
Resources Planning in Database Infrastructures

Eden Dosciatti1, Marcelo Teixeira1, Richardson Ribeiro1, Marco Barbosa1, Fábio Favarim1,
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Abstract: Anticipating resources consumption is essential to project robust database infrastructures able to support trans-
actions to be processed with certain quality levels. In Database-as-a-Service (DBaaS), for example, it could
help to construct Service Level Agreements (SLA) to intermediate service customers and providers. A proper
database resources assessment can avoid mistakes when choosing technology, hardware, network, client pro-
files, etc. However, to be properly evaluated, a database transaction usually requires the physical system to
be measured, which can be expensive an time consuming. As most information about resource consumption
are useful at design time, before developing the whole system, is essential to have mechanisms that partially
open the black box hiding the in-operation system. This motivates the adoption of predictive evaluation mod-
els. In this paper, we propose a simulation model that can be used to estimate performance and availability
of database transactions at design time, when the system is still being conceived. By not requiring real time
inputs to be simulated, the model can provide useful information for resources planning. The accuracy of the
model is checked in the context of a SLA composition process, in which database operations are simulated
and model estimations are compared to measurements collected from a real database system.

1 INTRODUCTION

Transaction processing is a crucial part of the de-
velopment of modern web systems, such as those
based onService-Oriented Architecture(SOA), a new
paradigm to compose distributed business models. In
SOA, an entire transaction is usually composed by
distinct phases, such as networking, service process-
ing, database processing, third-part processing, etc.
For resources planning, it is usual that each particular
phase is individually approached. In this paper, we
concentrate on evaluating database transaction pro-
cessing, especially for SOA systems (although not
only), complementing previous results focused on the
other phases of SOA (Rud et al., 2007; Bruneo et al.,
2010; Teixeira et al., 2015).

In SOA, transactions are directly related toQual-
ity of Service(QoS), andService Level Agreements
(SLAs) are mechanisms used to legally express com-
mitments among service customers and providers
(Sturm et al., 2000). Performance and availability of
database operations are examples of clauses that can
be agreed in SLA, specially when the database itself
is provided as a service (DBaaS).

The effects of not being able to fulfill a database
SLA are many. This kind of transaction commonly
appears in the context of a service composition, as a
particular stage of an SOA application. Therefore, if it
fails to fulfill the metrics accorded in an SLA, this will
probably affect the overall web service behavior and,
as a consequence, the overall service orchestration, in
a ripple effect, breaching one or more SLAs. Thus,
for an entire SOA process, it is important to prevent
a database transaction to fail or, at least, to be able to
anticipate when it is susceptible to happen.

This task may not be so easy, as the ratio of load
variation in web applications can reach the order of
300% (Chase et al., 2001), making it difficult to an-
ticipate QoS. What is observed is that applications
are entirely developed to be then stressed and mea-
sured, which can be quite expensive and time consum-
ing. Recent works have suggested that SOA QoS can
be estimated by modeling (Rud et al., 2007; Bruneo
et al., 2010; Teixeira et al., 2015), but they have ba-
sically focused on networking and processing stages,
assuming that database time consumption is implicit,
which may be a strong assumption, as illustrated in
(Teixeira and Chaves, 2011).
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In this paper, we propose a stochastic model-
ing approach to estimate performance and availability
of database transactions susceptible to intense work-
loads. By adoptingGeneralized Stochastic Petri Nets
(GSPNs) as modeling formalism, we construct a for-
mal structure that can be simulated and estimations
can be used to anticipate resource consumption of
database operations running under different load pro-
files. Based on these estimations, it is furthermore
shown how to construct, at modeling time, realistic
contracts for database transactions, which can be nat-
urally combined as part of the estimations provided
in works such as in (Rud et al., 2007; Bruneo et al.,
2010; Teixeira et al., 2015).

The main advantage of our approach is not requir-
ing real-time measurements nor the complete system
implementation to be simulated. These information
may not be available at design-time, when resources
allocation is conducted. Instead, the model supports
high level parameters collected from theData Base
Management System(DBMS) and statistics collected
from samples of database query execution. For this
reason, database technology, infrastructure or particu-
lar type of operation to be simulated, are implicit into
the simulation scheme.

An example of a contract composition process is
presented to illustrate the proposed approach. Using
parts of a real database system and samples of rela-
tional database operations, we collect the input pa-
rameters to the model, which is then simulated and
estimations are collected. Afterwards, we validate
the estimations. This could be done by comparing
them to benchmark data. In this paper, however, we
are more interested on the uncertainty observed in the
real-time behavior of transactions, e.g., how transac-
tions behave when parameters change, or what is the
performance degradation when workload increases,
or what is the rate of requests queueing for a load pro-
file, etc. These informations are not directly available
from benchmarks, since they focus mostly on best and
worst cases, for example. To be possible to check
the accuracy of the proposed model so, we compare
its estimations to measurements collected from a real
database system. Results indicate that it is possible
to trace the real behavior keeping a stochastically-
reasonable average of 80% accuracy.

The paper is organized as follows: Section 2 dis-
cusses the related work; Section 3 introduces the basic
concepts of SOA, SLA and GSPN; Section 4 presents
the proposed GSPN model. Section 5 presents an ex-
ample and some final comments are discussed in Sec-
tion 6.

2 RELATED LITERATURE

Performance of databases has been a concern since
the firstly proposed technologies and relational mod-
els (Elhardt and Bayer, 1984; Adams, 1985). From
the web advent, however, advanced features have
been combined to the existent DBMSs, attempting to
support emergent requirements such as parallelism,
distribution (Dewitt and Gray, 1992), object (Kim
et al., 2002) and service-orientation (Tok and Bres-
san, 2006), etc. Although the interest on new tech-
nologies has recently grown, it has become more and
more difficult to estimate their behavior.

In particular, when a database is part of a service,
or when it is provided as a service itself, it is usu-
ally exposed to a highly variable and data-intensive
environment, which makes it critical to estimate its
QoS levels. In (Ranganathan et al., 1998), it has been
discussed the impact of radically different workload
levels on the database performance and how it be-
comes a concern when the database is immersed in
QoS-aware frameworks that require QoS guarantees
(Lin and Kavi, 2013). In general, the literature tackle
this concern using run-time policies to filter and bal-
ance the database load (Lumb et al., 2003; Schroeder
et al., 2006; Krompass et al., 2008). When connect-
ing business partnerships, however, the negotiation of
QoS criteria starts much earlier, at the service design
phase, as it is necessary to plan and compose SLA
clauses to be agreed.

An option to cover this gap is by adopting analytic
models. For example, in (Tomov et al., 2004) it has
been proposed a queuing network model to estimate
the response time of database transactions. Further-
more, in (Osman and Knottenbelt, 2012) it has been
compared the performance of different database de-
signs via modeling. Queue time is predicted by us-
ing heuristic rules in (Zhou et al., 1997). Besides
not being natively constructed for web environments,
this approaches are also predominantly deterministic,
which often does not match the characteristics of the
real web environments (Teixeira et al., 2011) and can
compromise the accuracy when estimating transac-
tions with variable workloads. In addition, they are
not usually flexible enough to be quickly converted in
practical tools, or to be modified to analyze different
system orchestrations, etc.

Thus, the need for supporting database QoS es-
timation remains. This is a quite challenging task,
as web environments practically lack execution pat-
terns and can present highly variable workloads, mak-
ing it critical for a transaction to be estimated (Nicola
and Jarke, 2000). In the same way, it is conceivably
difficult to ensure that database queries will execute
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quickly enough to keep the process flow, avoiding it to
be delayed more than expected (Reiss and Kanungo,
2005). The modeling approach to be presented in this
paper is an option to face these challenges and imple-
ment database resources planning.

3 RELATED CONCEPTS

SOA comprises a set of principles for software devel-
opment, fundamentally based on the concept ofser-
vice (Josuttis, 2008). A service is a self-contained
component of software that receives a request, pro-
cesses it, and returns an answer. Eventually, a par-
ticular step of a service execution involves to access
a database structure an process a data transaction. It
may happen that a database transaction is itself of-
fered as a service (DBaaS). In this case, the transac-
tion processing is even more critical, as it is suscepti-
ble to a data-intensive environment, and its behavior
becomes difficult to be estimated.

In SOA, legal commitments on services, including
database transactions, are expressed by a mechanism
known asService Level Agreements(SLA) (Sturm
et al., 2000). An SLA expresses obligations and rights
regarding levels of QoS to be delivered and/or re-
ceived. SLA clauses usually involve metrics such as
response time, availability, cost, etc., and also estab-
lish penalties to be applied when a delivered service
is below the promised standard (Raibulet and Mas-
sarelli, 2008).

In practice, ensuring that a SOA system will be-
have as expected is very difficult, and so it is difficult
to compose, at design time, realistic SLAs. An alter-
native to probabilistically estimate the behavior of a
service is given by modeling approaches. A model
enables to observe the service behavior under “pres-
sure”, without exactly constructing the whole system.

The model described in this paper serves to this
purpose and it is modeled by Petri nets.Petri net
(PN) (Reisig and Rozenberg, 1998) is a formalism
that combines a mathematical foundation to an in-
tuitive modeling interface that allows to model sys-
tems characterized by concurrency, synchronization,
resources sharing, etc. These features appear quite of-
ten in SOA systems, which make PNs a natural mod-
eling choice.

Structurally, a Petri net is composed byplaces
(modeling states), transitions (modeling state
changes), anddirected arcs(connecting places and
transitions). To express the conditions that hold in a
given state, places are marked withtokens.

Extensions of Petri nets have been developed to
include the notion of time (Murata, 1989), which al-

lows to represent time-dependent processes, such as
communication channels, code processing, hardware
designs, system workflows, etc.Generalized Stochas-
tic Petri Nets(GSPNs) (Kartson et al., 1995), for ex-
ample, is an extension that combines timed and non-
timed PNs. In GSPN,time is represented by random
variable, exponentially distributed, which are associ-
ated totimed transitions. When, for a given transi-
tion, the time is irrelevant, then one can simply use
non-timed(or immediate) transitions.

Formally, a GSPN is a 7-tupleGSPN= 〈P,T ,Π ,
I ,O,M ,W〉, where:

• P= {p1, p2, . . . , pn} is a finite set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;

• Π : T→N is the priority function, where:

Π(t) =

{
≥ 1, if t ∈ T is immediate;
0, if t ∈ T is timed.

• I : (T×P)→ N is the input function that defines
the multiplicities of directed arcs from places to
transitions;

• O : (T×P)→N is the output function that defines
the multiplicities of directed arcs from transitions
to places;

• M : P→N is the initial marking function.M indi-
cates the number of tokens1 in each place, i.e., it
defines the state of a GSPN model;

• W : T→R+ is the weight function that represents
either the immediate transitions weights (wt ) or
the timed transitions rates (λt), where:

W(t) =

{
wt ≥ 0, if t ∈ T is immediate;
λt > 0, if t ∈ T is timed.

The relationship between places and transitions is
established by the sets•t andt•, defined as follows.

Definition 1. Given a transition t∈ T, define:

• •t = {p ∈ P | I(t, p) > 0} as the pre-conditions
of t;
• t• = {p∈ P |O(t, p) > 0} as the post-conditions

of t.

A state of a GSPN changes when an enabled tran-
sition fires. Only enabled transitions can fire.Imme-
diate transitions fire as soon as they get enabled. The
enabling rulefor firing and thefiring semanticsare
defined in the sequel.

Definition 2 (Enabling Rule). A transition t∈ T is
said to be enabled in a marking M if and only if:

• ∀p∈ •t,M(p)≥ I(t, p).

1Black dots are usually used to graphically represent a token
in a place.
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When an enabled transition fires, it removes to-
kens from input to output places (itspreandpostcon-
ditions).

Definition 3 (Firing Rule). The firing of transition t∈
T enabled in the marking M leads to a new marking
M′ such that∀p∈ (•t ∪ t•), M′(p) =M(p)− I(t, p)+
O(t, p).

A GSPN is said to beboundedif there exists a
limit k > 0 for the number of tokens in every place.
Then, one ensures that the state-space resulting from
a bounded GSPN is finite.

When the number of tokens in each input place
p of t is N times the minimum needed to enablet
(∀p ∈ •t, M(p)≥N× I(t, p), whereN∈N andN> 1
), it enables the transition to fire more than once. In
this situation, the transitiont is said to be enabled with
degreeN > 0. Transition firing may use one of the
following dynamic semantics:

• single-server: N sequential fires;

• infinite-server: N parallel fires;

• k-server: the transition is enabled up tok times
in parallel; tokens that enable the transition to a
degree higher thank are handled after the firstk
firings.

It can be shown (Kartson et al., 1995; Marsan
et al., 1984) that GSPNs are isomorphic to
Continuous-Time Markov Chains(CTMC). However,
it is more expressive, as it allows to compute metrics
by both simulation and analysis of the state space. In
the last case, GSPN are indeed converted into CTMC
for analysis. Furthermore, GSPNs allow to combine
exponential arranges to model different time distribu-
tions (Desrochers, 1994), which is useful to capture
specific dynamics of systems.

4 PROPOSED MODEL

The modeling proposed in this paper starts when
a given web service requests a database operation.
When received in the DBMS, this request is buffered,
processed and buffered again, when an answer is
ready to be replied back to requestor. When this
happens, our modeling finishes. For this scenario,
we model the subphases of a database transaction in
GSPN:BufferingandProcessing, as shown in Fig. 1.

Table 1 summarizes the model’s notation.
Buffering Structure:The model firstly runs when

the timed transitionTλ fires tokens toward the place
BI . Fired tokens model database requests andBI mod-
els the DBMS buffer. The firing rate is defined by
1/dλ, wheredλ is the delay assigned toTλ. The limit
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Figure 1: GSPN model.

Table 1: Notation of the GSPN model.

Places
Exp expectation of tokens to be processed;

RB resources available for buffering;
BI input buffer;
BO output buffer;
RP resources available for processing;
PI requests stored before processing;
PO requests stored after processing;
PA requests successfully attended;
PF requests that have failed.

Transitions
Tλ requests arrivals (delaydλ);
Td requests processing (delayd);

TSLA requests failing (delayXSLA);
tI processing Input;
tO processing Output;

tend process exit point;
TFail timeout exit point.

of tokens to be received inBI is controlled by the
number of tokens available in the placeRB, which
are also shared with the output bufferBO. In order
to count the expectation of tokens into the model, and
consequently to be able to estimate their performance,
we create a place namedExp, that receives a copy of
each token arriving in the system, and loses a token
whenever the transitiontend fires.

Processing Structure:FromBI , tokens are moved
to the placePI , which models the processing phase.
The placeRP controls the number of requests that can
be concurrently processed. Tokens remain inPI as
long as it takes for them to be processed, which is
modeled by the delayd of the transitionTd. After
processed,Td fires moving tokens toPO from where
the immediate transitiontO transfers them to the out-
put bufferBO. Remark that tokens leave the process-
ing phase if and only if there exist enough resources
in RB. On the contrary they remain inPO, waiting
for buffering resources. FromBO, tokens immedi-
ately leave the model (bytend), which represents the
requestor being answered.
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Timeout Structure:When the transitionTλ firstly
fires, besides to send a token toBI (performance
model), it also copies it in the placePA. The idea is to
be able to estimate how many requests delay longer
than a predefined response time. For that purpose, we
assign toXSLA the time we intend to wait until count-
ing a failure. If the performance model reachestend
first, PA loses the token and the transaction is success-
fully completed. IfXSLA fires first, the transaction is
also completed (because the arcAvail gets 0), but a
failure is registered, i.e., a token reachesPF .

Repository of Resources:Two repository com-
prise our model: RB (buffering resources) andRP
(processing resources). From/toRB andRP, we con-
nect arcs representing the number of tokens simulta-
neously moved when a source transition fires. We de-
note byIRB andIRP the resources consumption and
by ORB andORP the resources refunding from/toRB
andRP, respectively. We assume that the number of
tokens moved from/to the repositories is conservative.

Blocking: By sharingRB with two consumers,
BI and BO, we actually design a possibly blocking
model. In fact ifBI consumes all resources inRB,
then tokens cannot leave the processing phase. At the
same time,Tλ cannot fire any more tokens toBI and,
so, the model is deadlocked. We avoid this by assign-
ing two logical conditions ((i) and(ii) ) to the arcs that
lead to the placeBO, where:

(i) : IF (#RB < IRB) : 0 ELSE IRB;

(ii) : IF (#RB < IRB) : 0 ELSE 1.

The formulas (i) and (ii) are syntactically compli-
ant to theTimeNETtool, adopted in this paper. Essen-
tially, the condition (i) avoids the deadlock by firing
tO even without enough resources inRB. When this
is the case, the condition (ii) assigns 0 to the arc that
leads toBO and the token leaves the system. In prac-
tice, this models a situation when the DBMS rejects
new transactions while the system is completely full,
but as soon as any request is processed, transactions
get to be received again.

4.1 Model Parameters

To be simulated, the GSPN model requires to be set
up with parameters that connect it to the behavior of
the system that has been modeled. We show in the
following how such parameters can be derived.

4.1.1 Buffering Parameters

We first define a marking2 for RB, i.e., the number
of resources available for buffering. This is defined

2“#” denotes the marking of a placep, for #p∈ N.

according to the real buffer size, measured in the
DBMS. Remark that each DBMS defines a particu-
lar amount of memory to be used for database opera-
tions and this can be tuned. The parameters we have
to collect from the DBMS are:

• Memory Pages(M P): number of blocks of mem-
ory allocated for database operations;

• Memory Page Size(M P
s ): amount of bytes as-

signed to eachM P.

Remark that the greater the number of memory
pages, the faster is the transfer from disk to memory,
but the greater is rate of I/O communication, which is
usually time expensive. On the other hand, the larger
the memory page, the slower the transfer to memory.

As from
AvM = M

P ·M P
s

we have the amount of memory available to store
messages from/to the database system, then the mark-
ing of RB is such that

#RB = AvM .

OnceRB is marked, we model its resources con-
sumption by assigning weights to the arcsIRB and
ORB. To define those values, we have to collect the
mean size (bytes) of:

• ΩIn: messages received in the database system;

• ΩOut: messages produced by the system as an-
swer.

Thus,IRB = ΩIn andORB = ΩOut. ΩIn andΩOut

can be derived from samples of database transactions.
After assigning #RB, IRB andORB to the GSPN,

it becomes already possible to estimate the database
Buffering Response Time(BRT), taking into account
the concept ofMean Response Time(MRT). In Petri
net,MRT results from theexpectation(ξ) of marking
in a given placeX (ξ(X)), with respect to: (i) the rate
(λ) of requests; or (ii) the delay (d) between requests,
i.e.,

(i) MRT =
ξ(X)

λ
or, equivalently,(ii) MRT = ξ(X) ·d.

Tools likeTimeNETsyntactically implement these
formulas respectively by

(i) MRT = ξ(X)/λ and (ii) MRT = E{#X} ·d.
So,BRT can be estimated as follows:

BRT =
ξ(BI )+ ξ(BO)

λ
.

Note thatλ simply results from 1/dλ, wheredλ is
the delay of the timed transitionTλ. In practice,BRT

represents the average of time spent by transactions
before and after processing.
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4.1.2 Processing Parameters

This phase starts whentI fires tokens towards the
place PI , finishing when the transitiontO releases
them. There are basically four processing parameters
to be derived: the delayd for the transitionTd, the
marking forRP and the weights for the arcsIRP and
ORP, which connect the model from/to the repository
RP of processing resources.

MarkingRP requires to measure the system in or-
der to collect the major number of operations simul-
taneously supported by the DBMS, without queueing
requests. This can be done by gradually increasing the
workload of requests until the point where the system
starts to queue. This specific point can be detected
by a sudden increase in the response time, when the
processing resources are at all consumed.

Thus, #RP receives the value of the workload
applied before observing evidences of queue, and 1 is
assigned to the weight of the arcsIRP andORP.

Processing Response Time(PRT):

PRT =
ξ(PI )+ ξ(PO)

λ
,

where,ξ(PI ) andξ(PO) are respectively the expecta-
tion of marking inPI andPO.

4.1.3 Database Mean Response Time

From BRT and PRT, one can estimate theoverall
database MRT by:

ΣRT =
ξ(Exp)

λ
or, equivalently, ΣRT = BRT+PRT.

5 MODEL ASSESSMENT

Consider the process shown in Fig. 2.

Interface Orchestrator

Service

Service

Service
1

2

n

SLA Buffer

DBMS

DB infrastructure

Figure 2: Evaluated Process.

The process starts when remote users invoke an
orchestration service, via a web browser. Requests
are organized according to the process workflow, and
prepared to access remote services, which may access
other services or interact with databases (dashed cir-
cle). Between a service and its consumer, a SLA reg-
ulates the QoS that is to be offered. Usually, this SLA
is empirically constructed and, as a consequence, it is

not rare to observe services delaying longer than the
minimum necessary to match their contracts, which
can entail legal penalties for providers, bad reputa-
tion for services, money loses for customers, and so
on. Our goal here is to anticipate the behavior of the
database service when it is variably accessed.

5.1 Database Construction

For the experiments that follow, we consider a partial
structure of a relational database system, composed
by the following structures:
• PRODUCT (ProdID, ProdDesc, ProdColor)

• CLIENT (CliID , CliName, CliAddress)

• INVOICE (InvID, InvDate, InvValue, ShipmentDate, DeadlineDate,

FKClient#)

– FKClient references CLIENT

• MOVINVOICE (Quant, Discount, UnitValue, Label, Status, FKInvoice#,

FKProduct#)

– FKInvoice references INVOICE,

– FKProduct references PRODUCT

In order to access the database, we implement the
following operations inRelational Algebra3.

C ← Π∗(Client)

I ← Π∗(Invoice)

M ← Π∗(MovInvoice)

P ← Π∗(Product)

Define query 1:

Π∗ ( σ (I .ShipmentDate <= ′10/08/2015′

∧ I .DeadlineDate <= ′11/05/2015′))

(C⋊⋉ I ⋊⋉ M ⋊⋉ P)

Define query 2:

∆ ← Π∗ (σ (M.UnitValue >= 5.000,00

∧ M.FKProduct = 23)) (M)

M ← Π Quant,Discount,UnitValue,Status,

Label← ′Pro f itable′ (∆)

Define query 3:

Λ ← Π I .InvID, I .InvValue,P.ProdID,′Delayed′,′Sold′

(σ (I .DeadlineDate<= ′CurrentDate′

∧ I .ShipmentDate>= ′10/10/2015′

∧ I .InvValue>= 100.000,00))

(I ⋊⋉ M ⋊⋉ P)

M ← M ∪ {Quant,Discount,Λ}.

3Notation∗ refers to all attributes from a relation.
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Query 1 returns the clients and their respective in-
voices, admitting that: (i) the products had already
been shipped; (ii) the deadline for payment will be in
at most a month. Query 2 updates the status of a finan-
cial transaction (RelationMOVINVOICE), labeling it as
profitableif a given price matches. Finally, Query 3
inserts into a relation results brought from another re-
lation, in a nested instruction.

For simulation, we have considered the respective
query versions inStructured Query Language(SQL).
Optimization and relevance have not been considered
when implementing these queries, as we are actually
more interested on their timed behavior.

5.2 Database Measurements

Now, we feed our GSPN model. We use anApache
tool calledJMeter(Apache, 2014) to build a test plan
that repeatedly executes each query. Then, we gradu-
ally increase the workload of requests to observe the
point when queues start to appear. That is the point
when input parameters are collected. Table 2 presents
the inputs to our GSPN model.

Table 2: GSPN Input Parameters.

GSPN Input Query 1 Query 2 Query 3
Buffering parameters

#RB M P ∗M P
s = 1000·4096

IRB∧ORB 1435 12 142
Processing parameters

#RP 2 3 1
IRP∧ORP 1 1 1

d 286 215 122

Buffering parameters assign values for #RB, IRB
and ORB. The marking ofRB is defined according
to the DBMS configurations forM P andM P

s . The
impact of each operation when allocating resources
from RB, is modeled by the conservative weight of
the arcsIRB andORB. By definition, IRB andORB
are the measured input and output message sizes,ΩIn

andΩOut, respectively.
Processing parameters assign values for #RP, IRP,

ORP and d. The marking ofRP models how many
instances of a given transaction is supported by the
database server. Then,IRP andORP model the impact
of each transaction on #RP, andd represents the mean
time required to simultaneously process #RP (with no
queue formation).

Remark thatd represents the probability function
that bridges the modeled behavior to the structure that
stochastically represents this behavior. Therefore, the
value to be assigned tod is obtained by measuring the
MRT of samples running in the real system. The num-
ber of samples to be considered has to be statistically

relevant, usually evidencing a tendency for a station-
ary behavior. Remark also that every different query
to be evaluated may lead to a different value ford and,
therefore, has to be individually measured.

5.3 Contract Compositions

Now we exemplify our approach in the context of
three challenging questions that are usually faced by
engineers when composing SLA contracts. Then, we
simulate the model to answer them.

5.3.1 Response Time

Consider the following service contract:
Contract 1: Let W= {w1,w2, · · · ,wn} be a set

of workloads (requests per second - req/s) possibly
arriving at a given DBMS. Which contract for mean
response time (MRT) could be guaranteed for wi , i =
1, · · · ,n? As workload variation is quite common
over a database structure, wheneverwi changes it be-
comes more and more difficult to predict theMRT of
a transaction, as the system gets to behave nonde-
terministically, buffering and releasing requests, con-
suming parallel resources, etc. This makes the rate of
performance degradation and recovery unpredictable
a priori. However, independently of this variable en-
vironment, a service provider is required to deliver
his services withMRT no less than the promised stan-
dard. Then, it is valuable to know, for eachwi , how
many req/s the application supports before exceeding
its contract.

We use our model to find out this information. Af-
ter feeding the model with the statistical data in Table
2, we simulate it for eachwi ∈W, applied over each
proposed query. For the sake of clarity, we cluster
our evaluations in three classes of workloads:wLight,
wMid and wHeavy, meaning respectively 1, 5 and 10
req/s. TimeNettool (Zimmermann, 2014) has been
used to perform the simulations, considering a confi-
dence level of 95% and a relative error of 10%. In or-
der to check the accuracy of our estimations, we com-
pare the estimatedMRT to theMRT measured from the
real database system, using the same workload levels.
The results are presented in Table 3.

Table 3: Performance evaluation.

MRT underwi
Query Source wLight wMid wHeavy ≡

1 System 260 623 1895
Select Model 329 405 1989 81%

2 System 278 640 1475
Update Model 218 482 1661 73%

3 System 177 815 1995
Insert Model 210 646 2193 92%
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The accuracies of our estimations are respectively
on the order of 81%, 73% and 92%, reaching 82% in
a general case, which certainly is reasonable from a
stochastic point of view.

For query 1, for example, we have estimated a
MRT of 329 ms, when simulating withwLight, while
the measuredMRT has been of 260ms. When increas-
ing the workload towmid, it has been estimated aMRT

of 405msagainst the measured 623ms. With wHeavy,
we estimate that a transaction takes 1989ms to an-
swer, while the real transaction has taken 1895ms.

As it can be seen, when we increasewi , the system
becomes less deterministic due to presence of queues.
Nevertheless, the estimatedMRT keeps tracking the
real system behavior.

Using our estimations, one can construct realistic
contract clauses for services. Two examples are intro-
duced next.

• Suppose, for example, that a service is required to
be delivered in at most 700ms. In this case, the
model suggests that keeping the system under this
contract requires to admit at most awMid work-
load of requests.

• Now, suppose that we know the mean rate of
requests arriving in the system. Consider that
wHeavy is expected. In this case, the construction
of a contract for theMRT would be quite easy. For
example, for query 1 it could be defined aMRT

contract of 2000ms; for query 2 theMRT contract
would be 1700ms; and, for query 3 theMRT con-
tract would be 2200ms.

5.3.2 Contracts with Acceptable Violations

Now, consider the following service contract:
Contract 2: For a given workload level wi , which

agreement for the MRT could be guaranteed, in a way
to admit at most10%of contract violation?

Now, instead of purely estimating theMRT, we de-
rive a refined version of it, admitting a certain per-
centage of contract violation. This may be a common
clause to be defined by lawyers, but this is a quite
complex decision for engineers. We show next how
to estimate contract 2 by combining our performance
and availability models.

For each workload level wi , i =
Light,Mid,Heavy, we gradually increase the
MRT assigned to the transitionTSLAof our availability
model. Intuitively, by increasing the acceptableMRT

we decrease the failure rate. Table 4 presents the
estimationsw have obtained for query 1. A similar
proceeding can be naturally adopted for the others.

In the second row, we present a range of possible
SLA for theMRT. Then we individually assign each

Table 4: Failure evaluation for query 1.

Suggested SLA for theMRT (ms)
wi 100 200 300 400 500 600 700

Estimated failure rate (%)
wH 67 45 33 22 17 12 10
wM 52 32 25 18 14 9 7
wL 43 24 21 14 10 8 6

MRT to the delayXSLA of our availability structure.
Afterwards, we simulate the model, variatingwi for
each configuration, collecting the percentage of fail-
ure as an answer.

For example, by using the workloadwLight, we
have estimated (Table 3) aMRT of 329 ms. Never-
theless, one can observe in Table 4 that 500msis the
minimum MRT that ensures a failure rate of at most
10%. ForwMid , equivalent condition is reached us-
ing a MRT of 600 ms, while wHeavy requires at least
700msto satisfy the contract 2.

5.3.3 Contracts with Acceptable Unavailability

Now, consider the following service contract:
Contract 3: Given a prefixed agreement for the

MRT, which is the highest workload supported by the
system such that the contract is not violated more than
10%?

Contract 3 inversely approaches the problem with
respect to contracts 1 and 2. It supposes that the ser-
vice will be delivered in at mostMRT, and the aim
is to discover which workload could break this rule.
Moreover, it considers to accept a failure rate of at
most 10%.

Once again we use query 1 to illustrate the con-
tract 3. We firstly show the contract options forMRT.
As query 1 takes 286ms to answer under minimum
(Table 2), then we start our simulations by consider-
ing a MRT of 300 ms. Afterwards, we increase this
parameter for eight more scenarios and the results are
shown in Table 5.

Table 5: Workload evaluation for query 1.

SLA Estimated Workload Failure Rate
MRT (ms) (Req/sec) (≤ 10%)

300 0,91 10,00%
400 1,11 9,98%
500 1,43 8,68%
600 1,92 9,99%
700 2,12 9,99%
800 4,76 9,86%
900 10,53 9,89%
1000 11,76 8,97%

Consider, for example, that a service has to be de-
livered in at most 700ms. In this case, we inform
to the service supplier that his system can support, at
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most 2,12 req/secand, under this workload, the rate
of failure would be stochastically less than 10%.

6 FINAL COMMENTS

In this paper, it has been presented a model to analyze
resources allocation in databases infrastructures. The
model allows to orchestrate and estimate the perfor-
mance of a range scenarios, upon different workload
profiles. Estimations can then be used as a tool to
construct dataafdabase service contracts, besides to
be useful for load balancing and scaling in database
infrastructures, specially in service-oriented environ-
ments.

The approach is illustrated by an example where
the performance of database operations is estimated.
A comparison against measurements collected from
the real database system is conducted to validate the
results. The general accuracy of the estimations has
been on the order of 80%.

In spite of encouraging results, some challenges
remain in the database contracts composition. For
example, it is still difficult to identify, among all
database requests, those delaying longer than accept-
able, which could be helpful to identify advanced
classes of contracts. Moreover, we intend to adapt our
approach to the optimizer-level, where concurrency
could be taken into account. Cache effect analysis is
another topic that compose our prospects of future re-
search.
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