
Orka: A New Technique to Profile the Energy Usage of Android
Applications

Benjamin Westfield∗ and Anandha Gopalan
Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ, U.K.

Keywords: Green Computing, Energy Profiling and Measurement, Energy Monitoring.

Abstract: The ever increasing complexity of mobile devices has opened new, exciting possibilities to both designers of
applications and their end users. However, this technological improvement comes with an increase in power
consumption, a drain that battery technology has not managed to keep up with. Due to this, application de-
velopers are now facing a new optimisation challenge not present for traditional software: minimising energy
usage. Developers need guidance to help reduce energy usage while not compromising on the features of
their application. Despite research identifying areas of code consuming high energy, developers currently
don’t possess the necessary tools to make judgements on their application’s design based on this. This paper
presents Orka, a new tool that analyses an Android application and provides feedback on exactly where the
application is expanding energy, thus enabling developers to improve its energy-efficiency. Orka profiles an
application using user-defined test cases, code injection techniques and bytecode analysis. Feedback provided
is the energy usage at the method level as well as any consumption due to hardware used. Moreover, to be
useful over the entire development life-cycle, this feedback is compared with feedback from previous versions
of the application so as to monitor and improve the energy usage.

1 MOTIVATION

Mobile technology has changed dramatically in re-
cent years. Devices can now display full 1080p real
time videos, are capable of running games with high
quality graphics, and contain enough sensors that they
can be used as full virtual reality headsets with little
extra hardware (Winchester, 2015).

Harnessing this potential, the application indus-
try is forecast to be worth $54.89 billion by 2020
(Chaudhari, 2015). Research has shown that energy
consumption of applications is of great concern to
users of mobile devices (Heikkinen et al., 2012; Wilke
et al., 2013). A glance at on-line repositories con-
firms this, with applications receiving lower ratings if
users perceive them as consuming more of their de-
vice’s battery (Jabbarvand et al., 2015). Due to this
change in consumer habits, power optimisation is im-
portant for developers. Previous research has focused
on time optimisation for software, as computers were
earlier connected to a constant power source. Mo-
bile application developers are now facing end-users
who require software to be optimised to use as little
∗This work was done while this author was a student at

Imperial College London.

of the battery as possible, less they drain this finite re-
source. This paper was inspired by the perceived lack
of energy optimisation tools available to developers.
Tools exist to optimise efficiency but energy optimisa-
tion can be orthogonal in nature to time optimisation
(Bunse et al., 2009).

Research into Green Computing has started to
identify the areas of code that consume the most en-
ergy. These findings allow testing methods to be con-
structed in order to provide developers with exciting
new ways in which to optimise their code. However,
most of these are still tied to hardware or require the
understanding to interpret results from a multi-meter
to provide execution costs (as current systems do, and
which are discussed in Section 2). We believe that
all developers should be able to have access to their
code’s energy performance regardless of whether they
are professionals or coding on their own.

To address these issues, this paper introduces
Orka, a novel approach to providing energy usage
feedback to software developers. Orka provides feed-
back based on an application’s API usage, as well as
the energy usage of the app, down to the method level.
It is important that software energy usage not be dis-
associated from hardware energy usage, so Orka also

Westfield, B. and Gopalan, A.
Orka: A New Technique to Profile the Energy Usage of Android Applications.
In Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2016), pages 213-224
ISBN: 978-989-758-184-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

213

provides feedback on any energy consumption due to
hardware usage. To the authors’ knowledge, this is
the first attempt to combine these two sources of en-
ergy usage. Previous research has focused on either
one or the other. Orka tests the app using a dynam-
ically created execution trace generated using a test
script provided by the application’s developer. Rather
than running on physical devices, Orka performs the
hardware analysis running on emulators. After run-
ning the application, Orka pulls the internal energy
usage estimations from the emulator to provide feed-
back based on the different components used. Orka
has been designed for applications on the Android
OS, which has grown to be the most widely used OS
for mobile technologies in the world (Rivera, 2015).

Despite the similarity, Orka is not a reference to
large aquatic mammals. Dalvik (the original Vir-
tual Machine used by Android OS) was named after
the Icelandic village that was home to the ancestors
of Dan Bornstein, the original developer of Dalvik.
Smali and Baksmali (two tools that form part of the
structure of Orka) were named after the Icelandic
words for assembler and disassembler. In continuing
with tradition, this system was also given an Icelandic
name, Orka - meaning energy.

The remainder of this paper is organised as fol-
lows: Section 2 outlines work related to this paper
while Section 3 gives an overview of the research
challenges encountered while building Orka. Sec-
tion 4 details the architecture of Orka, while Sec-
tion 5 describes its prototype implementation. Sec-
tion 6 provides an evaluation of Orka, while Section 7
lists some of the limitations of this work, and Section
8 concludes the paper and provides ideas for future
work.

2 RELATED WORK

Orka is not the first attempt at providing feedback on
energy usage for Android applications. Cycle accu-
rate simulators (Brooks et al., 2000) can be used to
accurately simulate a processor’s cycle at an architec-
tural level. While effective, these have been labelled
as inefficient (Hao et al., 2012). Hao and colleagues
(Hao et al., 2012) proposed a system, eCalc, to re-
place these. After creating an energy cost for each
instruction, the eCalc system analyses the bytecode
and each method was assigned a cost function. After
capturing the execution trace of the program, a num-
ber of tests were then executed on this and compared
to multi-meter readings.

Both eCalc and cycle accurate simulators suf-
fer from the same issue: they only focus on the

CPU. Other pieces of hardware are often more en-
ergy greedy than the CPU (Corral et al., 2013; Dong
and Zhong, 2012). Research has shown that lowering
the brightness of the screen can save up to 60% of an
application’s battery usage (Dong and Zhong, 2012).
This has been supported by further research (Corral
et al., 2013).

Elens, proposed by Hao and colleagues (Hao
et al., 2012), extends the model of bytecode profiling
further. This attempts to model the different energy
usage by network transfers by including a stack trace.
A call-graph is generated showing complete execu-
tion paths through each method. The stack size for
transmitted data is used to model the linear growth of
energy costs for network transmissions with the size
of data sent. Both Elens and eCalc compare their
models to actual measurements from a multi-meter.
This presents an issue of how to accurately tie mea-
sured energy back to specific methods due to the fact
that the Android operating system has asynchronous
power states (Pathak et al., 2012) and also due to the
phenomenon of ‘tail energy’ (Li et al., 2013), where
a program or routine can draw power beyond the end
of its execution. Both Elens and eCalc also require
users to use multi-meter readings to estimate energy,
and they were all run on specially developed hard-
ware. Neither of these are readily available to devel-
opers, thus limiting the use of these models. In order
for them to run correctly, each bytecode instruction
needs to be accounted for in terms of energy cost. To
do this, each instruction must be measured for each
hardware and operating system combination. A de-
veloper would need to create this for whichever en-
vironment they want the application to run on. It is
unlikely they would have the capacity to do this.

Orka is not the first to leverage the findings of
Linares-Vasquez et al (Linares-Vásquez et al., 2014).
Jabbarvand et al (Jabbarvand et al., 2015) used these
to create their modelling device, EcoDroid. By as-
signing energy costs to nodes of a generated call-
graph, their system could estimate an application’s
energy consumption by API usage. They proposed
including static tests, rather than just dynamic tests to
ensure full coverage. Orka does not use static tests
as it provides feedback on a specific test case, rather
than attempting to provide a total code energy cost.

All models previously focused only on the energy
usage of software. As far as we are aware, no other
research has attempted to combine this with energy
costs owing to hardware usage. Computers, after all,
are just machines; all their different parts consume
electricity. Therefore a complete testing tool should
factor in both the drain due to software and that owing
to the hardware.

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

214

3 RESEARCH CHALLENGES

In order to build Orka, the initial challenge encoun-
tered was to find out a method to measure the energy
usage of the application’s code. The actual discharge
of the battery could not be measured as this would re-
quire physical hardware. Therefore, Orka would need
to estimate energy usage from identifying areas of the
source code with high energy costs. Linares-Vasquez
et al (Linares-Vásquez et al., 2014) found that the ma-
jority of energy in applications was spent calling the
Android Application Program Interface (API). In an
extensive study, they documented the energy usage of
these APIs. While the exact amount of energy usage
(in Joules) might differ between different hardware
combinations, it is reasonable to assume that these
costs would remain in the order of these findings. Us-
ing these findings, Orka assigns this cost to each API
call in the code. Orka is aware of flow control, taking
into consideration that each call in the code could be
made multiple times, in a loop for example.

To analyse the application’s code, a number of dif-
ferent approaches were tried. Originally, we wanted
to use a non invasive method that did not modify
the source code. Xposed2 is a module that modifies
the script responsible for loading Zygote (the parent
process for all applications that run on Android) at
startup. Any interface added to this would be accessi-
ble from all other Android applications.

Other researchers (Jabbarvand et al., 2015) have
had some success using Xposed, however we could
not install it on emulated devices, an experience
shared by others in the Android development commu-
nity (XDADevelopers, 2014; StackOverflow, 2015).
This restriction on emulators also ruled out a series
of third party systems that could have been used for
analysis, so we decided to focus on ways to create
new logging methods.

When API calls are identified in the code, the sys-
tem needs to identify and tally the number of calls.
However, due to the twisting and dynamic nature of
the execution of code, performing static analysis on
an app’s code would not provide an accurate view of
the number of times each API is called, so a dynamic
analysis would be necessary. In order to achieve this,
we use Monkey Runner3, a user interface testing tool
for Android that simulates an end user interacting
with the app.

A method was needed to tally the calls to the API
during the execution of the app. As non-invasive
methods had been ruled out, methods needed to be
inserted to tally each API call. Orka achieves this

2https://github.com/rovo89/XposedBridge/
3http://developer.android.com/tools/help/monkey.html

by using an improved version of a key logger writ-
ten for a popular Android application (Casey, 2013).
The previously manual process had new logic inserted
to automatically inject new logging methods without
changing the underlying application (detailed below).
These added methods insert the API calls to the global
Android log, Logcat4.

Estimating hardware energy usage presents its
own pitfalls. Applications can draw power beyond
the end of their execution due to a phenomenon called
‘tail energy’(Li et al., 2013). The operating system
will keep hardware components turned on for a period
of time after an instruction to close. This allows it to
amortise startup costs and occurs even if the system is
idle. Another issue that can occur is with applications
holding a ‘wakelock’ that does not allow the proces-
sor to enter a lower power mode. Orka uses Dump-
sys5, a tool that provides details about the status of
the device’s hardware in order to counteract this. One
feature of this tool is the ability to view the contents
of BatteryStatsInfo.bin, the battery estimation used by
Android to populate the estimated battery usage func-
tions stored in the device’s settings menu. This is
populated as long as the device’s battery is not being
charged.

The algorithms that populate BatteryStatsInfo.bin
take into account that the end of a routine does not
mean a used component will power down instantly.
Using Dumpsys would, hence, solve the issues relat-
ing to tail energy. Furthermore, if another app runs
because of a wakelock held by a specified applica-
tion, then half the total energy usage of the second
application is assigned to the one holding the wake-
lock (Google, b).

4 ARCHITECTURE

The architecture of Orka is illustrated in Figure 1. The
system is divided into two separate modules: the in-
jector, which is responsible for drawing the required
information about the application from its .apk file,
then injecting logging methods after ever API call;
and the analyser, which runs the injected application
on an emulated device, then computes the total en-
ergy usage from the execution trace. The sequence of
steps followed by Orka (and detailed in the following
sections) are:

- Convert the .apk file into Smali files.

4http://developer.android.com/tools/help/logcat.html
5https://source.android.com/devices/tech/debug/

dumpsys.html

Orka: A New Technique to Profile the Energy Usage of Android Applications

215

Figure 1: A system architecture overview of Orka.

- Inject logging functions into the code, and insert
logging class into root directory of application.

- Recompile the application and resign it so it will
run on device emulators.

- Load emulator and install the application on it.

- Run Monkey Runner script containing test execu-
tion.

- Extract Logcat files and hardware usage from
Dumpsys.

- Process Logcat data by summing the number of
API calls in each method and calculating the total
cost of these calls.

- Present results to the user.

Orka was developed to run on Linux and the deci-
sion was made to write the application in Python. This
is because the designed process was inherently proce-
dural, and would require a number of different scripts
to run (for example to pull data using the ADB).

4.1 Injector

The injector is responsible for injecting the app, and
for any task required to complete this. To facil-
itate code injection, the app’s .apk file is decom-
pressed into an intermediate representation called
Smali. Smali was developed to represent a human-
readable version of the app’s Dex code6. Orka uses
Apktool, a tool to further aid automating the transfor-
mation process into Smali7. Apktool was chosen as
extra media stored in the .apk hierarchy (required for
recompilation) would not be lost during decompres-
sion. Once decompiled, the output directory contains
all relevant files for the app, with the Smali repre-
sentation of the code located in its own sub-directory.

6https://github.com/JesusFreke/smali
7https://www.georgiecasey.com/2013/03/06/inserting-

keylogger-code-in-android-swiftkey-using-apktool/

Rather than prompt the user for the application name
to construct the path, the injector extracts this from
the application’s Android Manifest using command
line tools developed by Google8.

Any files that have been added to the directory will
be included in the application once re-compressed to
a .apk file. Leveraging this, Orka adds a Smali file
with the others thus making it part of the application’s
package. This means that it can be referenced abso-
lutely in the app’s source code. This is important as
foreign packages need to be loaded into a register in
order to be referenced. By adding the logging meth-
ods to the app’s package, it frees Orka from needing
to load this into a register to reference it (reducing
the number of changes to the underlying code). This
helps keep the the injected application as similar to
the original as possible, giving a truer picture of the
energy costs of running the original app.

4.1.1 Logging Methods

Orka’s logging interface contains two methods: one
to be called after entering a new method that extracts
the method’s name from the stack trace, and a sec-
ond that is passed an API name as a string constant
to log a call. The former does not require any inter-
ference with the application’s code as it uses the stack
trace. The latter requires a free register to be inserted
to the method as variables are passed by register refer-
ence (Google, a). The messages sent to Logcat have a
unique tag so that the analyser can easily extract these
later. These two methods are combined to create an
execution trace by logging when the application en-
ters a new method and then each call it makes to an
API. Storing the method name makes it possible to
attribute the API calls to the correct method.

8https://developer.android.com/tools/building/
index.html

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

216

4.1.2 Code Injection

Code injection is done by manipulating the Smali
code and expanding it by automating the process and
adding further logic to automate the analysis of the
code. While each Smali file is human-readable, it
has a uniform representation due to previously be-
ing bytecode. The injector leverages this by opening
each file in the Smali directory into a file stream, then
analysing each line. Its built-in logic will then react to
finding specific bytecode patterns. Each original line
of Smali is output (along with any injected code) into
new Smali files. Once inspected, the original file is
deleted, leaving only the injected files to be recom-
piled into the injected application. It should be noted
that this is not a destructive process. The original .apk
file is not edited in any way.

Each file of Smali represents a different Java class
file in the original source code, therefore containing
a number of methods. Each method is checked in-
dividually and independently of the others. The in-
jector pattern matches each line of the file checking
for a function signature - signifying the start of a new
method. On finding this, the injector checks to see
if the method’s signature matches that of a construc-
tor (method public constructor <init>), ignoring
the entire method on matching. After entering a new
method, Orka looks at the following lines until one of
two conditions are satisfied:

- An API call is found

- The end of method statement is found.

If there are no API calls found in the method, the
injector will not inject any code into that method, in-
stead reconstructing this unaltered in the output file.
This limits the interference with the source code to
when it is truly needed. If an API call is found, the in-
jector calls a seek function to revert to the start of the
method. Until the injector identifies the end of this
method, it will now perform a number of behaviours
depending on what it identifies in the source code.

4.1.3 Adding a Register

The Smali representation of Dex separates registers
into two types: locals and parameters. Locals repre-
sent both the local variables of a method as well as
storing any external classes used and the results of
calculations. The number of registers available to a
method is fixed, being declared on entering a method.
This total is decided when the original Java code is
converted into Dex (Smali, 2015). Of these registers,
the registers numbered 0 to n-1 will contain all the
local registers, where n is the number of locals de-
clared. Parameters are always stored in the registers

after the last local register. These represent the ar-
guments passed to the method. Every method has
at least one parameter representing a pointer to that
method (*this). The total number of local registers is
explicitly declared in the Smali code, followed by a
declaration of the contents of each parameter register.
As per Section 3, the injector adds a register to store
the name of any API call. By increasing the number
of explicitly declared locals, a new register will be
added to the end of these (before the first parameter).
The original locals declaration is then discarded with
the new declaration output.

Using a naive approach that does not take into ac-
count the number and type of registers would cause a
number of fatal bugs to be introduced to the app once
recompiled. Android was built with the assumption
that most methods will not have more than 16 reg-
isters (Google, a). As such bytecodes are separated
into groups depending on whether they can reference
a register whose number can be represented using 4
bits (the first 16) or whether it’s number can only be
represented by using 8 bits (the first 256) (Google, a).

This produces the following two issues:

• Added instructions must be able to reference the
inserted register. If the newly added register is
outside of the 4 bit address registers, then it cannot
be referenced using 4 bit address bytecodes.

• By increasing the number of locals by one, all pa-
rameters start one register higher than when they
were originally converted to bytecode. A param-
eter that was previously inside the 4 bit address
registers could be pushed out of them. The 4 bit
bytecodes that were used previously to reference
this would now cause the app to crash.

In Figure 2, adding an extra local register means
that p1 used to reference a 4 bit address register. In-
stead this now references an 8 bit address register so
must use the correct bytecodes to reflect this. Due to
the numerical overlap, bytecodes for registers with an
8 bit address can reference all of the first 16 registers
(those covered by the 4 bit address bytecodes). Con-
sequently, when Orka inserts bytecodes it uses those
that can address registers with 8 bit addresses. This
way it can be sure the inserted bytecode will be able to
access the register. The second issue proved tougher
to solve.

It only presents itself in two situations:

- The sum of the registers used for parameters and
locals is greater than or equal to 16, and the num-
ber of local registers is less than 16.

- If the sum total of the locals and parameters is
15, and the last parameter stores a double or long

Orka: A New Technique to Profile the Energy Usage of Android Applications

217

Figure 2: Demonstrating the effect of the bug in Orka, causing parameters to go beyond 4 bit address registers.

(both requiring two registers). Adding to the lo-
cals will push the second of the parameter’s two
registers out of the 4 bits address registers.
The injector resolves this issue with minimal in-

trusion into the code. After all of the declarations of
the parameters within the method, the injector inserts
instructions to move each back into their original reg-
ister. This returns the registers to their original states.
While a number of move statements are inserted, the
injector does not change the instructions used (from
4 bit to 8 bit addresses). These move statements are
only inserted if the injector detects a potential issue
with the registers (as detailed above), therefore only
changing the code if necessary.

Once converted to Smali, all parameters in a
method are referenced using their pX name. This re-
lates to the parameter number of the contents of the
register (Smali, 2015). These are static, tied to the
original register number containing the parameter’s
data when entering the method. If the data is moved
to another register, the pX name would still refer to
the original register. Using Figure 2 as an example,
even if the contents of p0 is moved back to v14 and
p1 to v15, the labels p0 and p1 will always reference
registers v15 and v16 respectively.

The injector overcomes this by leveraging the
naming convention of the registers in Smali code. Ev-
ery register, no matter the contents, has an absolute
name that can reference it. This is always of the for-
mat vX , with X being a unique number (Smali, 2015).
The second scheme relates to registers that hold a pa-
rameter when the method begins. These can also be
referenced with pX format. All pX registers have a
vX reference that relates to them but not all vX regis-
ters have to have a pX . The pX names are static, and
will always relate to the register they pointed to at the
beginning of the method.

The injector creates a hash table to store each orig-
inal pX mapping for the parameters against its type.
It then uses this to calculate the required number of
registers for the parameters and therefore the correct
bytecode to move this (as different types require dif-
ferent bytecodes) (Google, a). Special consideration
is needed for the first parameter, as this is not explic-
itly declared in the code. The injector maintains these
mappings in another hash table, also taking care, if a
parameter requires two registers, not to overwrite the
contents of the second with a later parameter. This
mapping hash table is needed as all references to pa-
rameters will use the pX name. As stated, this will
now face the incorrect register. To solve this, as the
injector parses each line of Smali code for a method, it
changes all references of pX to their new correspond-
ing vX name (using the mapping hash table).

A simple string matching algorithm was written to
aid with this. As all keys have the same first character,
the algorithm searches for the first occurrence of a ‘p’
in the line. Starting with the character after this, the
characters are appended to a substring until the next
non numeric character. As the substring contains all
of the following numeric characters, there can be no
mismatches (for example, p10 incorrectly matching
with p1). The substring is then checked to see if it is a
key in the mapping hash table. Positive matches have
these characters replaced in memory with the corre-
sponding mapping before being written to the output
files. If the ‘p’ is not followed by a number, this step
is ignored and the next instance of ‘p’ is searched for
instead. This means that, ‘p’s appearing in bytecodes
or method names are instantly discarded without hav-
ing to check the map. As this algorithm acts on each
line of the file, this should run with time complexity
O(n). However, it is extremely unlikely that the worst
case input (a string where every character matches)

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

218

will occur due to the nature of the input. By searching
for just ‘p’ large chunks of the line should be skipped,
thus making the actual run time much faster.

4.1.4 Injection Logic

Having resolved all register issues, the injector will
parse each line to look for API calls. Following locals
and parameter declarations in Smali code is the ‘.Pro-
logue’ declaration. Adding Smali code after this is the
equivalent of adding a line to the source code. Specif-
ically, adding code after this means that the freshly
inserted code will be the first operation run. As this is
the criteria for the methodLog method in the logging
class, the injector will insert a call to this here.

Different bytecodes are used to invoke different
types of methods (Google, a) and all of these begin
with ‘invoke-’. As the injector parses each line, it at-
tempts to match it to this. On succeeding, it passes
this to a function that checks if the called method is
an API. To invoke a method in Smali, the entire pack-
age name is passed in the instruction as well as the
method. This helps the VM identify the method to be
called (Ehringer, 2010). As all Android API’s belong
to the Android package, the injector checks if the in-
vocation references this package. Methods found to
be API calls have their name extracted from this. By
matching the package name, it frees Orka from the re-
quirement of keeping an up to date documentation of
the ever changing Android API names.

One line of source code does not necessarily relate
to one line of Smali as Smali is a lower-level interpre-
tation of the code. To cause as little interference with
the code as possible, the injector stores all API calls
in memory until its internal logic finds a safe place
in the underlying bytecode. Smali retains informa-
tion relating to the line numbers in the original source
code. When the injector finds these, it knows it can
safely insert methods to log all the API calls currently
in memory. Before this is written to the output file,
the injector inserts two new lines per API. The first
adds the API name (a string) to the newly added reg-
ister. The second adds an invocation of the API logger
function, passing it the register containing the API’s
name. This is done for every item in the list (the cor-
responding list entry is then deleted). This behaviour
also occurs on finding statements corresponding to re-
turning a value or leaving a method. As all API calls
are tied to a method, they are logged before leaving it
less they be attributed to the incorrect routine.

Special consideration was given for flow control
statements. The injector is designed to place logging
methods inside of loops, so that this is logged as many
times as the loop runs. Loops are represented in Smali
with a goto statement. The injector is designed to in-

sert logging methods on finding statements closing a
loop. Furthermore, the injector can correctly handle
nesting loops. The list of API calls is implemented as
a stack, being a list of lists. Orka maintains a pointer
to the index representing the top of the stack. This
is incremented on entering a new loop, pointing to
the index in the list where new found API invoca-
tions should be added. On finding the end of a loop,
the logging methods are inserted for all APIs in the
list at the top of the stack. This list is then cleared,
and the pointer is decreased, representing the top of
the list being popped off the stack. Any further API
call would then be added to the list now at the top of
the stack (until the corresponding end of the loop is
found).

Due to how Smali represents ‘if’ statements, the
outlined logic correctly handles these. The bytecodes
representing ‘if’ take the condition given in source
code and reverse it. Those that now pass this reverse
condition (failing the original) are ‘jumped’ over the
code relating to conditions that satisfy the equality.
The flags which are jumped to are placed after a ‘.line’
statement in the Smali, so Orka will insert logging
methods before this.

When there are no more files to inject, the injec-
tor runs Apktool to recompile the application. It then
digitally signs this using Jarsigner - a tool that allows
digital signing of Java jar files, which can also sign
.apk files (Google, c). This is required to run an ap-
plication on an Android device (Google, c).

4.2 The Analyser

Once the app has been injected and recompiled, the
analyser takes over. It is responsible for generating
and analysing the results. First, it loads an emulated
version of a Nexus 7 (2013 model) and the injected
application is then installed on this.

During the course of development, we noted that
emulators are considered as ‘charging’ when they ini-
tially load. BatteryStatsInfo.bin will not populate its
data in this state as it only shows data since the last
charge. The analyser addresses this by running a bash
script that logs into the device via telnet and then
changes the power settings to discharging. This uses
Expect, a scripting language to script the response to
and from telnet. To help increase the speed of the
emulators, these are run as Kernel-based Virtual Ma-
chines (KVM). This moves the control of the hard-
ware resources used by virtual machines from soft-
ware to hardware, greatly improving the execution
time (Stylianou, 2013). As the majority of the anal-
yser’s execution time is spent loading and executing
applications on these, the decision was made to use

Orka: A New Technique to Profile the Energy Usage of Android Applications

219

KVMs to speed up execution.

4.2.1 Monkey Runner Testing

With the injected application installed on the emula-
tor, the analyser loads the app and runs the user’s pro-
vided Monkey Runner script. As this is using an in-
jected version of the application, the data about API
usage is being output to Logcat. This tests the pro-
gramme for a scenario of the user’s own design; they
are free to use this tool for a variety of scenarios, from
average use cases to stress testing their applications.
This freedom will give Orka a greater flexibility as a
testing tool. This does place the onus on the user to
write good tests. However, the users of Orka will be
developers who should be knowledgeable about test-
ing and know how to write tests for their own appli-
cations.

On completion of the Monkey Runner script, Log-
cat contains the execution trace from the test execu-
tion and BatteryStatInfo.bin will be populated with
the hardware costs. As all these have a unique tag,
the relevant logs that relate to this can be easily ac-
cessed and pulled from Logcat (using Google’s own
tools). The analyser then calls Dumpsys, saving the
human-readable output as a file, and then opens and
retrieves the relevant lines relating to estimated hard-
ware usage.

4.2.2 Handling the Data

Using the cost as per the findings of Linares-Vasquez
et al (Linares-Vásquez et al., 2014), the equation to
calculate software energy usage was:

∑Mi∈Program(∑APIi∈M(APIi× c)) (1)

with M being each method in the program, API rep-
resenting each API call made, and c being the energy
usage. Hardware costs are stored in a table within
the output from BatteryStatsInfo.bin. This provides a
breakdown of the total energy usage of the application
by component of the system, from which the analyser
pulls the values.

5 IMPLEMENTATION
PROTOTYPE

For the purpose of this research, Orka was deployed
as a web application. This method circumvented re-
strictions placed on the developer regarding operating
systems and hardware due to using KVMs. The web

application was written using Flask9, utilising Boot-
strap10 for aesthetics. Developers would upload their
application and Monkey Runner script to Orka via
the website. This generates a usage request that was
added to a remote procedure call (RPC) queue. All
results were converted to a serialisable data format in
order to be transferred over via this queue.

Using the Pygal11 module, the analyser generates
graphs to present the results to the developer. Pie-
charts are generated to show each method’s energy
usage as a percentage of the total usage as well as
the breakdown of the energy usage for each hard-
ware component used. An example of these using the
simple application (used to fine tune Orka) which in-
volved just one button which called the API to dis-
play a ‘toast’ message is shown in Figure 3 (show-
ing breakdown with respect to methods in the appli-
cation’s code) and Figure 4 (showing breakdown in
terms of hardware components used).

Figure 3: Screen-shot of Orka showing the breakdown by
method of the application’s energy usage.

Originally developers were also shown the total
usage in terms of Joules. Following user feedback,
these results were also presented in a manner that does
not require an understanding of electronics. As such,
Orka converts the total Joules used by a method into
how long it would power the device for the following
activities (shown in Figure 5), such as:

- Browsing the internet

- Watching a high definition video

- Playing a 3D game

Independent performance tests provided the num-
ber of hours each of these activities take to drain the
battery (Shimpi, 2013). The number of Joules used

9http://flask.pocoo.org/docs/0.10/
10http://getbootstrap.com/
11http://www.pygal.org/en/latest/

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

220

Figure 4: A pie-chart from an application’s results. It shows
the breakdown of energy consumption by components.

Figure 5: Screen-shot of Orka showing the test case’s en-
ergy usage in terms of other potential applications.

Figure 6: An example of the table showing the routines with
the highest energy usage (results from Anstop application).

by both the entire program and a breakdown of each
method is still presented to the developer, if they wish
to use this.

When extracting data from Logcat, the analyser
will maintain the number of times each method is
called. Based on this, developers are presented with a
table containing the ten routines with the highest av-
erage usage. This allows the analyser to highlight the
routines that most likely contain energy bugs, rather
than those with a low average usage cost but a high
number of calls. An example of this (using the Anstop
stopwatch application12) is given in Figure 6.

12https://code.google.com/p/anstop

The analyser also has the facility to track energy
usage changes over different versions of the code.
Cookies stored within the browser contain the pre-
vious total energy cost of the program and the ten
methods with the highest energy usage. Developers
are presented with a graph plotting these against the
previous runs to allow comparison across versions.
These are indexed by application name, allowing de-
velopers to store results from different applications
yet only see those relevant to their current tests. This
is very useful for developers to track how the energy
usage of their application changes over the develop-
ment life-cycle and improve it as necessary.

6 EVALUATION

By using the findings of Linares-Vasquez et al
(Linares-Vásquez et al., 2014) and the Android OSs
own internal hardware usage estimations, Orka was
developed to provide new a new metric on which An-
droid developers can test their code. Using Orka, a
developer can have feedback on the energy consump-
tion of their code, in both raw data and by comparing
this to other uses of the device. These results are per-
sistent across their development cycle, allowing them
to see how changes to their code affect their appli-
cation. However, what sets Orka apart from other
energy profiling research and the systems currently
available13 is its independence from hardware. Previ-
ous research has focused on measuring energy usage
with multi-meters attached to real devices (Hao et al.,
2012). While this project could not have been com-
pleted without their findings to act as foundations, this
research has decoupled the hardware by using emula-
tors. Additionally, this system has been deployed so
that it is not limited to users of specific software or
operating system. This research shows that tools can
be made to provide this feedback without requiring a
developer to purchase any equipment.

In regards to the testing of the application, one of
the goals was that tests should be valid and represen-
tative of real life, so Orka was tested using a variety
of applications, such as:

- Anstop, a stopwatch application14

- Alarm Klock, an alarm clock15

- Acrylic Paint, a painting application16

13https://developer.qualcomm.com/mobile-development/
increase-app-performance/trepn-profiler

14https://code.google.com/p/anstop
15https://f-droid.org/repository/browse/

?fdid=com.angrydoughnuts.android.alarmclock
16https://github.com/valerio-bozzolan/AcrylicPaint

Orka: A New Technique to Profile the Energy Usage of Android Applications

221

- Accordion, an accordion music program17

These applications were all downloaded from F-
droid18. For each application, a Monkey Runner
script was written to run tests upon it. These applica-
tions were chosen as they represented a variety of dif-
ferent styles of applications and had different devel-
opers, the latter being an important issue as different
developers use different programming styles, and any
of these styles could have caused issues with Orka.
Applications were taken from F-droid rather than the
Google play store as they were all open source. Hav-
ing the source code was necessary to confirm that
Orka was working correctly and for analysing prob-
lems in how its logic was treating the Smali code.

Being designed with the intention to be used by
developers, Orka’s website was tested by a few de-
velopers in order to get their feedback. Due to a de-
partmental security policy, Orka’s website could only
be accessed by those on the internal campus network.
This meant that all the testers were students of Impe-
rial College London, rather than opening the tool to a
worldwide beta testing by inviting members of online
development communities for feedback. The chosen
testers were all students in the Department of Com-
puting. The decision to use Computer Science stu-
dents was made since they would all have significant
experience programming. This tool was designed to
be used by developers, so prior programming knowl-
edge was required to get meaningful feedback.

Initial user feedback was very positive. All those
surveyed liked the idea behind Orka and thought that
knowing energy usage of their code would be useful.
Most importantly, all said they would use such a tool.
Feedback was also positive towards the simple user
interface. Testers liked that it only required that they
upload their files, instead of having to configure the
settings of the tool for it to work.

Testers were presented with a choice between the
pie charts and animations to display energy usage
(such as having leaves falling from a tree depicting
the energy usage). The tester’s feedback was that they
preferred the scientific style of using pie charts and
also felt the animations could lead to ambiguity.

In order to ascertain whether Orka would work in
a real-life scenario, a simple proof of concept experi-
ment was carried out. The scenario chosen was that of
a developer who would build a simple Android appli-
cation and use Orka to measure its costs and use the
feedback to improve their application’s energy usage.
To measure the real costs of the application on the
device (to check whether the changes really worked),

17https://github.com/billthefarmer/accordion
18https://f-droid.org/

Figure 7: Average measured power consumption of the ap-
plications used for testing the proof on concept.

Figure 8: Measured energy use of the applications used for
testing the proof of concept.

we use Trepn19, a power profiling tool that measures
an Android application’s battery consumption.

Two simple test applications were written for this.
‘First App’ contained a ‘programming error’ in that
a routine meant to be called only once was inadver-
tently called within a loop. Orka measured the appli-
cations energy usage as 0.42193334J and highlighted
the higher than expected number of calls to this
method. Using this feedback, this error was corrected
by the developer in the ‘Second App’, which Orka
registered as having an energy usage of 0.008439J
(significantly lesser).

To measure the real energy costs, both applica-
tions were installed onto a Sony Xperia Z1 smart-
phone (available at the time) and the actual energy
consumption was checked using Trepn. Even though
Orka ran on an emulator running Nexus 7, the infor-
mation provided (since it is likely the API costs will
be in the order of magnitude across different devices)
was useful to the developer so that they could reduce

19https://developer.qualcomm.com/software/
trepn-power-profiler

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

222

the energy costs of their application, as shown in Fig-
ures 7 (measuring actual power usage) and 8 (measur-
ing actual energy consumed).

7 LIMITATIONS

This approach has produced a trace of the energy us-
age of an application using tests as designed by the
developer of the application. Orka handles the instru-
mentation of the application, removing the need for
developers to learn any new skills to receive feedback.
However, as Orka is not making readings based of dis-
charge from the battery, this approach leads to estima-
tion based on values. As stated, this comes from the
findings of previously published research which have
been further used in other studies.

The approach used in this paper attempts to iden-
tify the areas of source code with the highest energy
usage. This approach does not attempt to accurately
estimate the energy usage of an application, but rather
to highlight potential trouble areas. This does lead to a
known error in the total estimation. This was deemed
acceptable as precise reading would require measur-
ing the usage on an actual device.

Due to the branching nature of computer pro-
grammes, a programme’s energy usage will change
depending on the input and its effect on the flow of the
program. Orka has pushed the writing of tests onto
the developer of the application. This opens up the
system to those who might try to ‘game’ it by writing
tests that do not represent a typical usage of their ap-
plication. Such concerns can affect any software test-
ing that asks the developer to write their own tests.
By allowing this, developers have a greater flexibility
in the types of tests that can be run on their software
(e.g. average use, stress testing).

By using code injection, extra code is being added
to the applications by Orka, which will in turn have
an effect on the application’s total energy cost. The
injected code calls an API, a process which is known
to be the most energy costly code. While this method
is not counted in the analysis of the energy cost of
the application, it is factored into the data taken from
Dumpsys and therefore in the breakdown by compo-
nents. The method of the Log API was chosen as it
had lower energy consumption than other log methods
(Linares-Vásquez et al., 2014). This also only affects
one part of the results.

Currently, Orka runs on the emulator running
Nexus 7 (the 2013 model) and the results produced
are a result of running it on this particular hardware.
An extension to Orka here would be to enable it to
perform this analysis on multiple different pieces of

hardware. The proof of concept could also certainly
be extended to include more complex applications.

8 CONCLUSIONS AND FUTURE
WORK

Mobile technology has improved by leaps and bounds
over the last few years, which has in turn led to a an
increase in new, exciting applications. However, with
this technological improvement comes an increase in
power consumption. Increasingly, users are aware of
this and hence, application developers need to ensure
that their applications expand minimal energy. In or-
der to achieve this, developers need tools to aid them
in optimising their application’s energy usage. This
paper introduced Orka, which attempts to bridge this
gap. Taking a developed Android application, Orka
injects code into this to track calls made to APIs.
This injected application is then run on an emula-
tor, removing the need for the developer to purchase
hardware. By running a specific test case written by
the developer, Orka creates an execution trace from
which the energy usage is calculated. Furthermore,
energy usage due to hardware use is also captured. In
this deployment, Orka was a web-based service, how-
ever in future iterations it could be a command-line
system in order to allow it to function on games.

Orka stands as a platform on which a number of
new research ideas could be formulated. It could be
expanded to test an application on emulators repre-
senting different pieces of hardware. Due to the dif-
ferent sizes and resolutions of devices, a mapping
would be needed to allow one Monkey Runner script
to run on many devices. Furthermore, Orka could be
expanded to allow developers to compare their ap-
plication’s performance to others of a similar cate-
gory. As such, future research could also try to iden-
tify behaviours that all category of applications need
to perform. These could be used to create a series
of standardised tests for different types of applica-
tions, which would help mitigate the problem of ma-
licious developers writing their own tests. This would
also help novice developers who are less familiar with
testing, as well as aiding more experience developers
trust the rankings of their applications.

REFERENCES

Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a
framework for architectural-level power analysis and
optimizations, volume 28. ACM.

Orka: A New Technique to Profile the Energy Usage of Android Applications

223

Bunse, C., Höpfner, H., Roychoudhury, S., and Mansour,
E. (2009). Choosing the “Best” Sorting Algorithm for
Optimal Energy Consumption. In ICSOFT (2), pages
199–206.

Casey, G. (2013). Inserting keylogger code in
Android SwiftKey using apktool. https://
www.georgiecasey.com/2013/03/06/inserting-
keylogger-code-in-android-swiftkey-using-apktool/.
Accessed: 2015-08-24.

Chaudhari, A. (2015). Mobile Applications Market
Expected to Reach US$ 54.89 Billion by 2020 Trans-
parency Market Research. http://globenewswire.com/
news-release/2015/02/19/707887/10120995/en/
Mobile-Applications-Market-Expected-to-Reach-
US-54-89-Billion-by-2020-Transparency-Market-
Research.html. Accessed: 2015-06-05.

Corral, L., Georgiev, A. B., Sillitti, A., and Succi, G. (2013).
A method for characterizing energy consumption in
Android smartphones. In Green and Sustainable Soft-
ware (GREENS), 2013 2nd International Workshop
on, pages 38–45. IEEE.

Dong, M. and Zhong, L. (2012). Chameleon: a color-
adaptive web browser for mobile OLED displays. Mo-
bile Computing, IEEE Transactions on, 11(5):724–
738.

Ehringer, D. (2010). The Dalvik Virtual Machine Architec-
ture. http://show.docjava.com/posterous/file/2012/12/
10222640-The Dalvik Virtual Machine.pdf. Ac-
cessed: 2015-08-24.

Google. Dalvik bytecode. https://source.android.com/
devices/tech/dalvik/dalvik-bytecode.html. Accessed:
2015-08-24.

Google. Keeping the Device Awake. http://developer.
android.com/training/scheduling/wakelock.html. Ac-
cessed: 2015-08-24.

Google. Signing Your Applications. https:// developer. an-
droid.com/ tools/ publishing/ app-signing.html. Ac-
cessed: 2015-08-24.

Hao, S., Li, D., Halfond, W. G., and Govindan, R. (2012).
Estimating Android applications’ CPU energy usage
via bytecode profiling. In Proceedings of the First In-
ternational Workshop on Green and Sustainable Soft-
ware, pages 1–7. IEEE Press.

Heikkinen, M. V., Nurminen, J. K., Smura, T., and
Hämmäinen, H. (2012). Energy efficiency of mo-
bile handsets: Measuring user attitudes and behavior.
Telematics and Informatics, 29:387–399.

Jabbarvand, R., Sadeghi, A., Garcia, J., Malek, S., and Am-
mann, P. (2015). EcoDroid: An Approach for Energy-
Based Ranking of Android Apps. In Proceedings of
the 4th International Workshop on Green and Sustain-
able Software, pages 8–14. IEEE Press.

Li, D., Hao, S., Halfond, W. G., and Govindan, R. (2013).
Calculating source line level energy information for
android applications. In Proceedings of the 2013 In-
ternational Symposium on Software Testing and Anal-
ysis, pages 78–89. ACM.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C.,
Oliveto, R., Di Penta, M., and Poshyvanyk, D. (2014).
Mining energy-greedy API usage patterns in Android

apps: an empirical study. In Proceedings of the 11th
Working Conference on Mining Software Reposito-
ries, pages 2–11. ACM.

Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is
the energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceed-
ings of the 7th ACM european conference on Com-
puter Systems, pages 29–42. ACM.

Rivera, J. (2015). Gartner Says Tablet Sales Continue to
Be Slow in 2015 . https://source.android.com/devices/
tech/power/index.html. Accessed: 2015-08-24.

Shimpi, A. (2013). The Nexus 7 (2013) Review - Platform
Power and Battery Life. http://www.anandtech.com/
show/7231/the-nexus-7-2013-review/2. Accessed:
2015-08-30.

Smali (2015). Registers. https://github.com/JesusFreke/
smali. Accessed: 2015-08-24.

StackOverflow (2015). How to use Xposed framework
on Android emulator. http://stackoverflow.com/
questions/18142924/how-to-use-xposed-framework-
on-android-emulator. Accessed: 2015-08-24.

Stylianou, C. (2013). Speeding Up the Android Emulator on
Intel Architecture. https://software.intel.com/en-us/
android/articles/speeding-up-the-android-emulator-
on-intel-architecture. Accessed: 2015-08-14.

Wilke, C., Richly, S., Gotz, S., Piechnick, C., and Aß-
mann, U. (2013). Energy consumption and efficiency
in mobile applications: A user feedback study. In
Green Computing and Communications (GreenCom),
2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cy-
ber, Physical and Social Computing, pages 134–141.
IEEE.

Winchester, H. (2015). The best VR headsets. http://
www.wareable.com/headgear/the-best-ar-and-vr-
headsets. Accessed: 2015-06-05.

XDADevelopers (2014). Installing Xposed on the Android
Emulator. http://forum.xda-developers.com/xposed/
installing-xposed-android-emulator-t2794768. Ac-
cessed: 2015-08-24.

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

224

