
Constraints-based URDAD Model Verification

Fritz Solms, Priscilla Naa Dedei Hammond and Linda Marshall
Department of Computer Science, University of Pretoria, Pretoria, South Africa

Keywords: Model-driven Engineering, Model Validation, URDAD, Metamodel, Object Constraint Language, Domain-
Specific Language.

Abstract: In Model-Driven Engineering the primary artifact is a technology and architecture neutral model called a
Platform Independent Model (PIM). The Use-Case, Responsibility Driven Analysis and Design (URDAD)
is a service-oriented method which is used to construct a PIM commonly specified in the URDAD Domain-
Specific Language (DSL). In this paper we show that model quality can be verified by specifying a set of
quality constraints at metamodel level which are used to verify certain consistency, completeness, traceability
and simplicity qualities of URDAD models. The set of constraints has been mapped onto the Object Constraint
Language (OCL) and a tool used to verify these constraints has been developed. The set of constraints is also
used by an URDAD model editor to verify aspects of model quality as it is being developed.

1 INTRODUCTION

In Model-Driven Engineering (MDE) models repre-
sent the primary software engineering artifacts. They
are used for communication and documentation as
well artifact generation including code, test and doc-
umentation generation. Making models the primary
artifact moves the emphasis of quality assurance from
the code onto the models. Increasing model quality
generally increases the quality of the generated arti-
facts and reduces project cost and risk.

(Mohagheghi and Aagedal, 2007) have shown that
model quality is affected by a range of factors includ-
ing (i) the quality of the modeling process used to
generate the model(s), (ii) qualities of the modeling
language used, (iii) the modeling tools as well as the
tools used for artifact generation, (iv) the quality as-
surance processes and techniques applied, and (v) the
knowledge and experience of the requirements ana-
lysts, architects, designers and developers.

With reference to these factors the URDAD
method aims to provide (i) a quality-driven process
which reduces the probability of model quality con-
cerns (Solms et al., 2011b), (ii) a services-oriented
modeling language with a metamodel specifying the
language semantics and a textual as well as a dia-
grammatic syntax (Solms et al., 2011a), (iii) modeling
tools which enable users to construct or edit a model
using either a concrete text syntax or a diagrammatic
syntax, and (iv) tools for model quality verification.

Model validation and verification are extensively
used to assess model quality within MDE (Malgo-
uyres and Motet, 2006; Delmas, R. et al., 2013).
In model validation one establishes that the require-
ments model correctly reflects the stakeholder needs
and the design model correctly addresses those needs.
In model verification, on the other hand, one aims to
establish that models are technically sound, i.e. that
they are free from undesirable engineering charac-
teristics. To reduce the risk and cost introduced by
model quality concerns it is vital that model quality
assessment and management is done early and con-
tinuously (Delmas, R. et al., 2013). To this end one
generally aims to integrate model verification within
model editing and model transformation tools.

Model verification includes the verification of the
static structure of a model (e.g. for syntactic correct-
ness, completeness, consistency and cohesion) and
verification of the dynamics (processes) specified by
the model in order to establish that they are free of un-
desirable dynamic properties like infinite loops, dead-
locks and unreachable code.

In this paper we investigate the extend to which
model quality can be assessed and enforced through a
set of constraints specified against the URDAD meta-
model. The constraints coverconsistency, traceabil-
ity, completenessandsimplicity constraints specified
using theObject-Constraint Language(OCL) (Object
Management Group, 2012). A tool which validates
URDAD models against this set of model quality con-

148
Solms, F., Hammond, P. and Marshall, L.
Constraints-based URDAD Model Verification.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 148-155
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



straints has been developed. The constraints set and
tool implementation is verified through a set of test
models which were constructed to contain quality de-
fects. The OCL constraints are also used by the UR-
DAD model editor to assess model qualities in real-
time as the model is being developed. The model ver-
ification tool can be integrated into be model transfor-
mation tools in order to verify models prior to artifact
generation.

2 BACKGROUND

MDE makes models the primary artifacts from which
documentation, code and tests are generated. In this
section we discuss relevant aspects of OMG’s Model-
Driven Architecture (MDA) and the URDAD analysis
and design method.

The MDA (Frankel, 2003) is OMG’s approach to
MDE supported by a set of standards. It is based
on a 4-layer layer meta-modeling architecture. The
M0 layer contains the model instances (e.g. applica-
tion and data instances) which are specified in the M1
layer using a model constructed using a modeling lan-
guage specified in the metamodel (M2) layer which in
turn is specified using a meta-language which is spec-
ified in the meta-metamodel (M3) layer.

One of MDA’s main aims is to keep the require-
ments and application designs architecture and tech-
nology neutral such that they can be mapped onto dif-
ferent architectures and technologies (Frankel, 2003;
Solms and Loubser, 2009). The architecture and tech-
nology neutral model is called aPlatform Indepen-
dent Model(PIM) which is incrementally transformed
into aPlatform Specific Model(PSM) and ultimately
into code. The URDAD method is used to construct
an URDAD model which represents a PIM.

OMG’s Meta Object Facility (MOF) (Group,
2006) is a standard for specifying meta-models, i.e.
a standard for specifying modeling languages. MOF
is a closed meta-modeling architecture in that it pro-
vides an M3 model which conforms to itself. The
UML as well as a range of other generic and domain-
specific languages have been specified in MOF.

OMG has defined two compliance points for MOF
namely, Essential MOF (EMOF) and Complete MOF
(CMOF). The EMOF profile is a subset of MOF
which was introduced to simplify the development
of meta-modeling and model transformation tools.
EclipseEcoreis an implementation of EMOF which
is supported by a suite of tools packaged within the
Eclipse Modeling Framework (EMF) (Group, 2006).

Within MDA one can use either generic modeling
languages like the UML or domain specific languages

(Fowler, 2010) which support the semantics to model
a specific domain. The latter have the advantage that
they are generally much simpler, that they provide ap-
propriate modeling abstractions and primitives closer
to the ones used in the domain being modeled (Bram-
billa et al., 2012), have more rigorous semantics and
are more amenable to code generation. The URDAD-
DSL is a domain specific language for the domain of
services-oriented design.

MDA includes theObject Constraint Language
(Object Management Group, 2012), an expression
language based on first order logic and set theory. The
OCL is used to specify well-formedness constraints
as invariant constraints on metamodels and to specify
domain constraints within instance models (e.g. UML
or URDAD models).

In the case of URDAD models, the OCL is used
to formalize service contracts by specifying pre- and
post-conditions, and to specify invariant constraints
against domain objects, conditionals, variable initial-
ization and so on. The OCL is also used as a query
language to query models at any of the MOF levels
(e.g. metamodels and instance models).

In this paper the OCL is used to specify a set of
model quality constraints against the URDAD meta-
model against which URDAD models are verified.

The Use-Case, Responsibility Driven Analysis
and Design(URDAD) method is a service-oriented
method (Solms, 2007) which was developed to make
it easier for requirements specialists (e.g. business an-
alysts) to capture and manage high-quality require-
ments for enterprise systems. A services oriented ap-
proach where higher-level services are orchestrated
from lower level services with decoupling through
services contracts is a natural modeling approach
within the domain of enterprise systems development,
i.e. using a services-oriented approach reduces the
dichatomy between the concepts used in the problem
(business) domain and the modeling domain.

The method itself is designed to encourage model
qualities including simplicity, completeness, modifia-
bility, consistency, decoupling, reusability and trace-
ability and provides a way to manually assess these
qualities (Solms et al., 2011a) in the resultant UR-
DAD model. In this paper we study the possibility of
automating the assessment of aspects of these quali-
ties.

The URDAD model represents the PIM within
OMG’s MDA (Solms and Loubser, 2009), i.e. it
contains the technology and architecture neutral re-
quirements and design specification. We have used
the MDA tooling provided by the Eclipse Modeling
Project (Gronback and Merks, 2008) to developed the
URDAD-DSL as a DSL for the domain of services

Constraints-based URDAD Model Verification

149



oriented design. The language semantics is specified
within an Ecoremetamodel and a concrete text syn-
tax was defined withinEMFText(Heidenreich et al.,
2011).

ConstraintReference

constraint

QualityConstraint

FunctionalRequirements

FunctionalRequirement

contract

QualityRequirement

ResultRequirementServicesContract

PostCondition

Requirement

PreConditionException

ResponsibilityDomain

expressionString : String
language

Expression
name : String

NamedElement

core

abstract : Boolean

DataStructure

data

0..1

-inverseService 0..1

-constraint
Expression

0..1

-request
1

-result
0..1

*

0..1

-requiredBy
1..*

0..1

*

1 *

Figure 1: The contract specification elements specified in
the URDAD metamodel.

The URDAD metamodel requires an URDAD
model to specify services contracts representing the
requirements for a service and service processes rep-
resenting service designs. A service contract in-
cludes the specification of the data structures for the
service request and result as well as the functional
requirements. The latter are specified as pre- and
post-conditions using references to reusable state con-
straints, i.e. the same state constraint can be a post-
condition for one service and a pre-condition for an-
other. Figure 1 depicts the contract module of the UR-
DAD metamodel. An excerpt of an example contract
specified using the concrete text syntax for the DSL is
shown in Figure 2.

URDAD service specifications include the process
design for the service which specifies how the ser-
vice is orchestrated from lower level services realiz-
ing lower level services contracts, i.e. services across
levels of granularity are decoupled through the service
contract specifications1. Conceptually each service
specification represents a template method specifica-
tion for which the concrete realizations of the process
steps can vary. To facilitate traceability the service
specification is associated with a services contract and
includes the link between lower level services used

1When mapping the technology neutral design specifi-
cation onto code the decoupling between services across
different levels of granularity is often retained by mak-
ing use of dependency injection frameworks which provide
handles to concrete services which are to be used to realize
service contracts at run-time.

ServiceContractenrollForPresentation
{

FunctionalRequirements receiving VariableenrollForPresentationRequestofType
EnrollForPresentationRequest

{
PreConditionenrollmentPrerequisitesMet

requiredBy(TrainingRegulator Student)
raisesEnrollmentPrerequisitesNotSatisfiedException
checks ConstraintenrollmentPrerequisitesForPresentationMet
with valueOf enrollForPresentationRequest

...
PostConditionenrollmentProcessPerformed

requiredBy(Student Client TrainingRegulator)
ensures ConstraintstudentEnrolledForPresentation
with valueOf studentEnrolledRequestconstructedUsing doSequential
{

create VariablestudentEnrolledRequestofTypeStudentEnrolledRequest
set QueryOCL:”studentEnrolledRequest.personIdentifier”equalTo

QueryOCL:”enrollForPresentationRequest.personIdentifier”
... } }

Request DataStructureEnrollForPresentationRequest
{

hasIdentification presentationIdentifieridentifyingPresentation
... }

Result DataStructureEnrollForPresentationResult
{

hasComponent proofOfEnrollmentofTypeProofOfEnrollment
... } } }

Figure 2: An excerpt of the contract specification for an
enrollment service.

and the functional requirements for which they are
required. The latter is done through theuse ...
toAddress relationships. An excerpt of an example
service specification using the concrete text syntax for
the DSL is shown in Figure 2.

Even though the URDAD method specifies a
“quality-driven analysis and design process” which
guides analysts to construct a requirements and tech-
nology and architecture neutral design model exhibit-
ing certain model qualities, the method itself does not
enforce these qualities (Solms et al., 2011b). When
considering model quality it is important to realize
that model quality is affected by the quality charac-
teristics of artifacts from different levels of abstrac-
tion within the MDA metamodeling architecture as
well as by the concrete syntax used by the model-
ing language. In particular,semantic quality, degree
of formalization, conceptual simplicity, traceability,
language consistencyare characteristics which are de-
termined within the M2-layer, i.e. the quality of the
metamodel specifying the modeling language. On
the other hand,understandabilityandease of useare
qualities which are determined by the concrete syn-
tax used to specify the model (Solms et al., 2011a).
Finally, syntactic correctness consistency, complete-
ness, correctness, simplicity including lack of redun-
dancies, uniformity, and cohesionapply to the M1
layer, i.e. they are qualities of specific URDAD mod-
els. Of these model qualitiescorrectnessfalls within
the scope of model validation whilst the other quali-
ties fall within the scope of model verification.

The metamodel and the language aware model
editor we have developed enforcesyntactic correct-
ness(that an URDAD model complies to the struc-

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

150



ServiceenrollForPresentationrealizesenrollForPresentation
receiving VariableenrollForPresentationRequestofType

EnrollForPresentationRequest
{

usecheckStudentSatisfiesEnrollmentPrerequisitestoAddress(
enrollmentPrerequisitesMet)

useissueInvoicetoAddress(financialPrerequisitesSatisfied invoiceIssued)
...
ProcessdoSequential
{

create VariablecheckStudentSatisfiesEnrollmentPrerequisitesRequest
ofTypeCheckStudentSatisfiesEnrollmentPrerequisitesRequest

set QueryOCL:”checkEnrollmentPrerequisitesRequest.studentIdentifier”
equalTo QueryOCL:”enrollForPresentationRequest.studentIdentifier”

...
requestServicecheckStudentSatisfiesEnrollmentPrerequisites

with checkStudentSatisfiesEnrollmentPrerequisitesRequest
yielding VariablecheckStudentSatisfiesEnrollmentPrerequisitesResult

ofTypeCheckStudentSatisfiesEnrollmentPrerequisitesResult
choice
{

if ConstraintenrollmentMeetsPrerequisitesMet
OCL:”if checkStudentSatisfiesEnrollmentPrerequisitesResult.isOclKind(

StudentSatisfiesEnrollmentPrerequisites)”
doSequential
{

create VariableissueInvoiceRequestofTypeIssueInvoiceRequest
set QueryOCL:”issueInvoiceRequest.clientIdentifier”equalTo
QueryOCL:”enrollForPresentationRequest.clientIdentifier”
...
requestServiceissueInvoicewith issueInvoiceRequest

yielding VariableissueInvoiceResultofTypeIssueInvoiceResult
{

on FinancialPrerequisitesNotSatisfiedException
raiseExceptionFinancialPrerequisitesNotSatisfiedException

}
...
returnResultenrollForPresentationResult

}
else raiseExceptionEnrollmentPrerequisitesNotSatisfiedException

} } }

Figure 3: An excerpt of a service (process) specification
realizing a services contracts.

ture specified by the metamodel) as well asunifor-
mity (that the same model features are consistently
used to specify similar model elements). Note that
unlike the UML, the URDAD-DSL is not overloaded.
For example, whilst in the UML processes can be
specified using sequence diagrams, activity diagrams,
state charts, interaction-overview diagrams, commu-
nication diagrams or timing diagrams, the URDAD-
DSL only provides one model feature to specify the
process for a service.

3 MODEL CONSTRAINTS

The URDAD metamodel specifies the semantics
available to specify an URDAD model as well as the
structure of such a model. However, compliance of an
URDAD model to the metamodel is not sufficient to
guarantee model quality.

For example, URDAD being a contracts-based
services oriented approach which facilitates traceabil-
ity across functional requirements specified within a
service contact and the service (process) specification
through which the service is realized requires mod-
els to specify (a) that a service declares the lower
level services through which pre- and post-conditions

of the contract are addressed, (b) that services which
were declared to be used to address the functional
requirements are called in the process specification,
(c) that a service raises only exceptions which are as-
sociated with a pre-conditions specified for the ser-
vice contract the service realizes, and (d) that any ex-
ceptions raised by lower level services are either han-
dled or are associated with pre-conditions of the call-
ing service.

These as well as a range of other structural con-
straints are mapped onto a formal representation
as OCL invariance constraints (Object Management
Group, 2012). This enables us to have a stand-alone
model verification tool using the OCL tool support
built into the Eclipse Modeling Framework (Gron-
back and Merks, 2008) to verify instance models prior
to model transformation (e.g. in the code generation,
unit test generation and documentation generation).
In addition we have integrated the constraint suite
within the URDAD model editor to provide real-time
model verification to requirements analysts and pro-
cess designers.

The structural constraints introduced to assess as-
pects of URDAD model quality can be grouped into
completeness, consistency and simplicity constraints.

3.1 Completeness Constraints

This section discusses some constraints whose viola-
tion indicates that the quality of an URDAD model
might be insufficient because the structure of the
model is incomplete.

The first set of completeness constraints enforces
the traceability of how functional requirements are
addressed, i.e. that one can trace the realization of
each pre- and post-condition to the lower level ser-
vices used to address them. Taing into account the
structure of the URDAD metamodel, this constrained
is factored into two lower level constraints:
1. For each functional requirement (i.e. pre- or post-

condition) the service contract specifying the re-
quirements for lower level services required to ad-
dress the functional requirement is specified. In
the concrete text syntax this is done via ause
xxx toAddress construct which feeds the appro-
priate association between the functional require-
ment and the required service into the URDAD
metamodel:
contextService
inv AllConditionsAddressed: serviceRequirements−>isEmpty()or (

serviceRequirements.usedToAddress−>includesAll(realizedContract.
functionalRequirements.preConditions)andserviceRequirements.
usedToAddress−>includesAll(realizedContract.functionalRequirements.
postConditions));

2. All toAddress functions must be called in the
process specification

Constraints-based URDAD Model Verification

151



contextService
inv AlltoAddressFunctionsInProcessSpecification: serviceRequirements−>

isEmpty()or serviceRequirements.requiredService−>includes(process.
oclAsType(ActivitySequence).activities−>flatten()−>collect(
RequestService.allInstances().requestedService))

Note the enforced decoupling within the URDAD
model. The dependencies in the process specifica-
tion are purely on service contracts for lower level
services and not on concrete services which realize
the service contracts specifying the service require-
ments. Within concrete implementations these ser-
vice contracts are bound to implementing services ei-
ther at compile, deploy or run-time. Run-time binding
is commonly done through either run-time services
lookups within service registries or using dependency
injection frameworks.

Not all completeness constraints are necessarily
indicative of model errors. For example, the con-
straint that all service contracts have service imple-
mentations is used to project out those service con-
tracts for which no service implementations have
been defined. However, since services can be sourced
from outside the system (e.g. standard libraries,
frameworks, ...) and since such services could be in-
jected at run-time, a violation of this constraint does
not necessarily imply a model completeness defect.
The corresponding OCL constraint listed below is
thus contained in a separate set of OCL constraints
which is used to generate warnings upon constraint vi-
olation. Service contracts for which no service speci-
fications are contained in the model thus flag services
which need to be sourced front the environment.

contextResponsibilityDomain
inv ServiceContractHasAServiceSpecification: servicesContracts−>collect(sc :

contract::ServiceContract| services.realizedContract−>excludes(sc))−>size()
> 0

3.2 Consistency Constraints

The design of the URDAD meta-model was done as
to have much lower language complexity and incon-
sistency risks than a generic language like the UML
(Solms et al., 2011a). Nevertheless, meta-model com-
pliance alone does not enforce model consistency.

To be able to verify model consistency a range of
consistency constraints is included in the set of OCL-
based model constraints. Many of these constraints
are very simple constraints like constraining the min-
imum of a range to be less than or equal to the maxi-
mum, constraining service request parameters in ser-
vice process specifications to be an instance of the ser-
vice the request type of the service contract and so on.

For illustrative purposes we choose one of the con-
sistency constraints and discuss it in some detail. UR-
DAD is a contracts-based approach which differenti-
ates between errors and exceptions. In particular, an

exception is raised to communicate to the client that
the requested service is not being provided because a
particular pre-condition for that service was not met.
For example, the debit service of an account may
have the pre-condition that the available balance must
be equal to or greater than the withdrawel amount.
Should this pre-condition not hold, the service is re-
fused and the client is informed of the service refusal
by raising that exception which has been associated
with this precondition. Note that the non-provision
of the service is, in this case, not caused by a system
error. An error, on the other hand, is the admission
that the service is unable to fulfill its contractual obli-
gations. The structural requirement that one has to
associate with each pre-condition an exception is en-
forced by the meta-model itself, i.e. the model needs
to be only verified against the meta-model and no fur-
ther constraints are required.

On the other hand, the requirement that a process
specification for a service does not raise any excep-
tions other than those associated with pre-conditions
of the service as specified in the service contract is
not enforced structurally, i.e. by the meta-model. We
need to thus include in the model quality constraints
set a constraint which can be used to verify that any
process specification for a service raises only excep-
tions which are associated in the service contract with
one of the pre-conditions of the service. The follow-
ing OCL constraint requires that a process raises only
exception objects which are instances of either one of
the exception classes or one their sub-classes.

contextService
inv AllExceptionsInProcessAreDeclaredInContract: contract::Exception.allInstances()

−>includes(process.oclAsType(ActivitySequence).activities−>collect(act :
Activity | act.oclAsType(ExceptionHandler).exception))and

(contract::Exception.allInstances()−>
includes(process.oclAsType(
ActivitySequence).activities−>
collect(act : Activity| act.
oclAsType(RaiseException).
exception)))

3.3 Simplicity Constraints

Unnecessary complexity is viewed as a model quality
concern. It results in reduced understandability, in-
creased maintenance costs and risk and potentially in
performance overheads. A thorough complexity anal-
ysis is beyond the scope of a constraint set specified
against the metamodel.

On the other hand, the constraint that a process
should only request lower level services which have
been identified to be used to contribute to addressing
the functional requirements for the service as speci-
fied in the service contract can be specified as follows:

contextService
inv AllLowerLevelServicesUsedMustAddressFunctionalRequirements:

serviceRequirements−>forAll(serReq : ServiceRequirement| serReq.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

152



usedToAddress−>notEmpty())

The set of simplicity constraints also includes
more standard aspects like the constraint that a pro-
cess specification should not include any variables
which are not used.

contextService
inv EveryCreatedVariableMustBeUsed: process.oclAsType(ActivitySequence).

activities−>collect(ManipulateVariable.allInstances().source)−>collect(mv
: ManipulateVariable| mv.source.name.substring(1, mv.source.name.indexOf
('.')−1))−>includesAll(process.oclAsType(ActivitySequence).activities−>
collect(VariableProduction.allInstances().producedVariable.name))

4 MODEL VERIFICATION TOOL

A model verification tool is a simple Java applica-
tion developed using the Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2009). In particular,
the tool uses the EMF OCL framework for OCL con-
straints parsing. The tool takes as inputs the URDAD
metamodel as an Ecore file encoded in XMI, the OCL
constraints file and the XMI file for an URDAD in-
stance model and reports a list of quality constraint
violations. In addition, the OCL constraint suite is
used by our text-based URDAD-DSL editor to vali-
date models in real-time and to highlight model qual-
ity concerns as models are being developed.

5 RELATED WORK

(Lindland et al., 1994) identified three types of model
quality: (i) Syntactic qualityas the degree to which a
model adheres to the rules of the modeling language.
(ii) Semantic qualityrepresenting the accuracy with
which the problem domain is modeled. (iii)Prag-
matic model qualityrepresenting the degree to which
the model can be pragmatically used – e.g. for com-
munication as well as code, test and documentation
generation.

Semantic quality includes the notion offeasi-
ble functional completenesswhich is the degree to
which all relevant functional requirements are in-
cluded. Within an URDAD model this is the degree
to which (a) contracts for lower level services used to
address pre- and post-conditions have been specified,
(b) for each service contract for which the service is
not sourced externally, there is a service specification
in the model.

Fieber, Huhn and Rumpe (Fieber et al., 2008) pro-
vide a taxonomy of quality characteristics for mod-
els. They differentiate betweeninner model qualities
which can be assessed by considering the model in
isolation andouter model qualitieswhich are assessed

relative to the model context. Inner model qualities
include the semantic quality, the degree of formaliza-
tion, understandability, simplicity, conceptual integri-
ty/uniformity and conformity to standards and norms.
Outer model qualities include completeness, lack of
redundancies, cohesion which is related to modular-
ization, sufficiency for application.

Within MDA-based approach theInner model
qualitiescan be mapped onto qualities of the meta-
model which specifies the modeling language used to
specify instance models and outer model qualities can
be mapped at qualities against which instance mod-
els are assessed. Aspects of the qualities of an UR-
DAD metamodel have been analyzed in (Solms et al.,
2011a). The focus of this paper is to be able to ver-
ify aspects ofouter model qualities, i.e. qualities of
instance models.

(Malgouyres and Motet, 2006) enriched the UML
with a set of consistency constraints. Given an in-
stance of a UML model, they map both, the model and
the consistency constraints onto a logic statements
specified in aConstrained Logic Programming(CLP)
language (Cohen, 1996) and used a CLP solver to as-
sess the internal consistency of the statements derived
from the UML model as well as the adherence of the
model to the consistency constraints specified against
the UML metamodel.

Since (Malgouyres and Motet, 2006) focus on
consistency checking of UML models, the set of con-
sistency constraints is necessarily limited to some
technical consistency checks which apply to any
UML model. Since we are specifying constraints
against URDAD models which have a more con-
straint yet more rigorously defined semantics our con-
straints can be used to assess completeness (includ-
ing traceability), simplicity and consistency qualities
which are specific to services-oriented URDAD mod-
els. However, our approach can be augmented to a
mapping of URDAD instance models onto CLP in or-
der to more rigorously verify the internal consistency
of the semantic statements contained in the model.

CLP has also been used to assess the consistency
of domain models represented by UML class dia-
grams and associated M1-level OCL invariance con-
straints (Cabot et al., 2008). The authors map the
semantics specified by class diagrams refined with
invariance constraints onto aConstraint Satisfaction
Problem (CSP) and used theECLiPe constraint li-
brary (Aggoun, 2006) to verify internal model con-
sistency by assessing the instantiability of the CSP. In
contrast, we specify OCL invariance constraints as-
sessing certain model qualities against the M2-level
meta-model. The purpose of the two approaches is
quite different with our approach being able to assess

Constraints-based URDAD Model Verification

153



model qualities like traceability, the degree to which
pre- and post-conditions are being addressed and so
on, whilst the work of (Cabot et al., 2008) focuses on
internal consistency of the model including any M1-
level constraints specified against the model.

(Lange and Chaudron, 2005) considered different
model uses in order to develop a quality model for
UML models as well as a model quality visualization
tool. Of the model qualities included in their quality
model, traceability, consistency and completeness are
included within our model quality verification tool.
Others like aesthetics and conciseness are qualities of
a concrete syntax and are not the topic of this paper.
Correspondence (that model qualities directly corre-
spond with system elements) is not a desirable for
an URDAD model as it represents a technology and
architecture neutral application model.

(Berkenkötter, 2006) developed a UML profile
containing railway-specific concepts and constraints.
The constraints were specified in the OCL and were
validated by theEclipse OCL Engine. However, due
to the complexity and weak sematics of the UML, de-
signers are typically required to use a specific subset
of the language in a specific way and a large and com-
plex set of constraints is required to validate model
quality. The URDAD DSL which was developed to
reduce language complexity and improve language
semantics requires comparatively a much smaller set
of model quality constraints.

Mappings onto formal process specification lan-
guages have been performed for UML sequence di-
agrams (Dan, 2010), activity diagrams (Elmansouri
et al., 2011) and state charts (Ng and Butler, 2003;
Delmas, R. et al., 2013). The formal process specifi-
cations are then verified by a model checker to con-
firm the absence of a set of process design flaws.
Model verification has also been applied to OWL-S
(Zhi-Jun et al., 2005) used for semantic markup for
web service composition (Xia and Li, 2009).

URDAD is itself a service-oriented method which
is used to specify service contracts and process spec-
ifications across levels of granularity. We are busy
mapping URDAD process specifications onto a for-
mal specification language for formal process specifi-
cation, but this is not the topic of this paper.

6 CONCLUSIONS AND FUTURE
WORK

Within model-driven engineering models are the pri-
mary artifacts and model quality is critical. It is de-
termined by the semantic quality of the modeling lan-
guage, qualities of the concrete syntax used and qual-

ities of the actual instance models. The latter includes
syntactic quality which can be assessed by verify-
ing conformance to the meta-model (language confor-
mance), qualities of the model structure and qualities
of the dynamics (i.e. the processes) specified in the
model.

In this paper we investigated the extend to which
we were able to specify completeness (including
traceability), consistency and simplicity constraints
against the URDAD meta-model in order to verify
these qualities within URDAD models. The resultant
set of OCL constraints was tested using a set of test
models. A model verification tool enables us to verify
URDAD model quality. The OCL constraints are also
used by the URDAD model editor to verify models as
they are being developed.

Whilst our approach does verify aspects of model
consistency, the consistency of constraints specified
against the instance model are not currently verified.
Future work will look at mapping URDAD instance
models onto a Constraint Satisfaction Problem (Cabot
et al., 2008) in order to increase the level of consis-
tency checking. Also, the quality of processes speci-
fied within URDAD models is currently not verified.

REFERENCES

Aggoun, A. e. a. (2006). Theecli pe user manual.
http://eclipseclp.org/doc/userman/umsroot.html.

Berkenkötter, K. (2006). Ocl-based validation of a railway
domain profile. InProceedings of the 2006 Interna-
tional Conference on Models in Software Engineer-
ing, MoDELS’06, pages 159–168, Berlin, Heidelberg.
Springer-Verlag.

Brambilla, M., Cabot, J., and Wimmer, M. (2012).Model-
Driven Software Engineering in Practice. Morgan &
Claypool Publishers, 1st edition.

Cabot, J., Clariso, R., and Riera, D. (2008). Verification of
uml/ocl class diagrams using constraint programming.
In Software Testing Verification and Validation Work-
shop, 2008. ICSTW ’08. IEEE International Confer-
ence on, pages 73–80.

Cohen, J. (1996). Logic programming and constraint logic
programming.ACM Comput. Surv., 28(1):257–259.

Dan, L. (2010). QVT Based Model Transformation from
Sequence Diagram to CSP. InEngineering of Com-
plex Computer Systems (ICECCS), 2010 15th IEEE
International Conference on, pages 349–354.

Delmas, R., Pires, A. F., and Polacsek, T. (2013). A verifica-
tion and validation process for model-driven engineer-
ing. In Array, editor,EUCASS Proceedings Series Ad-
vances in AeroSpace Sciences, volume 6, pages 455–
468.

Elmansouri, R., Hamrouche, H., and Chaoui, A. (2011).
From UML Activity Diagrams to CSP Expressions: A
Graph Transformation Approach using Atom3 Tool.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

154



International Journal of Computer Science Issues,
8(2):368–374.

Fieber, F., Huhn, M., and Rumpe, B. (2008). Modellqualität
als indikator für softwarequalität: eine taxonomie.
Informatik-Spektrum, 31(5):408 424.

Fowler, M. (2010).Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

Frankel, D. S. (2003).Model Driven Architecture: Applying
MDA to enterprise computing. John Wiley & Sons,
New York.

Gronback, R. C. and Merks, E. (2008). Model Driven
Architecture at Eclipse.The European Journal for the
Informatics Professional, 2008(II).

Group, O. M. (2006). Meta Object Facility (MOF) Core
Specification Version 2.0.

Heidenreich, F., Johannes, J., Karol, S., Seifert, M., and
Wende, C. (2011). Model-based language engineering
with emftext. In Lmmel, R., Saraiva, J., and Visser,
J., editors,GTTSE, volume 7680 ofLecture Notes in
Computer Science, pages 322–345. Springer.

Lange, C. and Chaudron, M. (2005). Managing Model
Quality in UML-Based Software Development. In
Software Technology and Engineering Practice, 2005.
13th IEEE International Workshop on, pages 7–16.

Lindland, O., Sindre, G., and Solvberg, A. (1994). Under-
standing quality in conceptual modeling.IEEE Soft-
ware, 11(2):42–49.

Malgouyres, H. and Motet, G. (2006). A uml model consis-
tency verification approach based on meta-modeling
formalization. InProceedings of the 2006 ACM Sym-
posium on Applied Computing, SAC ’06, pages 1804–
1809, New York, NY, USA. ACM.

Mohagheghi, P. and Aagedal, J. (2007). Evaluating Quality
in Model-Driven Engineering. InMISE ’07: Proceed-
ings of the International Workshop on Modeling in
Software Engineering, pages 6–11, Washington, DC,
USA. IEEE Computer Society.

Ng, M. Y. and Butler, M. (2003). Towards formalizing
UML state diagrams in CSP. InSoftware Engineering
and Formal Methods, 2003.Proceedings. First Inter-
national Conference on, pages 138–147.

Object Management Group (2012). OCL 2.3.1 Specifica-
tion.

Solms, F. (2007). Technology Neutral Business Process De-
sign using URDAD. InProceeding of the 2007 confer-
ence on New Trends in Software Methodologies, Tools
and Techniques: Proceedings of the sixth SoMeT-
07, pages 52–70, Amsterdam, The Netherlands, The
Netherlands. IOS Press. ACM ID: 1566976.

Solms, F., Edwards, C., Paar, A., and Gruner, S. (2011a).
A Domain-Specific Language for URDAD Based Re-
quirements Elicitation. InProceedings of the South
African Institute of Computer Scientists and Infor-
mation Technologists Conference on Knowledge, In-
novation and Leadership in a Diverse, Multidisci-
plinary Environment, SAICSIT ’11, pages 224–230,
New York, NY, USA. ACM.

Solms, F., Gruner, S., and Edwards, C. (2011b). URDAD as
a Quality Driven Analysis and Design Process. InNew
Trends in Software Methodologies, Tools and Tech-
niques - Proceedings of the Tenth SoMeT 11, vol-

ume 231, pages 141–158. IOS Press BV. ACM ID:
1566976.

Solms, F. and Loubser, D. (2009). Generating MDA’s plat-
form independent model using URDAD.Knowledge-
Based Systems, 22(3):174–185.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Xia, H. and Li, Z. (2009). Verification web services com-
position based on owl-s. InKnowledge Acquisition
and Modeling, 2009. KAM ’09. Second International
Symposium on, volume 1, pages 164–167.

Zhi-Jun, D., Jun-li, W., and Chang-Jun, J. (2005). Seman-
tic web service composition based on owl-s. InSe-
mantics, Knowledge and Grid, 2005. SKG ’05. First
International Conference on, pages 98–98.

Constraints-based URDAD Model Verification

155


