
Stability Feature Selection using Cluster Representative LASSO

Niharika Gauraha
Systems Science and Informatics Unit

Indian Statistical Institute, 8th Mile, Mysore Road RVCE Post Bangalore, Bangalore, India

Keywords: Lasso, Stability Selection, Cluster Representative Lasso, Cluster Group Lasso.

Abstract: Variable selection in high dimensional regression problems with strongly correlated variables or with near
linear dependence among few variables remains one of the most important issues. We propose to cluster the
variables first and then do stability feature selection using Lasso for cluster representatives. The first step
involves generation of groups based on some criterion and the second step mainly performs group selection
with controlling the number of false positives. Thus, our primary emphasis is on controlling type-I error for
group variable selection in high-dimensional regression setting. We illustrate the method using simulated and
pseudo-real data, and we show that the proposed method finds an optimal and consistent solution.

1 INTRODUCTION

We consider the usual linear regression model

Y = Xβ+ ε, (1)

where Yn×1 is a univariate response vector, Xn×p is the
design matrix, βp×1 is the true underlying coefficient
vector and εn×1 is an error vector. when the num-
ber of variables (p) is much larger than the number of
observations (n), p >> n, the ordinary least squares
estimator is not unique and mostly overfits the data.
The parameter vector β can only be estimated based
on given very few observations, if β is sparse. The
Lasso (Tibshirani, 1996) and other regularized regres-
sion methods are mostly used for sparse estimation
and variable selection. However, variable selection
in situations involving high empirical correlation or
near linear dependence among few variables remains
one of the most important issues. This problem is en-
countered in many applications such as in microarray
analysis, a group of genes sharing the same biologi-
cal pathway tend to have highly correlated expression
levels (Segal et al., 2003) and it is often desirable to
identify all(rather than a few) of them if they are re-
lated to the underlying biological process.

Various algorithms have been proposed which are
based on the concept of clustering variables first and
then pursuing variable selection. In this paper, we
propose the Stability feature selection using CRL
(SCRL), an approach for first identifying clusters
among the variables using some criterion(discussed in

section 2.2) and then subsequently performing stabil-
ity feature selection on cluster representatives while
controlling the number of false positives. The sta-
bility feature selection consists of repeatedly apply-
ing the baseline feature selection method to random
data sub-samples of half-size, and finally selecting the
features that have larger selection frequency than a
predefined threshold value. Thus, The proposed al-
gorithm, SCLR, is an application of stability feature
selection where the base selection procedure is the
Lasso and the Lasso is applied on the reduced design
matrix of cluster representatives. Since, the Lasso is
repeatedly applied on the reduced design matrix, the
SCRL method is computationally fast as well.

Basically, The proposed method, SCRL is a two-
stage procedure: at the first stage we cluster the vari-
ables and at the second stage we do group selection
by stability feature selection using Lasso for cluster-
representatives. When the group sizes are all one, it
reduces to stability selection. In order to illustrate the
performance of SCRL we carry out a simple simula-
tion. We consider a fixed design matrix Xn×p gener-
ated as

xi = Z1 + εx
i , Z1 ∼ N(0,1), i = 1, ...,5

xi = Z2 + εx
i , Z2 ∼ N(0,1), i = 6, ...,10

xi = Z3 + εx
i , Z3 ∼ N(0,1), i = 11, ...,15

xi i.i.d. ∼ N(0,1), i = 16, ...,20
εx

i i.i.d.∼ N(0,0.01), i = 1, ...,15

In this example, the predictors are divided into three
equally important groups and within each group there

Gauraha, N.
Stability Feature Selection using Cluster Representative LASSO.
DOI: 10.5220/0005827003810386
In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), pages 381-386
ISBN: 978-989-758-173-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

381



are five members. The three groups have pairwise
empirical correlations ρ ≈ 0.9 and the remaining
five are noise features. The true active set is S0 =
{1,2, ...,15}. we generate the response according to
y = Xβ+ ε, where the elements of ε are i.i.d. draws
from a N(0,σ2) distribution. We simulated data with
sample size n = 100 and with predictors p = 20 and
σ = 3 and 15.

As variable selection or screening method we use
the following five methods and compare the true posi-
tives rate(TPR) and the number of false positives(FP):
The Lasso (Tibshirani, 1996), stability selection us-
ing Lasso (Meinshausen and Bühlmann, 2010), CLR
(Bühlmann et al., 2012), CGL (Bühlmann et al.,
2012) and the proposed method SCRL. For the Lasso,
CRL and CGL, we run 50 simulations and we choose
the model with the smallest prediction error among 50
runs. The results are reported in table 1.

Table 1: Comparision of TPR and FP of different methods.

σ Method TPR FP
3 Lasso 0.6 4

Stability Selection 0 0
CGL 1 4
CRL 1 4
SCRL 1 0

15 Lasso 0.4 2
Stability Selection 0 0
CGL 1 1
CRL 1 1
SCRL 1 0

An ideal variable selection method would select
only 15 true predictors and no noise features. The
Lasso tends to select single variable from the group of
correlated or linearly dependent variables. In the case
of Stability Selection none is selected. CGL and CRL
select all true predictors but also select some noise
features. The SCRL selects all true variables and no
noise features. Thus, SCRL gives an optimal solution.

The rest of this paper is organized as follows. In
Section 2, we provide background, review of relevant
work and we discuss our contribution. In section 3,
we describe the proposed algorithm which mostly se-
lects more adequate models in terms of model inter-
pretation with reduced type I error(false positives). In
section 4, we provide simulation studies. Section 5
contains the computational details and we shall pro-
vide conclusion in section 6.

2 BACKGROUND AND
NOTATIONS

In this section, we state notations and define required
concepts. We also provide review of relevant work
and our contribution.

2.1 Notations and Assumptions

We mostly follow the notations in (Bühlmann and
van de Geer, 2011). We consider the usual linear re-
gression setup with univariate response variable Y ∈R
and p-dimensional variables X ∈ Rp:

Yi =
p

∑
j=1

X ( j)
i β j + εi i = 1, ...,n j = 1, ..., p (2)

where εi ∼ N(0,σ2)
or, in matrix notation (as in Equation 1)

y = Xβ+ ε

where β ∈ Rp are unknown coefficients to be esti-
mated, and the components of the noise vector ε ∈ Rn

are i.i.d. N(0,σ2)

L1-norm is defined as:

‖β‖1 = ∑p
j=1 |β j| (3)

L2-norm squared is defined as:

‖β‖2
2 = ∑p

j=1 β2
j (4)

The infinite norm is defined as:

‖β‖∞ = max1≤i≤N||β j| (5)

The true active set is denoted as S0 and defined as

S0 = { j;β j 6= 0} (6)

The estimated parameter vector is denoted as β̂. The
estimated active set is denoted as Ŝ and defined as

Ŝ = { j; β̂ j 6= 0} (7)

We consider true positive rate as a measure of perfor-
mance, which is defined as:

T PR =
|Ŝ⋂S0|
|S0|

(8)

The number of clusters are denoted by q. The parti-
tion, G = {G1, ...,Gq} with ∪q

r=1Gr = {1, ..., p} and
Gr ∩Gl = /0, represents group structure among vari-
ables. The clusters G1, ...,Gq are generated from the
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design matrix X, using methods as described in sec-
tion 2.2. The representative for each cluster is then
defined as (Bühlmann et al., 2012)

X̄ (r) =
1
|Gr| ∑

j∈Gr

X ( j), r = 1, ...,q,

where X ( j) denotes the jth n×1 column-vector of X.
The design matrix of cluster representatives is de-
noted as X̄ .

2.2 Clustering of Variables

To cluster variables we use two methods: correlation
based and canonical correlation based bottom-up ag-
glomerative hierarchical clustering methods. The first
method forms groups of variables based on correla-
tions between them. The second method uses canon-
ical correlation for clustering variables. The con-
struction of groups based on canonical correlations
addresses the problem of linear dependence among
variables, whereas the standard correlation based hi-
erarchical clustering addresses only correlation prob-
lems. For further details on clustering of variables
and determining the number of clusters, we refer to
(Bühlmann et al., 2012).

2.3 The Lasso and the Group Lasso

The Least Absolute Shrinkage and Selection Operator
(Lasso), introduced by Tibshirani (Tibshirani, 1996),
is a penalized least squares method that imposes an
L1-penalty on the regression coefficients. The lasso
does both shrinkage and automatic variable selection
simultaneously due to the nature of the L1-penalty.

The lasso estimator is defined as

β̂Lasso = argmin
β
(‖y−Xβ‖2

2 +λ‖β‖1) (9)

But the Lasso-estimator has some limitations, i.e.,
if some variables are highly correlated with each
other, the lasso tends to select a single variable out of
a group of correlated variables. In certain situations,
when the distinct groups or clusters among the vari-
ables are known a priory and it is desirable to select or
drop the whole group instead of single variables. The
group Lasso (Yuan and Lin, 2007) is used, that im-
poses an L2-penalty on the coefficients within each of
q known groups to achieve such group sparsity.

The Group Lasso estimator(with known q groups)
is defined as

β̂GL = argmin
β
(‖y−

j=K

∑
j=1

X jβ j‖2
2 +λ

j=q

∑
j=1

m j‖β j‖2)

(10)

where the m j =
√
|G j| serves as balancing term

for varying group sizes. The group Lasso behaves like
the lasso at the group level, depending on the value
of the regularization parameter λ, the whole group of
variables may drop out of the model. For singleton
groups (the group sizes are all one), it reduces exactly
to the lasso.

2.4 Cluster Group Lasso

The cluster group Lasso, first identifies groups among
the variables using hierarchical clustering methods
described in section 2.2, and then applies the group
lasso(Equation 10) to the resulting clusters. For more
details on CGL, we refer to (Bühlmann et al., 2012).

2.5 Cluster Representative Lasso

Similar to the CGL, the cluster representative Lasso,
first identifies groups among the variables using hier-
archical clustering and then applies the lasso for clus-
ter representatives (Bühlmann et al., 2012).

The optimization problem for CRL is defined us-
ing response y and the design matrix of cluster repre-
sentatives X̄ as:

β̂CRL = argmin
β
(‖y− X̄β‖2

2 +λCRL‖β‖1) (11)

The selected clusters are then denoted as:

Ŝclust,CRL = {r; β̂CRL,r 6= 0,r = 1, ...,q}
and the selected variables are obtained as the

union of the selected clusters as:

ŜCRL = ∪r∈Ŝclust,CRL
Gr

2.6 Stability Feature Selection

The stability feature selection, introduced by N.
Meinhausen and P. Buhlmann (Meinshausen and
Bühlmann, 2010), is a general technique for perform-
ing feature selection while controlling the type-I er-
ror. It is combination of sub-sampling and high-
dimensional feature selection algorithms, i.e., the
Lasso. It provides a framework for the baseline fea-
ture selection method, to identify a set of stable vari-
ables that are selected with high probability. Mainly,
it consists of repeatedly applying the baseline feature
selection method to random data sub-samples of half-
size, and finally selecting the variables which have se-
lection frequency larger than a fixed threshold value
(usually in the range (0.6, 0.9) ). For further details
see (Meinshausen and Bühlmann, 2010).
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2.7 Review of Relevant Work and Our
Contribution

This section provides a review of relevant work in or-
der to show that how our proposal differs or extend
the previous studies.

It is known that the Lasso can not handle the situ-
ations where predictors are highly correlated or group
of predictors are linearly dependent. In order to deal
with such situations, various algorithms have been
proposed which are based on the concept of cluster-
ing variables first and then pursuing variable selec-
tion, or clustering variables and model selection si-
multaneously.

The methods that perform clustering and model
fitting simultaneously are The Elastic Net (Zou and
Hastie, 2005), Fused LASSO (Tibshirani et al., 2005),
OSCAR(octagonal shrinkage and clustering algo-
rithm for regression) (H. and B., 2008) and Mnet
(Huang et al., 2010). ENet uses a combination of the
L1 and L2 penalties, OSCAR uses a combination of
L1 norm and and L∞ norm and Mnet uses a combina-
tion of the MCP(minimum concave penalty) and L2
penalties. As these methods are based on combina-
tion of penalties, they do not use any specific informa-
tion on the correlation pattern among the predictors,
Hence they can not handle linear dependency prob-
lem. Moreover Fused Lasso is applicable only when
the variables have a natural ordering and not suitable
to perform automated variable clustering to unordered
features.

We list few methods that perform clustering and
model fitting at different stages: Principal component
regression (M., 1957) , Tree Harvesting (Hastie et al.,
2001), Cluster Group Lasso (Bühlmann et al., 2012),
Cluster representative Lasso(CRL) (Bühlmann et al.,
2012) and the sparse Laplacian shrinkage (SLS) (J.
et al., 2011)). All these methods have been proven
to be consistent variable selection techniques but they
fail to control the false positive rate.

Since the Lasso tends to select only one variable
from the group of strongly correlated variables(even if
many or all of these variables are important), the sta-
bility feature selection using Lasso does not choose
any variable from the group of highly correlated vari-
ables because correlated variables split the vote. To
overcome this problem we propose to cluster the vari-
ables first and then do stability feature selection using
Lasso for cluster-representatives. Basically, our work
can be viewed as an extension of CRL (Bühlmann
et al., 2012) and an application of stability feature
selection (Meinshausen and Bühlmann, 2010). We
compare our algorithm with the CRL, in terms of vari-
able selection in section 4. Our simulation studies

shows that our method outperforms the CRL.

3 STABILITY FEATURE
SELECTION USING CRL

We consider high dimensional setting, where group
of variables are strongly correlated or there exist near
linearly dependency among few variables. It is known
that the Lasso tends to select only one variable from
the group of highly correlated or linearly dependent
variables even though many or all of them belong to
the active set S0. Various techniques based on cluster-
ing in combination with sparse estimation have been
proposed in past for variable selection, or in more
mathematical terms, to infer the true active set S0,
but mostly they fail to control the selection of false
positives. In this article, Our aim is to identify the
true active set and to control false positives simultane-
ously. We use the concept of clustering the correlated
or linearly dependent variables and then selecting or
dropping the whole group instead of single variables
similar to the CRG method proposed in (Bühlmann
et al., 2012). The stability feature selection has been
proven for identifying the most stable features and for
providing control on the family-wise error rate, we
recommend (Meinshausen and Bühlmann, 2010) for
theoretical proofs. In order to reduce the selection of
false positive groups, we propose to combine the CRL
with sub-sampling, we call it SCRL, stability feature
selection using CRL.

The proposed SCLR method can be seen as an
application of stability feature selection where the
base selection procedure is the Lasso and the Lasso
is applied on the reduced design matrix of clus-
ter representatives. The advantage of using reduced
design matrix of cluster representatives are as follows:

(a) The plain stability feature selection, where
the baseline feature is the Lasso and the Lasso is
applied on the whole design matrix X(there is no
pre-processing step of clustering the variables). It
is a special case of SCRL when the group sizes are
all one. The plain stability feature selection is not
suitable for variable selection when the variables are
highly correlated because the underlying selection
method Lasso tends to select single variables per
cluster, it selects none from the correlated groups
as the vote gets split within the cluster variables.
Therefore, using the reduced design matrix ensures
the most stable group selection.
(b)The Lasso is repeatedly applied on the reduced
design matrix, therefore the SCRL method is
computationally fast as well.
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Algorithm 1: SCRL Algorithm.

Input: dataset (y,X), ClusteringMethod
Output: Ŝ:= set of selected variables
Steps:
stage 1:
1. Perform clustering, Denote clusters as
G1, ...,Gq
2. Compute the matrix of cluster
representatives, denote it as X̄
stage 2:
3. perform stability feature selection using
response Y and the reduced design matrix X̄
Denote the selected set of groups as
ŜG = {r; cluster Gris selected, r = 1, ...,q}.
4. The union of the selected groups is the
selected set of variables
Ŝ = ∪rr ∈ Ŝcluster
return Ŝ

Similar to the CRL method, The proposed method
SCRL(Algorithm 1) is a two-stage procedure: the first
stage is exactly the same as the CRL, where we clus-
ter the variables based on the criterion discussed pre-
viously and compute the design matrix of cluster rep-
resentatives. At the second stage we perform group
selection by stability feature selection using Lasso for
cluster-representatives. When the group sizes are all
one, it reduces to the plain stability selection.

4 NUMERICAL RESULTS

In this section, we consider two simulation settings
and a semi-real data example. We compare the per-
formances of CRL and SCRL. In each example, data
is simulated from the linear model (Equation 1) with
fixed design X. These examples are similar to the ex-
amples used in the paper (Bühlmann et al., 2012).

We consider the true positive rate(and also the
number of false positives) as a measure of perfor-
mance, which is defined in Equation 8.

4.1 Example 1: Block Diagonal Model

We generate covariates from Np(0,Σ1), where Σ1 con-
sists of 10 block matrices T , where T10×10 is a block
diagonal matrix, defined as

T j,k =

{
1, j = k
.9, else

The true active set and true parameters β are
defined as: S0 = {1,2, ...,20} and for any j ∈ S0
we sample β j from the set {.1, .2, .3, ...,2} without

replacement. This setup has all the active variables in
the first two blocks of highly correlated variables.

Simulation results are reported in table 2. We no-
tice that the TPR is the same for both the methods, but
SCRL has lower false positives than CRL.

Table 2: Performance measures for example 1.

σ Method TPR FP
3 SCRL 1 0

CRL 1 40
15 SCRL 1 0

CRL 1 60

4.2 Example 2: Single Block Design

We generate covariates from Np(0,Σ2), where Σ2 con-
sisted of a single group of strongly correlated vari-
ables of size 30, it is defined as

Σ2; j,k =





1, j = k
0.9 i, j ∈ {1, ...,30} and i 6= j,
0 otherwise

The remaining 70 variables are uncorrelated. The true
active set and true parameters beta are defined as:
S0 = {1,2, ...,15}∪{31,32, ...,35} and for any j ∈ S0
we sample β j from the set {.1, .2, .3, ...,2} without re-
placement. The first block of size 30 contains 25, the
most of the active predictors.

Simulation results are reported in table 3. The
TPR is the same for both the methods, but SCRL has
lower false positives than CRL.

Table 3: Performance measures for example 2.

σ Method TPR FP
3 SCRL 0.9 5

CRL 0.9 24
15 SCRL 0.9 5

CRL 0.9 33

4.3 Example 3: Pseudo-real Data

We consider a real dataset, riboflavin(n = 71, p =
4088) data for the design matrix X with syn-
thetic parameters beta and simulated Gaussian errors
Nn(0,σ2I). See (Bühlmann et al., 2014) for details on
riboflavin dataset. We fix the size of the active set to
s0 = 10. For the true active set, we randomly select a
variable k, and the nine variables which have highest
correlation to the variable k, and for each j ∈ S0 we
set β j = 1.

The performance measures are reported in table 4.
The TPR is the same for both the methods, but SCRL
has lower false positives than CRL.
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Table 4: Performance measures for semi-real dataset.

σ Method TPR FP
3 SCRL 1 0

CRL 1 5
15 SCRL 0.7 3

CRL 0.7 7

4.4 Empirical Results

We clearly see that in both of the simulation settings
and in the pseudo-real example, the SCRL method
outperform the CRL, since the number of false pos-
itives selected by CRL is much larger than the SCRL.

5 COMPUTATIONAL DETAILS

Statistical analysis was performed in R 3.2.2. We
used, the packages “glmnet” for penalized regression
methods(the Lasso) , the package “gglasso” to per-
form group Lasso, the package “ClustOfVar” for clus-
tering of variables and the package ‘hdi” for stability
selection. All mentioned packages are available from
the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/.

6 CONCLUSIONS

In this article, we proposed a two stage procedure,
SCRL, for variable selection with controlled false
positives in high-dimensional regression model with
strongly correlated variables. At the first stage, SCRL
identifies the clusters or group structures using some
criterion and clusters representatives are computed for
each cluster. At the second stage these cluster repre-
sentatives are then used in order to more accurately
perform stability feature selection while controlling
the type-I error. Our algorithm is an application of
stability feature selection with the baseline feature se-
lection method used as the Lasso. Since the Lasso
tends to select only one variable from the group of
strongly correlated or linearly dependent variables,
the stability feature selection using Lasso selects none
of the variables from the correlated/linearly depen-
dent group because the vote gets spit among the cor-
related variables. To address this issue we use the
reduced design matrix of cluster representatives for
stability feature selection. The stability feature selec-
tion has been proven for identifying the most stable
features and for providing control on the family-wise
error rate. Therefore, the SCRL reports most stable
groups with controlled false positives. In addition,

it also offers computational advantage, as the Lasso
method only has to be applied on reduced design ma-
trix.
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