
Disruption-resilient Publish and Subscribe

Noor Ahmed1,2 and Bharat Bhargava1

1Purdue University, West Lafayette, U.S.A.
2AFRL/RIS, Rome, U.S.A.

Keywords: Cloud Computing, OpenStack, Byzantine Fault Tolerant, Publish and Subscribe Middleware.

Abstract: Publish and Subscribe (pub/sub) dissemination paradigm has emerged as a popular means of disseminating
selective time-sensitive information. Through the use of event service or broker, published information is
filtered to disseminate only to the subscribers interested in that information. Once a broker is compromised,
information can be delivered unfiltered, dropped, delayed, perhaps colluding among the brokers in virtualized
cloud platforms. Such disruptive behavior is known as Byzantine faults. We present a Disruption–Resilient
Publish and Subscribe (DRPaS) system designed to withstand faults through continuously refreshing the vir-
tual instances of the broker. DRPaS combines advances in cloud management software stack (i.e., OpenStack
nova and neutron) to control the broker’s susceptibility window of disruption. Preliminary experimental re-
sults show that the defensive security solutions enabled by the underlying cloud computing fabric is simpler
and more effective than the ones implemented at the application/protocol level to withstand disruptions.

1 INTRODUCTION

Publish and Subscribe (pub/sub) dissemination
paradigm has emerged as a popular means of dis-
seminating filtered messages across large numbers
of subscribers and publishers. It’s a dissemination
paradigm that has attracted many applications: finan-
cial trading systems, cloud infrastructures to intercon-
nect components, and distributed clustering (i.e. Ra-
bitMQ), as service buses used in Service Oriented
Architectures, Yahoo Message Borker, OracleJMS,
IBM-Websphere, Jboss, and many others.

In pub/sub, typically, a broker(s) mediates the
exchange of topic or content-based messages be-
tween the producers (publishers) and consumers (sub-
scribers). Subscribers register their topic of interest to
the broker in which is then filtered against the incom-
ing messages from the publishers and forwarded to
them upon match, thereby, eliminating the need for a
priori connection between the message publishers and
subscribers.

However, such many-to-many loose coupling data
sharing model between the subscribers and the pub-
lishers mediated by a broker have a major security is-
sue. Once the broker is compromised, messages can
be dropped or not delivered at all, delayed or delivered
unfiltered. Most importantly, replicated brokers can
collude to disrupt the entire operation. These mali-

cious behaviors is known as Byzantine faults; a faulty
model where the system deviates from the protocol
specification and enters into undesired states.

Mayer et. al. (Mayer, 2011) evaluated the ro-
bustness of pub/sub systems in eight architectural di-
mensions and argued the criticality of the rational be-
haviour. For decades, replication have been the cor-
ner stone for achieving reliability and robustness of
the brokers. For example, crash failure resiliency is-
sues and reliability in pub/sub systems using replica-
tion have been studied in (Kazemzadeh, 2009).

With the growing trend of cloud computing adap-
tations, replicating brokers on a highly dynamic vir-
tualized cloud environment is undeniably cost effec-
tive. However, it’s increasingly challenging to guar-
antee the reliability and robustness of the brokers on
these platforms due to the increase in the attack sur-
face (Manadhata, 2011) – the set of ways/entries an
adversary can exploit/penetrate the systems.

Chang et al, in their position paper (Chang, 2012),
noted the lack of studies of BFT-based pub/sub sys-
tems in the literature and pointed out that building
such as system is difficult, perhaps even impossible.
The key challenge is that the BFT system’s run time
execution model is ordered (client request are pro-
cessed in persistent FIFO model) in contrast to the
loosely coupled nature of pub/sub system.

A crash tolerant Paxos-based system, referred as

216
Ahmed, N. and Bhargava, B.
Disruption-resilient Publish and Subscribe.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 216-220
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



P2S, was recently proposed by the same authors
(Chang, 2014). Others have approached this problem
using overlay networks. To name a few, a consensus
replication model is proposed in (Jehl, 2013) which
was noted that the protocol somewhat deviates from
the traditional message forwarding standards. An-
other overlay networks based on neighbourhoods is
proposed in (Kazemzadeh, 2013).

With the ever-increasing sophisticated targeted at-
tacks that employ zero-day exploits, protocol-level
solutions tend to be defeated when attacks originate
outside the application, i.e. OS kernel. We believe
shifting from a perceived over-emphasis on improv-
ing existing protocol-centric solutions, to better en-
able fault–resiliency while reflecting the underlying
computing fabric, is critical.

Our primary focus in this work is to leverage
the capabilities provided by the underlying cloud
computing fabric to address the robustness issues
in the context of pub/sub which has not yet suffi-
ciently explored. We build our solution in Open-
Stack cloud software stack (OpenStack, 2015), more
specifically, the nova API which allows provisioning
and de–provisioning VM/brokers instance (dubbed
VM/broker refresh), and the neutron for the network-
ing reconfiguration of the brokers.

Thus, the main contribution of our work is the fol-
lowing:

• We introduce a disruption-resilient framework for
publish and subscribe.

• We introduce a generic VM refreshing algorithm
for event-based replicated systems on virtualized
cloud platforms.

We have organized the paper as follows; we first
give a brief overview of a pub/sub and discuss the
threat scope and assumptions. We present DRPaS
system design and implementation in section 3. In
section 4, we show a preliminary experimental evalu-
ations and report our results. Finally, we discuss the
related work followed by our conclusion in sections 5
and 6 respectively.

2 BACKGROUND

Within this section, we give a brief overview of
pub/sub system and the threat models that we con-
sider.

2.1 Publish and Subscribe Systems

Eugster et. al. (Eugster et.al., 2003) gave a fair treat-
ment of the pub/sub models and their interaction pat-

terns, highlighting the decoupled nature of publishers
and subscribers in time, space, and synchronization.
Many variants of the paradigm are especially adapted
a variety of applications and network models. In this
work, we are interested in highly available replicated
brokers/pub/sub systems distributed across heteroge-
neous clusters.

Pub/sub ecosystem consists of three agent interac-
tions: subscribers, publishers, and broker. Typically,
a broker mediates the exchange of topic or content-
based messages between the producers (publishers)
and consumers (subscribers). In general, pub/sub sys-
tems handle aperiodic and periodic messages of het-
erogeneous sizes and formats in near-real time.

One of the proven methods of implementing a
fault-tolerant (i.e., Byzantine Faults) replicated ser-
vices is through State Machine (SM) approach (Sch-
eneider, 1990). However, the main challenge of im-
plementing Byzantine Fault Tolerant (BFT) protocol
in pub/sub systems is that BFT protocols are based
on SM which complies a well ordered finite state au-
tomata transitions, for example, client requests en-
ter the system which is then executed in ordered
fashion among the replica and then a consensus is
reached for the response. Unlike pub/sub, the client
requests/events are processed in loosely coupled fash-
ion, for example, events are published out of order and
brokered by the broker independent of the subscribers
that are interested in these events.

2.2 Scope and Threat Model

Many variants of the pub/sub paradigm have been
proposed and each is being specially adapted to spe-
cific application and network models (Eugster et.al.,
2003). We consider replicated n brokers where n>1
nodes/replica typically used for high availability clus-
ter settings.

Our attack model considers an adversary that has
fully (system privilege) compromised a broker un-
detected by the traditional defensive mechanisms, a
valid assumption in the cyber space. The adversaries’
advantage, in this case, is the unbounded time which
enables him to eventually disrupt the system. The fun-
damental premise of DRPaS is to eliminate the adver-
saries’ advantage of time through the use of the un-
derlying computing fabric.

We consider the standard assumptions of Byzan-
tine fault models (Lamport, 1982) . Typically, repli-
cated brokers with Byzantine fault models demon-
strate arbitrary faults that deviate from the correct-
ness protocol. We consider a Byzantine broker mis-
behavior described in (Chang, 2012). A compromised
broker can: 1) impact the performance by delaying

Disruption-resilient Publish and Subscribe

217



Figure 1: Logical System View of 3 Brokers on Virtualized
Cloud Platform. Arrows on top represent the entry point
of the application, and those on the sides of the application
layer (Broker 1..n) represent the elastic computing model of
the brokers provisioned on any of the underlying VM.

publications, 2) effect system integrity by tempering
published contents, violating message reordering and
corrupting forwarding tables, and 3) even cause sys-
tem outage.

In this work, we consider publishers and sub-
scribers (clients) are trusted, for simplicity, and illus-
trate VM refresh techniques for impeding malicious
attacks. Dealing with misbehaving clients that can
wage denial of service attacks, for example, will be
considered in our future work.

We assume that hypervisors/VMMs and the cloud
software management stack (OpenStack) and it’s de-
pendent libraries are secure.

3 SYSTEM DESIGN AND
IMPLEMENTATION

Our design is motivated by the modularized, plug-
gable and structured cloud computing fabric, i.e,
stacked hardware, host OS, guest VM/OS’s, and re-
configurable networks. In this section we will de-
scribe our system design approach and discuss our al-
gorithms.

3.1 System Design

The logical system view depicted in Figure 1 illus-
trates the building blocks of a cloud platform. These
blocks can be viewed as three logical layers; i) the
bottom three blocks (Hardware1..n, HostOS, and Hy-
pervisors) which we call it the foundation layer, ii)
guest/VM layer which consists of the VM1..n blocks
and the impeded applications (Broker1, Broker2, and
Broker3), and iii) the networking layer.

We adopted a cross layer vertical design that si-
multaneously operate on two logical layers of the

cloud platform; a guest/VM and the network layer.
The guest/VM layer aims for broker VM instance re-
freshes while the networking component aims to dy-
namically reconfigure the network at runtime. It’s in-
tuitive to see that such scheme has the benefit of ter-
minating a compromised broker within a given time
frame, therefore, a successful and/or in progress at-
tack will have a limited impact on the system.

Since attacks originate at the entry point, exter-
nally visible 192.168.1.x IP for clients, by refresh-
ing the underlying VM (broker1. . . n), we circumvent
any attack crafted or vulnerability exploited to a given
system (i.e., hardware, Host and guest OSs and the
Hybervisor). Note that the brokers typically commu-
nicate with local IP address similar to those found in
LAN settings.

3.2 Implementation

We implemented our algorithms with bash shell
script using OpenStack (OpenStack, 2015) nova api,
an open source cloud management software stack.
OpenStack is popular in the commercial world, for in-
stance, RackSpace (RackSpace, 2015), a public cloud
platform built with OpenStack used by many well-
established businesses like Netflix.

OpenStack provides modularized components that
simplify cloud management. In this work, we lever-
aged nova compute for provisioning the VMs/brokers,
neutron for networking, glance for the VM image
management, and horizon dashboard for visualiza-
tion.

Algorithm 1: VM/Broker Refreshing Algorithm.

Input: targetBroker
Output: Refreshed targetBroker

1: f lIP← targetBroker f loatIP
2: nova delete targetBroker
3: targetBroker← nova boot < options >
4: nova floating-ip-associate(targetBrokerID, f lIP)

In Algorithm 1, we first save the broker’s exter-
nally feasible IP address known as floating IP in line
1. We then delete the broker in line 2, and in line 3 we
create a new VM instance with options like; specific
port ID with selected fix IP address (LAN), OS type,
cluster, geographic location, file to run after boot, etc.
Finaly, in line 4, we associate the floating IP from the
old VM saved in line 1 to the one created in line 3.
Note that nova ip-associate <options> is an imple-
mentation of Software Defined Networking (SDN) in
the neutron component.

Clearly, this algorithm is also suitable for any
replicated and non-replicated system deployed on vir-
tualized cloud platform using some form of nova im-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

218



plementation for provisioing and de-provisioning VM
instances, and an SDN implementation. Further, the
algorithm can be used in a random refresh fashion or
timely based (i.e. 5 minute) intervals as we illustrate
in the experiment section.

4 EVALUATION

We randomly refresh broker/VM instance, thus, our
experiment is targeted on evaluating how fast we can
refresh brokers in order to reduce the exposure win-
dow time of an attack to succeed and disrupt the sys-
tem.

4.1 Experimental Setup

Our experimental cloud platform uses a private cloud
built on OpenStack software on a cluster of 10 ma-
chines (Dell Z400) with Intel Xeon 3.2 GHz Quad-
Core with 8GB of memory connected with 1 giga-
bit Ethernet switch. The 10 machines were used as
one controller and networking node, and 9 compute
nodes. The 9 compute nodes allow us provisioning
36 virtual CPU’s (vCPU) which equals upto a pool of
18 small vm instances, 2 vCPU per instance.

We used Ubuntu 14.04 for clients and the repli-
cas/servers in all our experiments. Note that the OS’s
of both replicas and clients can be any OS image
that Openstack supports. We deployed RabitMQ (Ra-
bitMQ, 2015) pub/sub brokers in distributed fashion.
RabitMQ is a widely adopted open source and com-
mercially supported content-based message broker-
ing. RabitMQ is used in may applications such the
financial trading systems, SOA Service buses, inter
cloud component interconnections, etc.

Figure 2: Replicated Broker Topology.

There are numerous ways on setting highly avail-
able replicated brokering. For simplicity, we set up 3
brokers with 6 slaves (2 each master) as depicted in
Figure 2. Within a RabbitMQ cluster, queues (mes-
sage topics) are singular structures that exists only
on one node (the master node) in which is then mir-
rored (replicated) across multiple nodes to address
high availability. Each mirrored queue consists of one

master and one or more slaves that can be synchro-
nised, with the idea of the slave replacing the mas-
ter when it fails (built-in reliability scheme). Thus,
the key motivating factor for our solution approach,
the existence of the built-in reliability schemes in the
protocol enables the brokers and clients to reconnect
after a short disconnect.

4.2 Experimental Results

Figure 3 shows the exposure window time line. The
x-axis show a five minute blocks. In each block we
have 3 physical nodes numbered 1, 2, 3 in which the
applications/brokers are deployed on (depicted as cir-
cles).

In the first block, we show 3 nodes depicting the
3 replicas deployed for the experiment. The 3 repli-
cas/VM can be on any hardware, say, hardware #1,
#2 and #3 out of the 9 nodes of our private cloud in-
frastructure setting. To illustrate the concept, we re-
freshed a brokers in 5 minute intervals marked 0 to
5min by the end of each block.

Figure 3: Illustration of a 3 broker/VM exposure window of
5 minute intervals.

At the start of the experiment, the brokers broker1,
broker2 and broker3 represented in circles are on their
respected hardware among our cloud nodes, node#1,
node#2 and node#3 respectively. Note that each node
can host more than one broker instance.

After 5 minutes, we refreshed broker1 on one of
the other 6 nodes, nodei in this case. At the end of the
next 5 minutes (10 minute block), we did similarly to
broker2 and mapped on the other 6 nodes of the plat-
forms, node j in this case. Similarly in the consequent
5 minute blocks. The process of refreshing a VM
took only 50 to 60 seconds. We consider evaluating
the performance impact and the application queue up-
dates (creation/deletion) with large number of clients
in our future work.

It’s intuitive to see that defending the 3 replicas in
first block for it’s entire run time is extremely chal-
lenging compared to when defending them in one of
the 5 minute blocks. The rationale behind this is that
in each block there is at least one broker replica is on
yet unknown (to the attacker) platform, and another
one (or more) soon to be refreshed, thus, reducing the
exposure attack window of the overall system.

Disruption-resilient Publish and Subscribe

219



Therefore, capabilities enabled by the underlying
cloud platform seamlessly adds high visibility on sys-
tem’s runtime to prevent disruptive faulty behavior.
The preliminary result show the feasibility of the un-
precedented security capabilities enabled by underly-
ing computing fabric to defend against unknown ene-
mies.

5 RELATED WORK

There has been a wide array of research on tack-
ling the reliability of pub/sub systems at the appli-
cation layer. (Mayer, 2011), discussed over decades
of works on replication techniques and a taxonomy
of Byzantine faults in pub/sub systems considering
failure scenarios, however, all these studies address
reachability issues, i,e, link/node crashes and fast re-
covery in the overlay brokers.

Recent protocol level solution approaches include
the crash tolerant Paxos-based proposed by (Chang,
2014), the State Machine consensus replication model
presented in (Jehl, 2013), and the overlay network
based on neighbourhoods (Kazemzadeh, 2013).

All of these solutions address BFT-resiliency in
the context of pub/sub by modifying the pub/sub mes-
saging protocol. In contrast, our generic solution ap-
proach can be applied to any pub/sub system, perhaps,
non-pub/sub replicated systems to resist BFT-faults
without any modification to the protocol while con-
sidering the underlying computing fabric.

6 CONCLUSIONS

We showed the capabilities enabled by the underlying
computing fabric are simpler and effective than the
ones implemented in the protocol to defend against
modern sophisticated attacks. The practicality and
the effectiveness of the proposed scheme is illustrated
with a widely adopted open source cloud manage-
ment software stack (OpenStack) and replicated pub-
lish and subscribe (RabitMQ) system deployed on a
realistic private cloud setting.

Future works will address remote hardware and
software attestation, and trace-based performance
analysis of VM refreshes across multiple cloud
providers. We will consider integrating Virtual Ma-
chine Introspection for fine tuning the VM refresh rate
while injecting/detecting attacks to determine the lim-
its impose by the cloud platforms for an acceptable
exposure window.

ACKNOWLEDGEMENTS

Authors would like to sincerely thank Jim Hanna for
the cloud platform support and Matthew Paulini for
his editorial proofing contributions, both at AFRL/RI.
Special thanks for the anonymous reviewers for their
feedback.

REFERENCES

Ahmed, N., and Bhargava, B. 2015. Towards Targeted In-
trusion Detection Deployments in Cloud Computing.
In the Int. Journal of Next-Generation Computing Vol.
6, No 2 (2015), IJNGC - JULY 2015.

Chang, T., and Meling, H., 2012. Byzantine Fault-Tolerant
Publish/Subscribe: A Cloud Computing Infrastructure
In the Proceedings of the Symposium on Reliable and
Distributed Systems. October 2012.

Chang, T., Duan, S., Meling, H., Peisert, S., and Zhang, H.,
2014. P2S: A Fault-Tolerant Publish/Subscribe Infras-
tructure In the Proceedings of DEBS, May 2014

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, M.,
2003. The Many Faces of Publish/Subscribe. In the
Proceedings of the ACM CSUR 35, 2 (June 2003).

Jehl, L. ,and Meling, H., 2013. Towards Byzantine Fault To-
letant Publish/Subscribe: A State Machine Approach
In the Proceedings of HotDep, November 2013

Kazemzadeh, S. R., and Jacobsen, H., 2013. PubliyPrime:
Exploiting Overly Neighbourhood to Defeat Byzan-
tine Publish/Subscribe Brokers. TR University of
Toronto, May 2013

Kazemzadeh, S. R., and Jacobsen, H., 2009. Reliable
and Highly Available Publish and Subscribe In the
Proceedings of the Symposium on Reliable and Dis-
tributed Systems. October 2009.

Lamport, L., Shostak, R., and Pease, M. 1982. The Byzan-
tine Generals Problem. In ACM Trans. Program.
Lang. Syst., 4(3): 382–401, 1982.

Manadhata, P.K., and, Wing, J.M., (2011). An Attack Sur-
face Metric In the IEEE Trans. Software Engineering,
37, 371-386, 2011.

Mayer, R. T., Brunie, L., Coquil, D., and Kosh, H. 2011.
Evaluating the Robustness of Publish and Subscribe
Systems. In the Proceedings of IEEE Int. Conf. of
(3PGCIC). pp. 75-82. 2011.

OpenStack(2015). https://www.openstack.org/
RabitMQ (2015). https://www.rabbitmq.com/ha.html
RackSpace,(2015). https://www.rackSpace.com/
Schneider, F., 1990. Implementing Fault-Tolerant Services

using the State Machine Approach: A tutorial. In
ACM Computing Surveys (CSUR) 22.4 (1990): 299-
319.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

220


