
An Approach to Class Diagrams Verification According to SOLID
Design Principles

Elena Chebanyuk1 and Krassimir Markov2
1Department of Software Engineering, National Aviation University, Kyiv, Ukraine
2Department of Information Modelling, Institute of Mathematics and Informatics at

Bulgarian Academy of Sciences, Sofia, Bulgaria

Keywords: SOLID, Class Diagram Verification, Software Architecture, Class Diagram Designing, Model-Driven
Engineering, Model-Driven Development.

Abstract: An approach, verifying class diagram correspondence to SOLID Design Principles, is proposed in this
paper. SOLID is an acronym, encapsulating the five class diagram design principles namely: Single
Responsibility, Open-Closed, Liskov Substitution, Interface Segregation and Dependency Inversion.
To check whether a class diagram meets to SOLID, its analytical representation is analyzed by means of
predicate expressions. For every SOLID design principle corresponded predicate expressions are proposed.
Analytical representation describes interaction of class diagram constituents, namely classes and interfaces,
in set-theory terms. Also criteria for estimation of obtained results are formulated.
Example of class diagram verification according to the suggested verification approach is also represented
in this paper. The advantages of the proposed verification approach implementing to improve the quality of
different software development lifecycle processes are outlined in the conclusions.

1 INTRODUCTION

Class diagrams are central artefacts for performing
many operations such as analysis of software
architecture, software designing, reengineering and
different other activities.

To design effective class diagram it is necessary
to meet all tiers of patterns for designing software.
The highest designing tier corresponds to SOLID
design principles. The next tier is architectural styles
describing interconnection of main components in
software system. The next tier touches of
architectural patterns. And the most concrete
designing tier is application of design patterns used
to set interactions between class diagram
constituents.

When scalable project is designed, amount of
class diagrams to be processed is great. Considering
this fact, the task to verify class diagram structure is
actual. Using an analytical representation of class
daigrams and formal description of verification
rules, provides a background for designing
automated tools for class diagram refinement.

2 RELATED PAPERS

Consider papers, describing algorithms and methods
when analysis or processing of class diagram
structure is required.

Today, methods for class diagrams processing
are developing in several directions:
 class diagram refinement (López-Fernández et

al., 2014);
 estimation of architectural solutions (Tombe R.

et al., 2014);
 development of Model-Driven Architecture

(MDA) operations (Wang et al., 2014); (Sandhu,
2015).
Let’s consider research results, represented in the

mentioned papers.
Criteria of metamodel quality estimation are

proposed in the paper (López-Fernández et al.,
2014). A library of metamodel properties is created
and outlined. Because of the number of such
properties is great, the procedure of analysing
metamodel is difficult to be formalized. That is why,
only a verbal description of metamodel quality
criteria is proposed.

Chebanyuk, E. and Markov, K.
An Approach to Class Diagrams Verification According to SOLID Design Principles.
DOI: 10.5220/0005830104350441
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 435-441
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

435

A method for software maintenance risk
assessment is represented in the paper (Tombe et al.,
2014). This method expects class diagram designing.
The obtained class diagram is matched with a set of
design patterns. A prototype of software for
analysing source code is also described. The
functionality of this prototype is to analyse source
code to find known patterns. Due to the variety of
styles for code development, the task of designing
universal method for code analysis is very
complicated.

A method for verification of Graph-Based model
transformation is proposed in the paper (Wang et al.,
2014). In order to implement the method, a Model-
Transformation system had been designed.
Transformation rules, as a part of this system, are
proposed. Using predicate logic formal description
of transformational conditions in these
transformation rules is described. Due to complexity
and variety of conditions more detail formal
description is very difficult to be obtained.

Model-Driven Development (MDD) challenges
are analysed in the paper (Sandhu, 2015). One of the
main important MDD tasks is to facilitate the code
reuse process. Before code reusing, the procedure of
code analysis should be performed. Effective code
analysis allows improving its structure and quality.
This process can be automated when patterns
matching code and model elements are used.

Class diagrams are central artefacts for domain
analysis (Sandhu, 2015). Processing of class
diagram analytical representation increases the
quality of domain analysis artefacts, for example,
ontologies.

Applying quality class diagrams for performing
of any software development activity, such as model
execution, ontology designing, models comparison
or refactoring, and others, improves the quality of all
software development processes. It grounds the
actuality of task to design techniques, approaches,
and methods for class diagrams verification.

3 TASK

Task: to propose an approach to check whether
class diagram corresponds to SOLID principles.

For this purpose we have to do the following:
 prepare an analytical representation of class
diagram according to algebra describing software
static models;
 using predicate logic design expressions for
checking whether considering class diagram meets
to every of SOLID design principle. The aim of

using expressions to process class diagram is to
obtain quantity characteristics for measurement the
level of satisfying class diagram to SOLID
principles.
 obtain quantity initial information for further
analysis.

4 DENOTATIONS FOR CLASS
DIAGRAM ANALYTICAL
REPRESENTATION

All denotations are taken from notation of algebra,
describing software static models, represented in the
paper (Chebanyuk, 2013).

Algebra operates with such instances as class –
Cc (where C is a set of classes in class diagram),

abstract class – aa Cc  (where aC is a set of

abstract classes in class diagram), interface – Ii
(where I is a set of interfaces in class diagram),
software component and software module.

Class diagram is represented as a tuple of classes
and interfaces.

 ICCD , (1)

Then, algebra contains detailed description of
operations that are made to interconnect classes and
interfaces. Functionality of class is spread when it
interacts with other classes (interfaces) by means of
operations. Set OPER of operations is the following:

},,,{ compaggrassinhOPER  (2)

where: inh - inheritance, ass - association, aggr –
aggregation, comp - composition.

Consider Сcс |, . General idea of spreading

class functionality)(cF , when c and |c are

connected by means of OPERoper  , is denoted

as follows:

)()()(|cFcFcF oper  (3)

Sign  depicts that functionality of class c

()(cF) is extended with functionality of class |c

)).((|cF

The same is true when functionality of Сс

is spreading by inheritance or including reference to
Ii .It is denoted as follows:

icFcF oper )()((4)

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

436

Number of public methods of class Сс is

denoted as follows:)(public
cBn , where - public

cB is a

set of public methods of class.
More detail description of class constituents and

class diagram operations are represented in the paper

(Chebanyuk, 2013)..

5 RULES FOR CLASS DIAGRAM
VERIFYING ACCORDING TO
SOLID DESIGN PRINCIPLES

5.1 Single Responsibility Design
Principle

The essence of Single responsibility Design
Principle is that a class should have just one
function, namely: “a class should have only one
reason to change” (Martin et al., 2006).

In other words, in well-designed class every
public method is aimed to realise concrete task or
part of it. Then, in order to follow this considered
principle, the number of such methods should be
limited. Otherwise BLOB class, mixing several
responsibilities, is obtained.

When class diagram is designed, cognitive
principles of information processing should be taken
into account (Chebanyuk and Markov, 2015).
According to Miller recommendation (Miller, 1956),
it is proposed to set the limit of class public methods
as 9.

It is necessary to note that when public methods
are absent, class can implement no operation.

Then, the condition that Сс satisfies to single
responsibility design principle is formulated as
follows:

, () {1,2,...,9},public
cс С n B 

(5)(, ())public
cP c n B =

=(c has ()public
cn B public methods)

Ii also should be checked to this design
principle using (5).

5.2 Open-Closed Design Principle

The essence of Open-Closed Design Principle is the
next: architectural solution should be open for
extension and closed for modification
simultaneously.

In order to prove that class diagram corresponds
to Open-Closed Design Principle, it is matched to

key structural elements of design patterns. This
thesis is explained by the following:

a) flexibility of design patterns is provided by
means of presence in their structure of some abstract
entities such as abstract classes or interfaces
(Gamma et al., 1994).

b) abstract entities on class diagram allow
increasing its functionality when existence class
diagram constituents do not touched.

c) design patterns fully correspond to SOLID
Design Principles. It can be easily noticed by
analysing of their class diagrams (Gamma et al.,
1994).

In order to prove that group of classes
corresponds to Open-Closed design principle, it is
matched to design pattern structure. To achieve this
goal the following steps are performed:

1. Key structural elements of design pattern are
defined. Doing this, all information sources about
design pattern structure are analysed, namely: design
pattern purpose, software requirements that match to
specific design pattern, its class diagrams and code
templates,

2. Preparing an analytical description of design
pattern structural components in terms of algebra,
describing software static models.

Consider this process for analytical description
of design pattern Strategy.

1. Define key structural characteristics of
Strategy design pattern by means of analysing class
diagram of this pattern, and its textual description
(Gamma et al., 1994).

Analysis of class diagram and Strategy
functional requirements allows defining structural
characteristics of Strategy design pattern.

a) Cc , which has at least one reference to
interface. Denote reference to interface i that is
included to this class c as Ici )(.

b) Ici )(should have classes inheritors.

c) Optional condition: considering Cc
should have classes’ inheritors.

2. Preparing an analytical description of design
pattern Strategy structural components in terms of
algebra, describing software static models

a) Cc , which has at least one reference to
interface. Denote a set of such interfaces as

IcI )(. Then:

, ,

() ()

(()) (())

aggr

aggr aggr

c C i I

F c F c i

P F c F c exists

   

 



() { | (()) ; , }aggrI c i P F c true c C i I   
| () | 1I c 

(6)

An Approach to Class Diagrams Verification According to SOLID Design Principles

437

b))()(cIci  should have classes inheritors.

Denote a set of such classes as)(iC . Then:

))(())((

)()(

),()(,

existscFcFP

icFcF

cIciCc

inhinh

inh







}),()(

;))((|{)(

CccIci

truecFPiiC inh




1|)(| iC

(7)

c) Cc has at least one inheritor class.
According to algebra (Chebanyuk, 2013), class that

inherits Cc is denoted as 1c . Denote a set of

such inheritors as)(cCl . Then:

))(())((

)()()(

,,

11

11

1

existscFcFP

cFcFcF

CcCc

inhinh

inh







},;))((|{)(11 CcctruecFPccCl inh 
1|)(| cCl

(8)

5.3 Interface Segregation Design
Principle

The essence of Interface Segregation Design
Principle is the following: “the interfaces of the
class can be broken up into
groups of methods. Each group serves a different set
of clients. Thus, some clients use one group of
methods, and other clients use the other groups.“
(Martin et al, 2006).

In other words, this Design Principle is
formulated by following: every class that inherits
interface (interfaces) should not contain empty
methods.

}|{

)()(

,,







public
c

public
c

public
c

inh

B

icFcF

IiCc



 (9)

5.4 Liskov Substitution Design
Principle

The essence of Liskov Substitution Design Principle
is the following: “if for each object 1o of type S

there is an object 2o of type T such that for all

programs P defined in terms of T, the behaviour of P

is unchanged when 1o is substituted for 2o then S is

a subtype of T.” (Martin et al., 2006).
Define the three structural characteristics for

verifying Liskov Substitution Design Principle:
a) Cc has a reference to another class

diagram class Cc | . These classes are not
connected by inheritance relationship. Then:

))(())((

)()()(

,
|

|

existscFcFP

cFcFcF

Ccc

accacc

acc







CcctruecFP acc  ,;))((|

(10)

b) Cc | has at least two inherited classes.
Denote a set of such inheritors as)(|cCl .Then:

))(())((

)()()(

,,

1
|

1
|

|
1
|

1
|

1
||

existscFcFP

cFcFcF

CcCc

inhinh

inh







},

,))((|{)(

1
|

1

1
|

1
|

1
|

Ccc

truecFPccCl inh





2|)(| | cCl

(11)

Expression (11) should be applied for other
classes inheritors in Cc | hierarchy, namely

Cccc n ||
3

|
2 ,...,, .

c))(||
1 cClc  has non empty overridden

methods. Denote a set of these methods as
public

c

override

c
BB |

1
|

1


Then:

}|{ |
1

|
1

|
1

 override

c

override

c

override

c
B  (12)

Expression (12) also should be applied for other
classes inheritors in Cc | hierarchy.

5.5 Dependency Inversion Design
Principle

The essence of Dependency Inversion Design
Principle is the following:

“a) High-level modules should not depend on
low-level modules. Both should depend
on abstractions.
b) Abstractions should not depend upon details.

Details should depend upon abstractions.“
 (Martin et al, 2006).

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

438

Dependency Inversion Design Principle requires
only one structural characteristic: functionality of

Cc should be extended by means of one of the
three variants, namely: Cc a  , Cc | (classes that
are related on a top of hierarchy) or Ii .















)()(

)(

)()(

)(
|cFcF

icF

cFcF

cF

a

acc (13)

6 CASE STUDY

Consider a process of class diagram verification
(Figure 1) according to the suggested approach.

Form a set of class diagram constituents.
Named class is denoted c(name) and Named

interface: i(name). Then:

)}(),({

)}(),(),(

),(),(),(),(

),(Re),(),({

,

ourRaceBehaviiiourCarryBehaviI

RacenoWaycCarryLoadcNonCarrerc

eCarryPeoplcJeepcToyCarcRaceCarc

ntalCarcTaxicCarcC

ICCD






(14)

Figure 1: Class diagram representing Strategy design
pattern (Ikram, 2005).

1. Single Responsibility Design Principle
To check class diagram to single responsibility

design principle every Cc is considered.

,1 () 9public
cс С n B  

2. Open-Closed Design Principle
The class diagram, representing simple schema

of Strategy design pattern is given on the Figure 1.
This class diagram is taken from (Ikram, 2005).

In this figure class “Car” has a references to
interfaces “CarryBehaviour” and “RaceBehaviour”.
These interfaces have classes’ inheritors.

The purpose of class “Car” is to realize unique
algorithm when some steps of this algorithm can be
different. Namely for the realization of different
steps of an algorithm these interfaces and their
classes’ inheritors are responsible.

In other words, classes, that inherit the interface
“CarryBehaviour”, namely “CarryPeople”,
“NonCarry”, and “CarryLoad”, encapsulate some
step of general algorithm. Respectively classes that
inherit the interface “RaceBehaviour”, namely
“RaceCar” and “RaceNoWay”, encapsulate other
step of the same algorithm.

Let’s prove that this diagram corresponds to
Strategy Design Pattern.

In order to do this, the key characteristics of
Strategy design pattern according to (6)-(8) are
defined.

Define number of ICarcI ))((

1 2

1

2

() ,

, ,

(),

()

c Car C

i i I

i i CarryBehaviour

i i RaceBehaviour

 
 



12|},{||))((|

)))(((

))(())((

)))(((

))(())((

21

22

22

11

11










iiCarcI

trueCarcFPP

iCarcFCarcF

trueCarcFPP

iCarcFCarcF

aggr

aggr

aggr

aggr

(15)

3. Define number of classes, inheriting Iii 21,

13|)(|

)}(),(

),({)(

)),((,

1

1

1






iC

CarryLoadcNonCarryc

eCarryPeoplciC

CarcIiCc

(16)

12|)(|

)}(),({)(

)),((,

2

2

2






iC

RaceNoWaycRaceCarciC

CarcIiCc

 (17)

4. Define number of c(Car) inheritances

truecFP

cFcFcF

CcCc

inh

inh







))((

)()()(

,,

1

11

1

(18)

An Approach to Class Diagrams Verification According to SOLID Design Principles

439

15|))((|

)}(),(),(

),(Re),({))((





CarcCl

ToyCarcRaceCarcJeepc

ntalCarcTaxicCarcCl

The concussion: all class diagram quantity
characteristics matching with structural key features
of Design Pattern Strategy.

5. Interface Segregation Design Principle
As it was shown in the previous sub point,

considering class diagram matches to Strategy
Design pattern.

When class diagrams, implementing Strategy
Design Pattern are created the condition:

truecP

cPiCi public
c




)(

)()(),(
 (19)

Condition (19) provides flexibility of strategy
Designe Pattern (Gamma et al, 1994).

But the same condition contradicts to (9).
6. Liskov Substitution Design Principle
In order to check whether this diagram satisfies

the Liskov Substitution Design Principle, check it by
(10)-(12).

Consider C. As there are no classes, containing
references to another ones, the conclusion to be
made: that class diagram does not satisfy to Liskov
Substitution Design Principle. In other words, if any
of the conditions (10)-(12) is not proved, class
diagram does not satisfy this principle.

7. Dependency Inversion Design Principle
Review class diagram. Define association links

in it.

21))(())((iiCarcFCarcF aggr 

As the condition formulated in (13) is proved
then the concussion: that this class diagram is
designed according to Dependency Inversion Design
Principle.

7 CONCLUSIONS

The approach of class diagrams verification
according to SOLID Design Principles is proposed
in this paper.

Formalization of checking correspondence of
class diagram to SOLID principles (5)-(13),
proposed in this paper, allows designing methods
and techniques for automated checking whether
analytical representation of class diagrams meets to
SOLID design principles. Applying of these
methods and techniques allows estimating class

diagram features before performing different
operations with it.

The application of the suggested approach will
allow:

- increase the quality results of risk assessment
method, proposed in the paper (Tombe et al., 2014).
Before risk assessment, class diagram can be
verified for meeting SOLID. Results can be
estimated in two ways, namely, increasing the range
of risk factors or defining which diagrams need
further estimation;

- improve the structure of metamodel for further
transformation (Wang et al., 2014). Metamodels
contain initial information for designing ontologies,
profiles and other activities in Model-Driven
Development. That is why class diagram refinement,
when its verification is one of the refinement
techniques operations, allows improving the class
diagram quality.

REFERENCES

Chebanyuk E. 2013. Algebra Describing Software Static
Models. International Journal “Information
Technologies and Knowledge”, Vol.7, Number 1,
2013. ISSN 1313-0455 (printed) ISSN 1313-048X
(online), pg. 83-93.

Chebanyuk E., Markov K., 2015. Software Model
Cognitive Value. International Journal “Information
Theories and Applications”, Vol.22, Number 4, 2015.
ISSN 1310-0513 (printed), ISSN 1313-0463 (online),
pg. 338-355.

Gamma E., Helm R., Johnson R., and Vlissides J., 1994.
(the GangOfFour) Design Patterns: Elements of
Reusable Object-Oriented Software. AddisonWesley
Professional, • ISBN 978-0201633610 , ISBN 0-201-
63361-2 . 431 pg.

Ikram S. 2005. Design Patterns (Strategy Pattern) Part – II.
C# Corner. http://www.c-sharpcorner.com/
UploadFile/saif_ikram/DesignPatternsPart208312005
062925AM/DesignPatternsPart2.aspx.

López-Fernández J.J., Guerra E., de Lara J., 2014.
Assessing the Quality of Meta-models. In Boulanger
F., Famelis M. and Ratiu D., editors, Proceedings of
11th Workshop on Model Driven Engineering,
Verification and Validation MoDeVVa 2014, co-
located with Models 2014, Valencia, Spain, September
30th 2014. pg. 3-12.

Martin R., 2000. Design Principles and Design Patterns.
http://www.objectmentor.com/resources/articles/Princ
iples_and_Patterns.pdf.

Martin R., Martin M. 2006. Agile Principles, Patterns, and
Practices in C#. Prentice Hall, 2006. ISBN-10: 0-13-
185725-8, ISBN-13: 978-0-13-185725-4. Pg: 768.

Miller G.A., 1956. “The Magical Number Seven Plus or
Minus Two: Some Limits on Our Capacity for

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

440

Processing Information,” Psychological Review, vol.
63, no. 2, Mar. 1956, pp. 81–97.
http://www.psych.utoronto.ca/users/peterson/psy430s2
001/Miller%20GA%20Magical%20Seven%20Psych%
20Review%201955.pdf (accesed 01.09.2015).

Sandhu R., 2015. Model-Based Software Engineering
(MBSE) and Its Various Approaches and Challenges.
In COMPUSOFT, An international journal of
advanced computer technology, 4 (6), June-2015
(Volume-IV, Issue-VI), ISSN:2320-0790. pg. 1841-
1844.

Tombe R., Okeyo G., Kimani S., 2014. Cyclomatic
Complexity Metrics for Software Architecture
Maintenance Risk Assessment. In International
Journal of Computer Science and Mobile Computing,
Vol.3 Issue.11, November- 2014, ISSN 2320–088X,
pg. 89-101. Available Online at www.ijcsmc.com.

Wang X., Büttner F., Lamo Y., 2014. Verification of
Graph-based Model Transformations Using Alloy. In
Hermann F., Sauer S., editors, Proceedings of the 13th
InternationalWorkshop on Graph Transformation and
Visual Modeling Techniques (GTVMT 2014).
Electronic Communications of the EASST, Volume 67
(2014), ISSN 1863-2122. http://www.easst.org/eceasst/

An Approach to Class Diagrams Verification According to SOLID Design Principles

441

