
Adaptive Push-based Media Streaming in the Web

Luigi Lo Iacono and Silvia Santano Guillén
Cologne University of Applied Sciences, Cologne, Germany

Keywords: Adaptive Media Streaming, Push-based Streaming, Web, WebSocket.

Abstract: Online media consumption is the main driving force for the recent growth of the Web. As especially real-
time media is becoming more and more accessible from a wide range of devices, with contrasting screen
resolutions, processing resources and network connectivity, a necessary requirement is providing users with
a seamless multimedia experience at the best possible quality, henceforth being able to adapt to the specific
device and network conditions.
This paper introduces a novel approach for adaptive media streaming in the Web. Despite the pervasive pull-
based designs based on HTTP, this paper builds upon a Web-native push-based approach by which both the
communication and processing overheads are reduced significantly in comparison to the pull-based counter-
parts. In order to maintain these properties when enhancing the scheme by adaptation features, a server-side
monitoring and control needs to be developed as a consequence. Such an adaptive push-based media streaming
approach is introduced as main contribution of this work. Moreover, the obtained evaluation results provide
the evidence that with an adaptive push-based media delivery, on the one hand, an equivalent quality of ex-
perience can be provided at lower costs than by adopting pull-based media streaming. On the other hand, an
improved responsiveness in switching between quality levels can be obtained at no extra costs.

1 INTRODUCTION

In the early days of the Internet, video technologies
have been using specific streaming protocols such
as Real-Time Protocol (RTP) (Audio-Video Trans-
port Working Group, 1996) or Real-Time Streaming
Protocol (RTSP) (Schulzrinne et al., 1998). A cur-
rent trend is to deliver video content using HTTP-
based adaptive streaming instead, including Microsoft
Smooth Streaming (MSS) (Microsoft Corporation,
2015), Apple HTTP Live Streaming (HLS) (Pan-
tos, 2015), Adobe HTTP Dynamic Streaming
(HDS) (Adobe, 2013), and MPEG Dynamic Adap-
tive Streaming over HTTP (DASH) (ISO/IEC Moving
Picture Experts Group (MPEG), 2014). Reasons for
this broad adoption of HTTP as foundation for media
streaming include the reachable amount of potential
consumers through the Web, the cost efficient deploy-
ment on standard HTTP servers and the exploitation
of available scalability infrastructures such as Content
Delivery Networks (CDN) (Held, 2010).

HTTP-based streaming protocols require that the
client periodically fetches sequential file-based media
chunks in order to retrieve and reconstruct the content.
This is especially true for live streaming settings. This
pull-based media distribution approach has strengths

in respect to scalability and fault-tolerance, since the
client is able to request chunks from different media
servers. On the other hand, it comes with system-
inherent costs due to the continuous request of me-
dia chunks. Moreover, the pull-based nature of me-
dia streaming over HTTP affects the way the adap-
tive change to media delivery conditions is performed.
The decision what quality level to choose for the next
media chunks needs to be taken on the client-side.
Thus, the media player application requires measur-
ing media delivery and rendering parameters for de-
termining e.g. the present network conditions. The
client then uses these observations for selecting a suit-
able quality level for the next media chunk to pull, i.
e. the best quality that still ensures a seamless and
smooth media playback. With regard to the adap-
tation a common procedure is to prepare the me-
dia content in distinct quality levels by encoding the
source media at different bitrates. The client is then
able to switch between these variations of the content.
This is commonly denoted as stream-switching. Al-
though having multiple versions of the same media
content implies much higher storage demands on the
server, an advantage is that the adaption does not re-
quire further processing during the transmission and
that this does not rely on any particular properties of

Iacono, L. and Guillén, S.
Adaptive Push-based Media Streaming in the Web.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 121-129
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

121



the employed codec, thus being codec-agnostic. An-
other approach is based on scalable codecs such as
H264/MPEG-4 AVC (ISO/IEC Moving Picture Ex-
perts Group (MPEG), 2012). Such codecs support
spatial and temporal scalability enabling the adap-
tation of resolution and frame rate. The difference
to stream-switching is that the raw source media is
encoded only once. However, the drawback is that
it imposes some restrictions, such as the need for
specialized servers and the limited amount of avail-
able codecs. Transcoding-based approaches adapt
the video content to a specific bitrate on-the-fly by
transcoding the raw content. Since this transcoding
needs to be performed for each client, the processing
load increases significantly providing a limited scala-
bility.

The contribution of this paper is the introduction
of a novel adaptive media streaming approach for the
Web. In opposite to the currently available technolo-
gies and standards, the proposed scheme provides an
adaptive push-based media delivery. By pushing me-
dia segments from the server to the client, the over-
heads inherent to the pull-based counterparts can be
omitted completely (Lo Iacono and Santano Guillén,
2014). As a consequence, the monitoring of qual-
ity of experience parameters and according decision-
making logic need to be present on the server-side.
This paper extends the approach introduced in (Lo Ia-
cono and Santano Guillén, 2014) by adaptation capa-
bilities and evaluates various metrics in comparison
to the pull-based approaches. One major aspect that
has been investigated is the time required for switch-
ing between distinct quality levels. With the intro-
duced adaptive push-based media delivery approach
the usual trade-off between media segment length and
data expansion is mitigated. The remainder of this pa-
per is organized as follows: Section 2 gives a brief
review on the available related work in both commer-
cial products and algorithms proposed in the litera-
ture. Section 3 introduces the adaptive push-based
media streaming approach and describes a reference
implementation. Based on this functional prototype
the contributed approach is evaluated in Section 4.
The paper concludes in Section 5 by summarizing the
obtained findings and by discussing future work.

2 RELATED WORK

Related work can roughly be classified in solu-
tions used in commercial products and research
work from scientific publications. Microsoft Smooth
Streaming (MSS) (Microsoft Corporation, 2015) is
an extension of the Microsoft HTTP server IIS (In-

ternet Information Server) (Kenneth Schaefer, Jeff
Cochran, Scott Forsyth, Dennis Glendenning, Ben-
jamin Perkins, 2012) that enables HTTP-based media
streaming of H.264 (ISO/IEC Moving Picture Experts
Group (MPEG), 2012) video and AAC (ISO/IEC
Moving Picture Experts Group (MPEG), 2004) au-
dio to Silverlight and other clients. The video con-
tent is segmented into small chunks that are delivered
over HTTP. As transport format of the chunks, MSS
uses fragmented ISO MPEG-4 (ISO/IEC Moving Pic-
ture Experts Group (MPEG), 2012) files. To address
the unique chunks MSS uses time codes in the re-
quests and thus the client does not need to repeatedly
download a meta file containing the file names of the
chunks. Apple’s HTTP Live Streaming (HLS) (Pan-
tos, 2015) solution is currently an Internet Draft
at the Internet Engineering Task Force (IETF). As
MSS, HLS also enables the adaptive media stream-
ing of H.264 video and AAC audio. The HLS client
downloads a playlist containing the meta data for
the available media streams, which use MPEG-2 TS
(Transport Stream) (ISO/IEC Moving Picture Experts
Group (MPEG), 2013) as wire format. The me-
dia content is embedded into a Web page using the
HTML5 video element (Berjon et al., 2014), whose
source is the m3u8 manifest file, so that both the pars-
ing of the manifest and the download of the chunks
are handled by the browser. With less success re-
garding the adoption in the market, HTTP Dynamic
Streaming (HDS) (Adobe, 2013) is a similar solu-
tion from Adobe. Like MSS and HLS, HDS breaks
up video content into small chunks and delivers them
over HTTP. The client downloads a manifest file in bi-
nary format, the Flash Media Manifest (F4M), at the
beginning of the session and periodically during its
lifetime. As in MSS, segments are encoded as frag-
mented MP4 files that contain both audio and video
information in one file. It differs, however, from MSS
with respect to the use a single meta data file from
which the MPEG file container fragments are deter-
mined and then delivered. In this respect, HDS fol-
lows the principle used in HLS instead, which re-
quests and transmits individual chunks via a unique
name.

A current trend, in which consumers move from
desktop computers to smartphones, tablets, and other
specialized devices to consume real-time multime-
dia leads to the situation that these devices present
huge differences in terms of compatibility. Thus,
the delivery of media to any of these platforms re-
quires the support of a large number of streaming
protocols as well as media formats and codecs. To
address this issue, the MPEG standardization group
has developed a general standard for the delivery

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

122



of adaptive streaming media over HTTP with the
aim of harmonizing the various proprietary technolo-
gies. The so called Dynamic Adaptive Streaming
over HTTP (DASH) (ISO/IEC Moving Picture Ex-
perts Group (MPEG), 2014) allows standard-based
clients to retrieve content from any standard-based
Web server. Its principle is to provide formats that en-
able efficient and high-quality delivery of streaming
services over the Web to provide very high user ex-
perience by providing a low start-up, no re-buffering
and trick modes. To accomplish this, it proposes the
reuse of existing technologies in relation to contain-
ers, codecs, DRM, etc. and the deployment on top
of Content Distribution Networks (CDN). It specifies
the use of either MPEG-4 or MPEG-2 TS chunks and
an XML manifest file that lists the available chunks,
the so-called Media Presentation Description (MPD).
As an intermediate result it can be noted, that all ma-
jor commercial HTTP-based adaptive media stream-
ing solutions as well as the MPEG-DASH standard
make use of stream-switching together with the pull-
based delivery model.

A multitude of adaptation methods for determin-
ing network conditions and adjusting to them based
on various parameters and proposing different archi-
tectures can be found in the literature. Most of the
mechanisms are either client-based or require feed-
back from the client. (Kim et al., 2013), (Liu et al.,
2011), (Douga et al., 2014) and (Jiang et al., 2012)
belong to the first category and present e.g. client-
based adaptation approaches based on the change be-
tween measured throughput over time, the throughput
measured based on the segment fetch time, the client-
side buffered video time or the harmonic mean of the
bandwidth estimation over the last 20 chunks respec-
tively. To the second category belong e.g. (Bouras
and Gkamas, 2005), (Jammeh et al., 2009), presenting
an architecture such that measurements are performed
by the receiver, which returns a feedback message to
the server. The first one describes a network mon-
itoring module, which uses metrics such as packet
loss rate and delay jitter while the second proposes
a closed loop congestion controller based on fuzzy
logic utilizing packet inter-arrival times (packet dis-
persion) and its rate of change as inputs. Another
approach founded on the same principle of requiring
some sort of feedback from the client is followed by
(Balk et al., 2003) and (Papadimitriou and Tsaous-
sidis, 2007), which propose own developed protocols
on top of UDP and make use of the Round Trip Times
(RTT) of empty ACK messages from the client as
metric to estimate the network conditions.

Less common but more related to the present work
are approaches, which perform media stream adapta-

tion on the server-side solely. Such approaches can be
found e.g. in (De Cicco et al., 2011) and (Kuschnig
et al., 2010). Both adaptation mechanisms are com-
pletely server-side, i.e. measuring, estimation and ac-
tuation are carried out at the server and thus the con-
trol loop does not require any explicit feedback from
the client. (De Cicco et al., 2011) presents a quality
adaptation controller which takes as input the queue
length of the sender buffer placed at the server to se-
lect the video level. (Kuschnig et al., 2010) describes
an evaluation of different rate-adaptive streaming al-
gorithms for TCP. In this approach, the proposed
server-side adaptive streaming system makes use of
different metrics to estimate the network conditions,
such as the time spent for the transmission of a spe-
cific media block, the current congestion window and
the estimated RTT of the TCP connection.

3 ADAPTIVE PUSH-BASED
MEDIA STREAMING

The architecture of the proposed adaptive push-based
media streaming approach is shown in Figure 1. As
for the pull-based streaming protocols, it is based on
the provisioning of short media segments produced
in various quality levels. The distinguishing point of
the present contribution is that the stream-switching
decision is conducted on the server-side and that the
push-based media distribution model is deployed as
foundational concept. The main reason for this deci-
sion is to introduce a media streaming approach for
the Web with minimal overhead.

The proposed scheme is capable of detecting
the current data throughput rate for each established
client connection and delivering the best-most media
quality chosen from a set of provided quality levels.
The measurements as well as the adaptation process
occur on the server-side, reducing the amount of con-
trol and meta data to be exchanged between client and
server to a minimum. Actually this approach does not
require any feedback from the client to ascertain the
current available data throughput rate. Moreover, the
proposed approach is based on the media push model.
Thus, the server sends the available video segments to
all connected clients in playback order, without hav-
ing the client request each of them.

The low-overhead application-level WebSockets
protocol opens the path for implementing the push-
based approach for the Web (Lo Iacono and San-
tano Guillén, 2014). A WebSocket is a permanent
bidirectional channel between a WebSocket client—
most commonly a Web browser—and a WebSocket
server through which the media segments can be

Adaptive Push-based Media Streaming in the Web

123



Measure current
throughput

WS 
Client

Media
Source

HTML5
Player

TCP buffer

Select 
video quality

Video segments

Lowest
quality

Highest
quality

...

WebSocket

Adaptive push-based
media stream

MEDIA SERVER

WEB BROWSER

Figure 1: Adaptive push-based media delivery architecture.

pushed.

3.1 Server-side Components

As Figure 1 depicts, the media delivery process on the
server is carried out in distinct phases. The process
includes the in sequence retrieval of the segments, the
decision on how to schedule the content feeding to
the output buffer, the feedback from the own process
about the current throughput and the selection of the
appropriate quality level for the next segment to be
sent. The strategy followed by the server in terms of
chunk scheduling is immediate-sending, meaning that
the next chunk is sent as soon as it is available for
delivery as long as the output buffer is not full.

To the best of the authors’ knowledge, and fol-
lowing the encapsulation principles of the OSI ref-
erence model, there are no WebSocket libraries that
provide the mechanisms to provide higher-level lay-
ers with information about the underlying TCP con-
nection that allow recognizing at application level
the current status of the channel, such as the TCP
buffer state. They merely provide the means neces-
sary to handle the connection between both endpoints
at a very high level by simple asynchronous read and
write operations. In consequence, the server has been
developed using plain TCP sockets as base and im-
plementing an own version of the WebSocket proto-
col on top of it as communication means. The imple-
mentation in C# programming language is based on
blocking TCP methods that the classes TcpListener
and TcpClient .NET System.Net.Sockets names-
pace provide. By utilizing blocking methods, op-
posed to the majority of other implementations, the
buffer state can be estimated measuring sending times
based merely on TCP ACK feedback instead of on ex-
plicit messages from the client. This allows for calcu-
lating the current media throughput. The average of
this metric over the last sent segments is a good indi-
cator to assess how quickly the packets leave the TCP
buffer and thus is used to select next segment’s quality
level. The selection algorithm employed relies on the
essential requirement of ensuring correct playback at
the client, which implies taking the measured value
as threshold and selecting the highest quality media

bitrate below it.
To enable a maximum performance based on the

blocking TCP functions, it is mandatory to adjust the
buffer size on the sender side accordingly. The buffer
size might have a considerable effect on the quality
of the transmission when selected inappropiately. It
is enforced that this does not result too small in com-
parison with the average size of a segment, since this
would cause the application to react with a large la-
tency to network condition changes. On the other
side, the buffer size should also not be too large as
setting it larger than the segment size would cause
the content to be sent through too quickly leaving the
buffer very soon and having as a consequence that the
metrics would not be reliable.

3.2 Client-side Components

Although this adaptive push-based media streaming
approach follows in many aspects the MPEG-DASH
standard, yet standard DASH players are not ade-
quate to be used on the client side. The reason lies
in the fundamentally different delivery approach. The
player has been developed using the JavaScript Web-
Socket API (Hickson, 2012), the HTML5 Video ele-
ment for video rendering and the MediaSource Exten-
sions (Colwell et al., 2015) to feed the Video element
with the segmented content.

When new content is received, it is appended to a
processing queue from which they will be chained to
a playing buffer. In order to enable the video player to
perform a switch between streams of distinct quality,
the server provides the client with the initialization
segment i.e. meta data describing the media of the
new representation each time a switch occurs. This
meta data file is chained into the stream the same way
as every other segment. As the proposed push-based
media streaming approach is controlled completely
by the server, there is no need for a manifest file as
in other implementations, which have the purpose of
informing the client of the available content.

4 EVALUATION

An experimental evaluation has been conducted in or-
der to derive the properties of the proposed adaptive
push-based media streaming approach. The main ob-
jective is to evaluate how precisely and fast the sys-
tem is able to adapt to network changes as well as
how efficiently this can utilize the available connec-
tion. In addition, several different segment durations
have been investigated to assess what the segment
duration when generating adaptive streaming content

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

124



should be, on account of how the duration affects the
viewing quality in various aspects. This decision of-
ten comprises a trade-off between two characteristics:
the flexibility when adapting to network changes and
the encoding efficiency, both desirable and unfortu-
nately going in opposite directions.

Previous work on this topic concludes that a good
recommendation for HTTP Adaptive Streaming is to
use a segment length between 2 and 3 or between 5
and 8 seconds, depending on whether persistent con-
nections are established or not. Well-known solu-
tions like Microsoft’s Smooth Streaming use 2 sec-
onds as default segment duration, since connection
details are updated every 2 seconds (Microsoft Cor-
poration, 2015), while Apple recommends up to 10
seconds on their HTTP Live Streaming solution (Ap-
ple Inc., 2014). The expectations are, however, that
when it comes to a low-overhead protocol such as the
adaptive push-based approach introduced in this pa-
per, a good compromise on the segment length can
be achieved and that this falls even lower as for those
over HTTP, leveraging its reduced header overhead
and its push abilities to get higher flexibility on qual-
ity switching.

Having a long segment length, although favorable
to obtain higher encoding efficiency, may cause play-
back stalls when the Internet connection is changing
over time. There is another important disadvantage
of long segment lengths with major effects on live
streaming with regard to start-up latency, since the
longer the segment length is, the longer is the time
users need to wait for the first picture to be received.
On the other hand, if the proposed approach were
used to send short segments the switches between
qualities would be faster and smoother. Thus, having
removed the downside of the overhead increase HTTP
protocol would produce when increasing the number
of requests using shorter chunks, the initial assump-
tion is that the proposed push-based approach would
benefit of having a short segment duration.

4.1 Content Preparation

The video used for this experiment is the 10 minute
open movie Elephants Dream (Blender Foundation,
2006). Each video-set is composed of five different
quality levels, with the characteristics shown in Table
1. In total ten video-sets have been evaluated, pack-
etized in chunks of different segment lengths varying
between 0.5 and 20 seconds.

FFmpeg 1 has been used for transcoding and
mp4box 2 for MPEG-DASH packetizing. A key pa-

1https://www.ffmpeg.org
2https://gpac.wp.mines-telecom.fr/mp4box/

Table 1: Quality levels of video content for evaluation.

Quality Level Resolution Bitrate [kbps]
QL0 426x240 800
QL1 640x360 1200
QL2 854x480 1600
QL3 1280x720 2600
QL4 1920x1080 4000

rameter to consider in the transcoding process is the
GOP (Group Of Pictures), which governs how the dif-
ferent types of video frames are chained. An I-frame
is a picture that is coded independently of all other
pictures. P- and B-frames contain difference informa-
tion relative to previously decoded pictures. The GOP
has an influence on many aspects including the media
structure and playback. A very significant one is re-
lated to media segmentation. A decoder or player is
not be able to play back a segment, which does not
start with an I-frame. Thus, it is not possible to split
the content into different segments at a point other
than an I-frame. The duration of all segments must be
equal in addition. Another relevant characteristic is
the seamless quality level switching. Since the player
can switch to the playback of a new representation
only from an I-frame, this type of frames must be lo-
cated on the same position in all of them to avoid time
jumps in the playback. The GOP length is henceforth
strongly related to the segment duration.

With these requirements in mind, the GoP has
been set to be self-contained (closed), meaning that
it starts with an I-frame, it is independent from
previous I-frames and it does not refer frames from
other GOPs. Moreover, the GOP length as well as the
key-frame interval has been set in way that just one
GOP is included in every segment, according to:

Frame rate [fps] * Segment duration [s]

The framerate has been set to 24 fps in ev-
ery case and the resolution is the only factor which
differ from one another, starting from 426x240 in the
lowest quality (QL0) to 1920x1080 in the highest
one (QL4), which gives as a result a video overall
bitrate of approximately 800, 1200, 1600, 2600
and 4000 kbps respectively, as listed in Table 1.
Afterwards, mp4box has been used to segment the
video in chunks of small duration and according to
DASH AVC 264 (DASH Industry Forum, 2015) for
ten different segment lengths (see Table 2).

Adaptive Push-based Media Streaming in the Web

125



4.2 Evaluation Results

The experimental evaluation results demonstrate how
the proposed approach performs compared to pull-
based counterparts based on HTTP. In addition, the
experiments support the initial assumptions regarding
the trade-off between the encoding efficiency and the
adaptation flexibility, showing effects of the segment
length. The file size on hard disk each set requires is
used as metric to assess the encoding efficiency. The
size is affected because of how media content is struc-
tured, using different types of frames, i.e. I-, P- and
B-frames. The higher the amount of I-frames there
is, the larger the size will be, and this is very much
related to the segment length. For the investigated
content, this comparison is represented in form of a
bar graph in Figure 2 for each video set and the same
quality level, in this case the lowest quality (QL0) for
all. When reducing the segment length the size in-
creases considerably, resulting in a remarkable size
difference between the highest and the lowest length,
with around 1.3 GB and 1.53 GB, respectively. On
the other hand, the variation is negligible between a
segment length of 5 and one of 20 seconds.

11500000

12000000

12500000

13000000

13500000

14000000

14500000

15000000

15500000

0,5 1 2 3 4 5 6 10 15 20

V
id

e
o

 s
iz

e
 [

B
yt

e
s]

Segment length [Seconds]

Figure 2: Total size of the video for each set of the same
representation.

The application level protocol used for the trans-
mission also introduces an overhead that adds to the
media size. It also depends on the number of seg-
ments. As mentioned previously, the use of HTTP
as application level transfer protocol produces a large
overhead for short segment durations, much higher
than that from WebSocket protocol for the same case.
The table in the appendix shows an approximation of
the average overhead that would be produced for each
video set and for each of the quality levels in case of
using HTTP, regarding the overhead generated by up-
dating the manifest file and the intrinsic overhead of
using HTTP for the media transmission in contrast
to the overhead of this push-based approach. The
results present very different results for each imple-
mentation, which may have a significant impact on
resources needed and ultimately on the final costs for
the transmission. For the worst case, i.e. using very

small chunks of 0.5 seconds, the sum of HTTP over-
head and the manifest overhead can be as high as
4.82 % of the total size for the lowest quality level,
compared to as slow as 0,0086 %, practically negli-
gible, for a WebSocket implementation. This differ-
ence lies in the amount of meta data that needs to be
sent, including request and response headers as well
as the manifest file necessary on HTTP-based adap-
tive streaming mechanisms, which in many imple-
mentations is updated every time before requesting a
new chunk for live streaming. The size of this file
varies for each stream. However, its average size is of
several KB. The percentage of overhead in relation to
the video size is always higher for lower qualities due
to the fact that higher quality videos occupy more size
in memory. Therefore, for the same segment length,
0.5 seconds, the overall HTTP and manifest overhead
would add up to 1.15 % of the total size for the best
quality in HD.

The architecture of the experimental setup con-
sists merely on the evaluation client and the media
server, which are connected through a local network,
to ensure that the bandwidth when no specific set-
tings apply is high, and a bandwidth shaper between
them. The bandwidth shaper controls the maximum
achievable bandwidth with the Linux traffic control
system tc. The tests have been carried out creating
specific queuing disciplines with qdisc and a hierar-
chical token bucket htb applied to the specific inter-
face and port to limit the client download rate. The
video stream is sent over this link whose maximum
available throughput changes following the function
depicted in Figure 3, with a minimum value of 1000
kbps and maximum value of 4000 kbps with random
step variations that occur at multiples of t=50 seconds.

100 200 300 400 500 600 700

1,000

2,000

3,000

4,000

Time (s)

B
an

d
w
id
th

(k
b
p
s)

Figure 3: Data throughput shaping function.

Such scenarios with abrupt changes to the
throughput are commonly used to evaluate dynamic
system responses and observe how precise and how
quickly the controller is able to adapt the video level
to fast bandwidth variations. It has been employed
in previous research as the mentioned in Section 2
to evaluate the key features of the response of adap-
tive streaming controller. The same bandwidth shap-
ing function has been applied to all of the video-sets.
These differ in the total media size, which explains
why the total transmission of short segments video-

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

126



sets takes more time than for that of longer segments.
On the client side, the traffic has been captured us-
ing Wireshark3 to extract the variations of the chang-
ing throughput. These measurements have been com-
bined in a graph with the information the client ob-
tains about the quality level of each of the segments
received and the timestamp of the arrival. The con-
trast they show gives the pursued information to grasp
the response of the adaptive controller. Figures 4, 5
and 6 are composed of the measured throughput in
kbps for the application represented by a black line
and the quality level of the segments, where each seg-
ment is marked as a red spot at the point in time it was
received. Figure 4 shows how instant an implemen-
tation with short segments of 0.5 seconds each can
adapt to match the available bandwidth, which is less
than two seconds when the bandwidth increases and
from 10 to 15 seconds when the bandwidth decreases.
Figure 5 contains the results obtained by a scenario
with segments of a length of 4 seconds each. It gets
apparent that in comparison to the previous evalua-
tion scenario this shows a poor adaptiveness espe-
cially when the bandwidth goes down, causing stalls
in video playback as the bitrate of the quality level is
well over the available bandwidth. Figure 6 shows an
extreme case where the segment length is 10 seconds
and the system is not able to react in time to match
the available bandwidth. From a consumer viewpoint
this would result in unpleasant consequences, leading
to a very poor viewing experience caused by repetitive
stalls in the playback.

Figure 4: Stream-switching results for a segment length of
0.5 sec.

.
Figure 5: Stream-switching results for a segment length of
4 sec.

3https://www.wireshark.org/

Figure 6: Stream-switching results for a segment length of
10 sec.

5 CONCLUSION

The achieved results from the conducted evaluations
show very favorable improvements when implement-
ing adaptive media streaming in the Web following
a pushed-based delivery model. This contribution is
based on the low-overhead WebSocket protocol lever-
aging its abilities for reducing communication over-
heads while eliminating the exchange of meta data in
particular. To further reduce the overhead, all adapta-
tion measures have been implemented on the server-
side, obsoleting otherwise required synchronization
communications. The performed evaluations also an-
alyze the effect of the segment length on an adap-
tive implementation to ascertain which length best
fits. According to the obtained results, a trade-off
stemming out of the segment length. In respect to
the introduced adaptive push-based media streaming
approach this trade-off is lessened due to the gener-
ally low footprint of the protocol. The data expan-
sion coming with small segment lengths can be partly
compensated by the minimal protocol overhead. A
compromise lies in a segment length of around 1 sec-
ond, allowing for a responsive adaptation to network
changes while still increase the data volume only
moderately. Hence, when adopting the introduced
approach, one gets an additional degree of freedom
when designing adaptive Web-based media streaming
services. The design can either optimize for mini-
mal data expansion or for a maximal responsiveness
to changing conditions.

REFERENCES

Adobe (2013). Adobe HTTP Dynamic Streaming Specifi-
cation.
http://wwwimages.adobe.com/content/dam/Adobe/en
/devnet/hds/pdfs/adobe-hds-specification.pdf.

Balk, A., Maggiorini, D., Gerla, M., and Sanadidi, M. Y.
(2003). Adaptive mpeg-4 video streaming with band-
width estimation. In Proceedings of QoS-IP.

Berjon, R., Faulkner, S., Leithead, T., Navara, E. D.,
O’Connor, E., Pfeiffer, S., and Hickson, I.
(2014). HTML5 Video Element. Working

Adaptive Push-based Media Streaming in the Web

127



draft, W3C. http://www.w3.org/TR/2011/WD-html5-
20110113/video.html#video.

Bouras, C. and Gkamas, A. (2005). Performance of adap-
tive multimedia transmission: The case of unicast
technique. In INC 2005, Proceedings of the fifth in-
ternational Network Conference 2005.

Colwell, A., Bateman, A., and Watson, M. (2015).
Media source extensions. Editor’s draft, W3C.
dvcs.w3.org/hg/html-media/raw-file/tip/media-
source/media-source.html.

De Cicco, L., Mascolo, S., and Palmisano, V. (2011).
Feedback control for adaptive live video streaming.
In MMSys’11 Proceedings of the first annual ACM
SIGMM conference on Multimedia systems.

Douga, Y., Bourenanea, M., and Melloukb, A. (2014).
Adaptive video streaming using tcp factors control
with user parameters. In Procedia Computer Science,
Volume 34, pages 526–531.

Held, G. (2010). A Practical Guide to Content Delivery
Networks, ISBN: 1439835888, 9781439835883. CRC
Press, Inc., Boca Raton, FL, USA, 2nd edition.

Hickson, I. (2012). The web sockets api. Candidate recom-
mendation, W3C. www.w3.org/TR/websockets.

ISO/IEC Moving Picture Experts Group (MPEG) (2004).
Advanced Audio coding. International standard
iso/iec 13818-7, ISO/IEC.

Jammeh, E. A., Fleury, M., and Ghanbari, M. (2009). Rate-
adaptive video streaming through packet dispersion
feedback. In IET Communications, Volume 3, Issue 1,
Print ISSN 1751-8628, Online ISSN 1751-8636, pages
25 – 37.

Jiang, J., Sekar, V., and Zhang, H. (2012). Improving fair-
ness, efficiency, and stability in http-based adaptive
video streaming with festive. In CoNEXT’12, Inter-
national Conference on emerging Networking EXper-
iments and Technologies, pages 326–340.

Kim, Y., Shin, J., and Park, J. (2013). Design and imple-
mentation of a network-adaptive mechanism for http
video streaming. In ETRI Journal, Volume 35, Num-
ber 1.

Kuschnig, R., Kofler, I., and Hellwagner, H. (2010). An
evaluation of tcp-based rate-control algorithms for
adaptive internet streaming of h.264/svc. In MM-
Sys’10, Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, pages 157–168.

Liu, C., Bouazizi, I., and Gabbouj, M. (2011). Rate adap-
tation for adaptive http streaming. In MMSys’11, Pro-
ceedings of the first annual ACM SIGMM conference
on Multimedia systems, pages 169–174.

Pantos, R. (2015). HTTP Live Streaming. Internet-Draft
draft-pantos-http-live-streaming-18, Internet Engi-
neering Task Force.

Papadimitriou, P. and Tsaoussidis, V. (2007). A rate con-
trol scheme for adaptive video streaming over the in-
ternet. In ICC’07, IEEE International Conference on
Communications, pages 616 – 621.

Audio-Video Transport Working Group (1996). Rtp: A
transport protocol for real-time applications. RFC
1889, IETF.

Blender Foundation (2006). Elephants dream.
http://orange.blender.org/.

DASH Industry Forum (2015). guidelines for im-
plementation: Dash-if interoperability points.
http://dashif.org/wp-content/uploads/2015/10/DASH-
IF-IOP-v3.1.pdf.

ISO/IEC Moving Picture Experts Group (MPEG) (2012).
ISO MPEG-4. International standard iso/iec 14496-
10 mpeg-4, ISO/IEC.

ISO/IEC Moving Picture Experts Group (MPEG) (2013).
ISO MPEG-TS. International standard iso/iec 13818-
1, ISO/IEC.

ISO/IEC Moving Picture Experts Group (MPEG) (2014).
Dynamic Adaptive Streaming over HTTP. Interna-
tional standard iso/iec 23009-1:2014, ISO/IEC.

Lo Iacono, L. and Santano Guillén, S. (2014). Efficient and
adaptive web-native live video streaming. In Inter-
national Journal on Advances in Internet Technology
vol. 7, no. 3 - 4, ISSN: 1942-2652, pages 232–242.

Apple Inc. (2014). HTTP Live Streaming Overview.
https://developer.apple.com/library/ios/documentation
/NetworkingInternet/Conceptual/StreamingMediaGui
de/StreamingMediaGuide.pdf#page=31.

Kenneth Schaefer, Jeff Cochran, Scott Forsyth, Dennis
Glendenning, Benjamin Perkins (2012). Professional
Microsoft IIS 8. Wrox.

Microsoft Corporation (2015). Smooth Streaming Specifi-
cation.
http://download.microsoft.com/download/9/5/E/95EF
66AF-9026-4BB0-A41D-A4F81802D92C/[MS-
SSTR].pdf.

Schulzrinne, H., Rao, A., and Lanphier, R. (1998). Real
time streaming protocol (rtsp). RFC 2326, IETF.
www.tools.ietf.org/html/rfc2326.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

128



APPENDIX: MEASUREMENT RESULTS

Media data 

[%]

HTTP Ov. 

[%]

Manifest Ov. 

[%]

Media data 

[%]

WS Ov. 

[%]

Manifest Ov. 

[%]

0.5 q0 95.18 0.65 4.17 99.9914 0.0086 0.0

q1 96.67 0.45 2.89 99.9940 0.0060 0.0

q2 97.53 0.33 2.14 99.9956 0.0044 0.0

q3 98.48 0.20 1.31 99.9973 0.0027 0.0

q4 98.84 0.15 1.00 99.9979 0.0021 0.0

1 q0 97.41 0.35 2.25 99.9954 0.0046 0.0

q1 98.17 0.25 1.59 99.9967 0.0033 0.0

q2 98.62 0.18 1.19 99.9975 0.0025 0.0

q3 99.15 0.11 0.74 99.9985 0.0015 0.0

q4 99.39 0.08 0.53 99.9989 0.0011 0.0

2 q0 98.64 0.18 1.18 99.9976 0.0024 0.0

q1 99.03 0.13 0.84 99.9983 0.0017 0.0

q2 99.26 0.10 0.64 99.9987 0.0013 0.0

q3 99.54 0.06 0.40 99.9992 0.0008 0.0

q4 99.68 0.04 0.27 99.9994 0.0006 0.0

3 q0 99.07 0.12 0.80 99.9983 0.0017 0.0

q1 99.33 0.09 0.58 99.9988 0.0012 0.0

q2 99.49 0.07 0.44 99.9991 0.0009 0.0

q3 99.68 0.04 0.28 99.9994 0.0006 0.0

q4 99.79 0.03 0.19 99.9996 0.0004 0.0

4 q0 99.29 0.09 0.61 99.9987 0.0013 0.0

q1 99.49 0.07 0.44 99.9991 0.0009 0.0

q2 99.61 0.05 0.34 99.9993 0.0007 0.0

q3 99.76 0.03 0.21 99.9996 0.0004 0.0

q4 99.84 0.02 0.14 99.9997 0.0003 0.0

5 q0 99.43 0.08 0.49 99.9990 0.0010 0.0

q1 99.59 0.06 0.36 99.9993 0.0007 0.0

q2 99.68 0.04 0.27 99.9994 0.0006 0.0

q3 99.80 0.03 0.17 99.9996 0.0004 0.0

q4 99.87 0.02 0.11 99.9998 0.0002 0.0

6 q0 99.52 0.06 0.41 99.9991 0.0009 0.0

q1 99.65 0.05 0.30 99.9994 0.0006 0.0

q2 99.73 0.04 0.23 99.9995 0.0005 0.0

q3 99.83 0.02 0.14 99.9997 0.0003 0.0

q4 99.89 0.01 0.10 99.9998 0.0002 0.0

10 q0 99.70 0.04 0.26 99.9995 0.0005 0.0

q1 99.78 0.03 0.19 99.9996 0.0004 0.0

q2 99.83 0.02 0.14 99.9997 0.0003 0.0

q3 99.90 0.01 0.09 99.9998 0.0002 0.0

q4 99.93 0.01 0.06 99.9999 0.0001 0.0

15 q0 99.79 0.03 0.18 99.9996 0.0004 0.0

q1 99.85 0.02 0.13 99.9997 0.0003 0.0

q2 99.89 0.02 0.10 99.9998 0.0002 0.0

q3 99.93 0.01 0.06 99.9999 0.0001 0.0

q4 99.95 0.01 0.04 99.9999 0.0001 0.0

20 q0 99.84 0.02 0.14 99.9997 0.0003 0.0

q1 99.88 0.02 0.10 99.9998 0.0002 0.0

q2 99.91 0.01 0.08 99.9998 0.0002 0.0

q3 99.94 0.01 0.05 99.9999 0.0001 0.0

q4 99.96 0.00 0.04 99.9999 0.0001 0.0

Adaptive pull-based streaming Adaptive push-based streaming
Segment length 

[s]

Quality 

level

Table 2: Adaptive media streaming protocol overheads: Comparing MPEG-DASH with the proposed adaptive push-based
media streaming approach

Adaptive Push-based Media Streaming in the Web

129


