions
as a compiled domain.

• Thanks to the the Robot Operation System
ROS (Quigley et al., 2009), The distributed nature
of ROS also fosters a large community of user-
contributed packages that add a lot of value on top
of the core ROS system.

This platform consists of several modules pre-
sented as services. The main constraint programming
services offered are based Distributed Constraint Rea-
soning Protocols (DCRP) and Choco Solver (CS).
Choco is a platform for research in centralized con-
straint programming and combinatorial optimization.
This choice of Choco enabled us to benefit from the
modules already implemented in it. In the next sec-
tion, we will study the different elements of Robo-
Choc platform.

4.2 RoboChoc Architecture

RoboChoc architecture allows FIPA specifications. It
is implemented in JAVA and provides classes that im-
plement and inherit from JADE and Choco platforms
to define the behavior of specific agents. Figure 1
represents the main RoboChoc architectural elements.
This platform has five main modules.

• Distributed Constraint Reasoning Protocols unit:
provides distributed constraints protocols as ser-
vice. This element defines new types of messages
and implements the behavior of the agent when
receiving and sending a specific type of informa-
tion (e.g. ABT, AFC, Adopt, etc...);

• Constraint Solver Unit: provides the ability to ad-
dress and resolve local CSP sub-problem by using
the Choco Solver;

• Services Management Unit: manages services in
the platform. It’s based on the Director Facilitator
(DF) agent of JADE;

• Communication Management Unit: manages the
communication in the platform. It’s based on the
Agent Communication Channel (ACC) of JADE;

1http://www.fipa.org/

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

306

• Authority Unit: oversees the registration of
robots, their authentication, their access and the
use of the system.

• ROS Layer Unit : provides a set of tools to apply
a decision or to read the robot situation (e.g. scan
sensor state, moving the robot, etc.).

These six modules are activated at each time the
platform is started.

Figure 1: RoboChoc Architecture.

The JADE agent is also a key player in our plat-
form. Thanks to JADE an Agent Identifier (AID)
identifies an agent uniquely.

RoboChoc uses extensively a sniffing tool for de-
bugging, or simply documenting conversations be-
tween robots. The sniffer subscribes to Authority
Unit to be notified of all platform events and of all
message exchanges between a set of specified robots.
When the user decides to monitor a robot or a group
of robots, every message directed to, or coming from,
that robot/group is tracked and displayed in the sniffer
GUI. The user can select and view the details of every
individual message, save the message or serialize an
entire conversation as a binary file.

The platform can be used with all robots that use
ROS as an operating system, and no additional con-
figuration is needed. The user has to choose the ap-
propriate robots for its application.

5 EXAMPLE APPLICATION

5.1 Description of 3D N2 Queens
Problem

The n-queens problem is a classical combinatorial
problem that can be formalized and solved by con-

straint satisfaction problem. In the n-queens problem,
the goal is to put n queens on an n×n chessboard so
that none of them is able to attack (capture) any other.
Two queens attack each other if they are located on
the same row, column, or diagonal on the chessboard.
This problem is called a constraint satisfaction prob-
lem because the purpose is to find a configuration that
satisfies the given conditions (constraints).

Three Dimensional Queens Problems is an exten-
sion of the well known n-queens problem in 3D di-
mensional space. The goal in this problem is to place
N2 queens in anN×N×N cube such that none of
them is able to attack any other. A queen can attack
another if they exist in the same row, column, or di-
agonal formed by the division of the tree dimensional
space. We mention that the space is divided inton3

position which then2 queens will take place.
This problem was treated, modeled and solved in

the following paper, using linear programing: Three
Dimensional Queens Problems (Allison et al., 1989).
In this research they found that there is no solution for
the n less than 11, n=12, n=14. They found exactly
for n=11, 528 solutions using an other formalism far
from constraint programming.

In our work, we propose for the first time, a DisC-
SPs modeling for the same problem. The DisCSP that
model the problem is formalized as a tuple (X, D, C,
A, ψ) where:

• X = { X1,1, ..., Xn,n} is a set ofn×n variables.

• D = {D1,1={1..n}, ..., Dn,n={1..n}} is a set of do-
mains, where Di, j is a finite set of possible values
for the variable Xi, j .

• C = {
C1={(Xi, j1 6= Xi, j2)and(

∣∣(Xi, j1−Xi, j2
∣∣ 6=

| j1− j2|) / (i, j1, j2) ∈ [1,4]} where Xi, j1
and Xi, j2 designate queens existing in the same
row.

C2={(Xi1, j 6=Xi2, j)and(
∣∣(Xi1, j −Xi2, j

∣∣ 6= |i1− i2|)
/ (i1, i2, j) ∈ [1,4]} whereXi1, j and Xi2, j design
queens existing in the same column.

C3={if i1 6= i2 and j1 6= j2 and |i1− i2| 6=
| j1− j2| then Xi1, j1 6= Xi2, j2 / (i1, i2, j1, j2) ∈
[1,4]}
} is the set of constraints.

• A = { A1,1, ..., An,n} is a set ofn×n agents.

• ψ is the function that assign the variable Xi, j to
the agent Ai, j .

In this modeling, each queen Qi, j is represented
by a variable Xi, j

Mobile Robotic JChoc DisSolver - A Distributed Constraints Reasoning Platform for Mobile Multi-robot Problems

307

5.2 Using RoboChoc to Solve the 3D N2

Queens Problem

The problem can be solved by using RoboChoc.
Hence, each agent is presented as a robot. We use
XML files to describe the sub-problems for each
robot. The figure 2 shows an example of the XML file
used to describe the sub-problem for the robot named
Robot3.1.

Each variable has a unique ID, which is the ID
of its owner robot. This is necessary when defining
constraints (scope of constraints). For constraints, we
used two types: TKC for Totally Known Constraint
and PKC for Partially Known Constraint. Constraints
can be defined in extension or as a Boolean function.
Different types of constraints are predefined: equal
to eq(Vi ,Vj), different fromne(Vi ,Vj), greater than or
equalge(Vi,Vj), greater thangt(Vi;Vj), etc. In this
sub-problem the constraints presented in the DisCSPs
modeling are defined by the predicate p1. In the tag
topics we indicate the topics to be created and used by
the ROS Layer Unit. these topics will be used to con-
trol the robot motion in this application. After defin-
ing our sub-problem we can configure our solver.

The problem can be solved using the ABT algo-
rithm assuming that no perturbation will occur during
the resolution, because we will use the Modular Open
Robots Simulation Engine(Morse) ((Echeverria et al.,
2011)) with ROS as a middle ware. The adequate type
of robot that can represent queens for this application
is the drone QuadrotorDynamic.

We solved the modeled problem with the Con-
straint Solver Unit in the platform, and we have found
exactly the same results presented in the research of
(Allison et al., 1989). To simplify the problem in this
application, we will use just n=4 as the figure 5 shows.
For the reason that there is not any solution for n=4,
the robots who can’t belonging to the solution will be
taken from the operational scene. Thus only robots
that will satisfy all constraints will fly to take their
positions. We can test the functioning of the platform
in a physically distributed environment. So we chose
machines that simulate the different robot of the prob-
lem, and filed each sub-problem in a machine, before
launching it.

Figure 3 shows how the master launches its com-
munication interface listening on the network. We be-
gin by instantiating the AgentsContainer object (line
7), This class models the distributed problem when
RoboChoc is used to solve a problem in a real dis-
tributed environment. All information on distributed
problem is encapsulated in this object (identities of
agents, inter-agent constraints, protocol, etc.). Then,
we define the type of master (line 8) (ABT in this

1 <?xml v e rs i o n=” 1 .0 ” encod ing =”UTF−8” ?>
2 <i n s t a n c e>
3 <p r e s e n t a t i o n t y p e=”DisCSP ” />
4 <domains nbDomains=”1 ”>
5 <domain name=”D1” nbValues=”4 ”>1 . . 4</

domain>
6 </ domains>
7 <v a r i a b l e s n b V a r i ab l es =”1 ”>
8 <v a r i a b l e name=”V3.1 ” domain=”D1” />
9 </ v a r i a b l e s>

10 <t o p i c s nbTop ics=”1 ”>
11 <t o p i c name=” / d rone3 . 1 / waypo in t3 .1 ” />
12 </ t o p i c s>
13 <p r e d i c a t e s n b P r e d i c a t e s =”1 ”>
14 <p r e d i c a t e name=”p1 ”>
15 <p a r am e t e r s>i n t X i n t Y i n t i i n t j</

p a r am e t e r s>
16 <e x p r e s s i o n>
17 <f u n c t i o n a l>and (neq (X, Y) , neq (abs (minus (X

, Y)) , abs (minus (i−j))))</ f u n c t i o n a l>
18 </ e x p r e s s i o n>
19 </ p r e d i c a t e>
20 </ p r e d i c a t e s>
21 <a g e n t s n e i g h b o u r s>
22 <a g e n t s p a r e n t>
23 <ag en t name=” Robot1 .1 ”>
24 <c o n s t r a i n t s n b C o n s t r a i n t s =”1”>
25 <c o n s t r a i n t model=”TKC” name=”C5”

r e f e r e n c e =”p1 ” scope=”V1.1 V3
.1 1 3 ”>

26 <p a r am e t e r s>V1 .1 V3.1 1 3</
p a r am e t e r s>

27 </ c o n s t r a i n t>
28 </ c o n s t r a i n t s>
29 </ ag en t>
30 <ag en t name=” Robot2 .1 ”>
31 <c o n s t r a i n t s n b C o n s t r a i n t s =”1”>
32 <c o n s t r a i n t model=”TKC” name=”C5”

r e f e r e n c e =”p1 ” scope=”V2.1 V3
.1 2 3 ”>

33 <p a r am e t e r s>V2 .1 V3.1 2 3</
p a r am e t e r s>

34 </ c o n s t r a i n t>
35 </ c o n s t r a i n t s>
36 </ ag en t>
37 <ag en t name=” Robot1 .3 ”>
38 <c o n s t r a i n t s n b C o n s t r a i n t s =”1”>
39 <c o n s t r a i n t model=”TKC” name=”C5”

r e f e r e n c e =” neq ” scope=”V1.3
V3.1 ”>

40 <p a r am e t e r s>V1 .3 V3.1</
p a r am e t e r s>

41 </ c o n s t r a i n t>
42 </ c o n s t r a i n t s>
43 </ ag en t>
44 <ag en t name=” Robot2 .2 ”>
45 <c o n s t r a i n t s n b C o n s t r a i n t s =”1”>
46 <c o n s t r a i n t model=”TKC” name=”C5”

r e f e r e n c e =” neq ” scope=”V2.2
V3.1 ”>

47 <p a r am e t e r s>V2 .2 V3.1</
p a r am e t e r s>

48 </ c o n s t r a i n t>
49 </ c o n s t r a i n t s>
50 </ ag en t>
51 </ a g e n t s p a r e n t>
52 <a g e n t s c h i l d r e n>
53 <ag en t name=” Robot4 .1 ” v a r i a b l e =”V3.1 ” /

>
54 <ag en t name=” Robot3 .2 ” v a r i a b l e =”V3.1 ” /

>
55 <ag en t name=” Robot3 .3 ” v a r i a b l e =”V3.1 ” /

>
56 <ag en t name=” Robot3 .4 ” v a r i a b l e =”V3.1 ” /

>
57 <ag en t name=” Robot4 .2 ” v a r i a b l e =”V3.1 ” /

>
58 </ a g e n t s c h i l d r e n>
59 </ a g e n t s n e i g h b o u r s>
60 </ i n s t a n c e>

Figure 2: Example of a sub-problem for the robot3.1.

case). Finally, we trigger the container and we launch
the master (lines 10).

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

308

1 import JChoc . D i sS o l v e r ;
2
3 p u b l i c c l a s s Master
4 {
5 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
6 {
7 A g en t sCo n t a i n e r m a i n Co n s t a i n e r =new

A g en t sCo n t a i n e r () ;
8 m a i n Co n s t a i n e r . se tAgentType (”MasterABT ”) ;
9 m a i n Co n s t a i n e r . addAgent (”MASTER” , f a l s e) ;

10 m a i n Co n s t a i n e r . run () ;
11 }

Figure 3: How the master launches its communication in-
terface.

1 package j c h o c . run ;
2 import j c h o c . t o o l s . A g en t sCo n t a i n e r ;
3
4 p u b l i c c l a s s RunDrone
5 {
6 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
7
8 A g en t sCo n t a i n e r a g e n t C o n t a i n e r =new

A g en t sCo n t a i n e r () ;
9 a g e n t C o n t a i n e r . se tAgentType (”AgentABT”) ;

10 a g e n t C o n t a i n e r . addAgent (” Robot3 .1 ” , ” Robot3
. 1 . xml ” , t rue) ;

11 a g e n t C o n t a i n e r . se t Ma i n Co n t a i n e r (”
1 9 2 .1 6 8 .1 .1 4 ”) ;

12 a g e n t C o n t a i n e r . run () ;
13 }
14 }

Figure 4: Run drone.

Figures 4 shows how to launch robots as agents.
We start with instantiate the AgentsContainer object
(line 8), followed by the agent and distributed sub-
problem declaration which specifies the resolution al-
gorithm to be used (line 9-10). Next, the declara-
tion of the container containing the master with its
IP address (line 11). Eventually, we launch the agent
(line12).

The master waits for the confirmation of creation
all agents before ordering the start of the search.
Thus, the problem can be solved using a specified im-
plemented protocol (ABT for this example). Figures
5 and 6 show the initial and final state of resolution
of the problem. Between these two states, the solving
phase was performed to satisfy all constraints.

Figures 7 shows the exchanged messages in the
resolution phase sniffed by the Sniffer Agent in the
platform. ABT algorithm is executed autonomously
by each robot. Robots do not have to wait for deci-
sions of others but they are subject to a total(priority)
order. Each robot tries to find an assignment satisfy-
ing the constraints with what is currently known from
higher priority neighbors. When an robot assigns a
solution to its local problem, the selected value is sent
to lower priority neighbors. When no solution is pos-
sible for a local problem, the inconsistency is reported
to higher robots in the form of anogood. ABT com-
putes a solution (or detects that no solution exists) in
a finite time. The total ordering on robots is static.

Figure 5: Initial state.

Figure 6: Final state.

6 CONCLUSIONS

The goal of this work was to propose a Distributed
Constraints Reasoning (DCR) platform, which can be
easily used to solve robotic application in a realistic
use.RoboChoc platform presented in this paper has
been designed to solve any multi-robot problems de-

Mobile Robotic JChoc DisSolver - A Distributed Constraints Reasoning Platform for Mobile Multi-robot Problems

309

Figure 7: Sniffed messages in the solving phase.

signed as a DisCSP and to support security and
cryptography extensions (thanks to JADE API).

In this work we have modeled the 3D N2 queens
problems as a DisCSP problem. We have used the
MORSE Simulator to run drone-robots, where each
queen is presented by a drone. Each drone performs
as an ABT agent that applies the decision made by
the algorithm or reads his actual situation using the
ROS Layer Unit, which is independent of the solving
protocol. Users can contribute in the ROS Layer Unit
by adding new ROS applications to simplify the use
of new destined robotic task.

Future works are focusing on enhancing the plat-
form by the implementation of other necessary API
in ROS layer, and by diagnosing and proposing new
techniques for coordination failures between mobile
robots.

REFERENCES

Allison, L., Yee, C., and McGaughey, M. (1989). Three-
dimensional queens problems. Monash University,
Department of Computer Science.

Borning, A. (1981). The programming language aspects of
thinglab, a constraint-oriented simulation laboratory.
volume 3, pages 353–387. ACM.

Echeverria, G., Lassabe, N., Degroote, A., and Lemaignan,
S. (2011). Modular openrobots simulation engine:
Morse. InProceedings of the IEEE ICRA.

JADE (2013). Java agent developpement framework. In
URL http://jade.tilab.com/.

Jussien, N., Rochart, G., and Lorcal, X. (2008). Choco:
an open source java constraint programming library.
In CPAIOR’08 Workshop on Open-Source Software

for Integer and Contraint Programming(OSSICP’08).
France, Paris.

Mackworth, A. K. (1997). Constraint-based design of em-
bedded intelligent systems. volume 2, pages 83–86.
Springer.

Meir, K., Gal, A. K., Amnon, M., and Yehuda, E. (2006).
Diagnosis of multi-robot coordination failures using
distributed csp algorithms. InAmerican Association
for Artificial Intelligence, 970-975.

Omomowo, B., Arana, I., and Ahriz, H. (2008). Dyn-
abt: Dynamic asynchronous backtracking for dynamic
discsps. InArtificial Intelligence: Methodology, Sys-
tems, and Applications, pages 285–296. Springer.

Pai, D. K. (1989). Programming parallel distributed con-
trol for complex systems. InIntelligent Control,
1989. Proceedings., IEEE International Symposium
on, pages 426–432.

Pai, D. K. (1991). Least constraint: A framework for the
control of complex mechanical systems. InAmerican
Control Conference, 1991, pages 1615–1621.

Panescu, D. and Pascal, C. (2014). A constraint satisfaction
approach for planning of multi-robot systems. InSys-
tem Theory, Control and Computing (ICSTCC), 2014
18th International Conference, pages 157–162.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an
open-source robot operating system. InICRA work-
shop on open source software, volume 3, page 5.

Stansbury, R. S. and Agah, A. (2012). A robot deci-
sion making framework using constraint program-
ming. volume 38, pages 67–83. Springer.

Thomas, F. and Ros, L. (2005). Revisiting trilateration for
robot localization. volume 21, pages 93–101. IEEE.

Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K. (1992).
Distributed constraint satisfaction for formalizing dis-
tributed problem solving. InInternational Conference
on Distributed Computing Systems, 614-621.

Zaman, S., Slany, W., and Steinbauer, G. (2011). Ros-based
mapping, localization and autonomous navigation us-
ing a pioneer 3-dx robot and their relevant issues. In
Electronics, Communications and Photonics Confer-
ence (SIECPC), 2011 Saudi International, pages 1–5.

Zhang, Y. and Mackworth, A. K. (1994). Specification and
verification of constraint-based dynamic systems. In
Principles and Practice of Constraint Programming,
pages 229–242.

Zhang, Y. and Mackworth, A. K. (2002). A constraint-based
robotic soccer team. volume 7, pages 7–28. Springer.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

310

