
Bees Swarm Optimization Metaheuristic Guided by Decomposition for
Solving MAX-SAT

Youcef Djenouri1, Zineb Habbas2 and Wassila Aggoune-Mtalaa3

1LRDSI, Computer Science Department, Saad Dahleb University, Blida, Algeria
2Department of Computer Science, University of Lorraine, Metz, France

3LIST, Luxembourg Institute of Science and Technology G.D., Esch-sur-Alzette, Luxembourg

Keywords: BSO, MAX-SAT, Decomposition Methods, Kmeans, BSOGD.

Abstract: Decomposition methods aim to split a problem into a collection a collection of smaller interconnected sub-
problems. Several research works have explored decomposition methods for solving large optimization prob-
lems. Due to its theroretical properties, Tree decomposition has been especially the subject of numerous
successfull studies in the context of exact optimization solvers. More recently, Tree decomposition has been
successfully used to guide the Variable Neighbor Search (VNS) local search method. Our present contribution
follows this last direction and proposes two approaches called BSOGD1 and BSOGD2 for guiding the Bees
Swarm Optimization (BSO) metaheuristic by using a decomposition method. More pragmatically, this paper
deals with the MAX-SAT problem and uses the Kmeans algorithm as a decomposition method. Several ex-
perimental results conducted on DIMACS benchmarks and some other hard SAT instances lead to promising
results in terms of the quality of the solutions. Moreover, these experiments highlight a good stability of the
two approaches, more especially, when dealing with hard instances like the Parity8 family from DIMACS.
Beyond these first promising results, note that this approach can be easily applied to many other optimization
problems such as the Weighted MAX-SAT, the MAX-CSP or the coloring problem and can be used with other
decomposition methods as well as other metaheuristics.

1 INTRODUCTION

The NP-Complete satisfiability problem (SAT) is of
central importance in computation theory. SAT for-
malism is used to model many academic or real prob-
lems like coloring problem, decision support and
automated reasoning. Formally, SAT is defined as
follows: given a set ofn boolean variablesV =
{v1,v2, ...,vn}, a Conjunctive Normal Form (CNF) is
a conjunction of clauses, each clause being a disjunc-
tion of literals, while a literal is a variablevi from V
or its negation, noted¬vi . A clause is satisfied when
at least one of its literals is set to true. A CNF is
satisfied if an assignment of some variables inV sat-
isfies all the clauses. The SAT problem asks for an as-
signment of some variables inV that satisfies a CNF
F . The problem is said SAT if such an assignment
exists and UNSAT otherwise. This paper addresses
the NP-Hard MAX-SAT problem, a generalization of
SAT. Given a CNF formulaF, the objective of MAX-
SAT is to satisfy as many clauses ofF as possible.
A solution of a MAX-SAT instance is a complete in-

stantiation of variables inV that satisfies a maximal
number of clauses. As with many NP-complete prob-
lems, existing algorithms dedicated to SAT are either
complete or incomplete. A complete algorithm aims
to solve the problem while an incomplete algorithm
aims only to find satisfying instantiations. The most
effective complete algorithms are based on the DPLL
procedure (Davis et al., 1960). They mainly differ
by the heuristics used for the branching rule (Dubois
et al., 1996)5. MAX-SAT is a generalization of SAT.
But while SAT is a decision problem, MAX-SAT is its
optimization version. Of course, finding the optimal
solution for a NP-Complete optimization problems is
too time expensive because of the exponential time
complexity.

To deal with this problem, many incomplete meth-
ods are proposed for solving MAX-SAT problems.
GSAT (Li, 1997) is a randomized local search. It
starts drawing randomly a valuation for the variables
and then makes a certain number of flips on variables
that reduce the number of unsatisfiable clauses. This
process is repeated until getting the optimal solution

472
Djenouri, Y., Habbas, Z. and Aggoune-Mtalaa, W.
Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT.
DOI: 10.5220/0005810004720479
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 472-479
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



or reaching a limit on the number of attempts. Walk-
sat (Selman et al., 1994) is an extended version of
GSAT. A noise represented by a probabilistic instruc-
tion, is introduced in the procedure to achieve the
random walk move. A variable drawn randomly is
considered with a probabilityp and with(1− p) the
variable that yields to the maximum satisfied clauses
is selected. Then it improves the obtained solution
by a local search method. In (Drias et al., 2005), a
Bees Swarm Optimization metaheuristic (BSO) has
been proposed for solving Weighted Maximum Sat-
isfiability Problem. Currently, a trend for improv-
ing incomplete algorithms, consists in combining
wisely the best properties from different approaches.
In (Lardeau et al., 2006), a new hybrid algorithm
(called GASAT) embedded a tabu search procedure
into the evolutionary framework. The GASAT perfor-
mance comes from its original and highly specialized
crossover operators, a powerful tabu search method
and the interaction between these two methods. To
enhance the performance of MAX-SAT solvers and
in order to deal with hard and large instances, some
solving approaches propose to explore the structural
properties of the problem.

This paper follows this line of research and its
main purpose is to improve the BSO metaheuristic
by decomposing the problem before solving it. Ti
decompose a problem several clustering techniques
can be found in the literature. In the context of data
mining, unsupervised learning algorithms correspond
to the most popular class. In general, the cluster-
ing consists in grouping together or putting in the
same cluster homogeneous data. In this paper, the
Kmeans algorithm was selected for the decomposi-
tion step. Based on structural knowledges coming
from Kmeans, this paper proposes two extended BSO
algorithms guided by decomposition namedBSOGD1
and BSOGD2. In BSOGD1 each bee of the colony
considers as its region only a part of the problem that
coincides with a particular cluster. The bee returns
a partial modification of the “reference solution” be-
cause it can access to variables in only one cluster. A
bee inBSOGD2 can access to all the clusters and has
consequently a more important knowledge about the
structural properties of the instance to be solved. To
validate the proposed approaches, experimental stud-
ies have been carried out onDIMACSand some hard
Uni f orm−Random−3−SATinstances, the first re-
sults reveal that the our approaches outperform the
state of the art MAX-SAT approaches.

The reminder of this paper is organized as fol-
lows. Section 2 presents the BSO-MAXSAT algo-
rithm. Section 3 concerns our main contributions and
mainly presents the two proposed algorithms. The ex-

perimental results of our proposition are reported in
section 4. Finally, section 5 concludes the present pa-
per by some remarks and perspectives.

2 THE BSO-MAXSAT
ALGORITHM

In (Drias et al., 2005), a Bees Swarm Optimization al-
gorithm for solving the Weighted MAX-SAT problem
was proposed. MAX-SAT is a particular Weighted
MAX-SAT problem in which the weight associated
with each clause is 1. The main principle of this ap-
proach called BSO-MAXSAT is formally resumed by
algorithm 1.

Algorithm 1: BSO-MAXSAT algorithm.

Input: A MAX-SAT instanceP
Begin

1: Sre f← Initial Solution
2: while non stopdo
3: TabuList← Sre f
4: FindSearchRegion (Sre f,k,SR1,SR2, . . . ,SRk)
5: for each bee ido
6: LocalSearch ( SRi , BestSoli)
7: TableDance← BestSoli
8: end for
9: Sre f← BestSolution(TableDance)

10: end while
End

First, the initial beeBeeInit creates the solu-
tion reference namedSref and saves it in a Tabu
list. From this solutionSref, a set ofk regionsR=
{SR1,SR2, . . . ,SRk} is determined thanks to the proce-
dureFindSearchRegion. After that, each beebi is
assigned to a regionSRi in order to explore it using
the local search procedure (LocalSearch). Finally,
the communication between bees is performed via the
TableDance, in order to elect the best solution that
will be the solution reference for the next iteration.

• The Evaluation of the Solution: A solutions of
BSO-MAXSAT is an instantiation ofn variables,
where theith element is set to 0 if the variable
is assigned tofalseand set to 1 if the variable is
assigned totrue. The evaluation ofs is based on
the number of clauses satisfied byS.

• Determination of Regions: The aim of procedure
FindSearchRegion is to divide the space of solu-
tions into k disjoint regions. Given the solution
referenceSref, a parameterFlip is introduced in
order to ensure the diversification step. Then,k

Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT

473



disjoint solutions are generated where theith so-
lution is obtained by changing successfully from
Sref the bits:{(1×Flip)+ i,(2×Flip)+ i,(3×
Flip)+ i, ...n− i}.
• Local Search Process: The aim of procedureLo-

calSearch is to explore a region by identifying in
each step the neighbors of a given solution. Given
the solutions, this operation ensures the intensifi-
cation by changing only one bit ofsat a time.

This algorithm was tested on the well knownBMC
instances1. The obtained results were very promis-
ing by finding the optimal solution in most of the
cases. However, the performance of BSO-MAXSAT
decreases when dealing with large instances and hard
ones. To cope with this problem, two approaches are
proposed in the next section to guide BSO-MAXSAT
by exploring some structural knowledge coming from
a decomposition.

3 BSO GUIDED BY
DECOMPOSITION

This section presents the main contributions of this
paper. First the principle of Kmeans for SAT problem
is described in subsection 3.1. Then two different ap-
proaches to guide BSO by using decomposition will
be formally described in subsection 3.2 and subsec-
tion 3.3.

3.1 Kmeans for Decomposing SAT

K-means is one of the simplest unsupervised learning
algorithms which can solve the well known clustering
problem. The procedure follows a simple and easy
way to classify a given data set through a certain num-
ber of clusters (assume k clusters) fixed a priori. The
main idea is to define k centroids, one for each clus-
ter. The centroids should be placed in a cunning way
because the clustering result depends on their loca-
tion in the clusters. In order to optimize the efficiency
of the outcomes, it is judicious to place them as far
as possible from each other. The next step is to take
each point belonging to a given data set and associate
it to the nearest centroid. When no point is pending,
the first step is completed and an early grouping is
done. At this stage we need to re-calculate k new cen-
troids for the new clusters resulting from the previous
step and iterate the process. The latter stops when no
more changes of the clusters are observed, in other
words when no centroid move any more. To adapt the

1http://www.cs.ubc.ca/h̃oos/SATLIB/benchm.html

Kmeans procedure on clauses clustering, we propose
a new similarity and center of gravity computation for
clauses.

3.1.1 Similarity Between Clauses

The similarity between two clauses represents the
degree of consistency between them. On the con-
trary their dissimilarity denotes the inconsistency be-
tween them. Intuitively they are similar when they
share a lot of variables and they are dissimilar if they
are different. Let us propose as a similarity mea-
sure denotedDist clausesbetween two clausesc1 and
c2 the following formula:Dist clauses(c1,c2) = n−
ncv(c1,c2) wherencv(c1,c2) is the number of com-
mon variables betweenc1 andc2.
This distance is a valid metric because it meets the fol-
lowing mathematical properties of a metric distance
function, which are:

• ∀(c1,c2) ∈C2 Dist clauses(c1,c2) ∈R

• ∀c∈C Dist clauses(c,c) = 0

• ∀(c1,c2) ∈ C2 Dist clauses(c1,c2) =
Dist clauses(c2,c1)

• ∀(c1,c2,c3) ∈ C3 Dist clauses(c1,c2) ≤
Dist clauses(c1,c3)+Dist clauses(c3,c2)

Example 1. Consider a SAT instance defined as the
set of variables V= {v1,v2,v3,v4} and the two fol-
lowing clauses c1 and c2:

• c1: v1, v2, v3.
• c2: v2, v4, v3.

The common variables of c1 and c2 are{v2,v3} so
ncv(c1,c2) = 2 and Dist clauses(c1,c2) = 1

3.1.2 Centroid Computation

Consider the set of clausesC = {c1,c2, ...,cr}. The
aim is to find the clause corresponding to the centroid.
The idea is to compute the frequency of each variable
among all the clauses in a same cluster. The length
of the clause center notedl which corresponds to the
average number of items of all ther clauses is deter-

mined as follows:l = ∑r
i=1 |ci |

m . Then, the variables of
ther clauses are sorted according to their concurrency
in the r clauses and only thel frequent variables are
kept in a vector calledFreqas follows:

{
centerclause[Freq[ j]] = 1
∀ i 6= Freq[ j] centerclause[i] = 0

Example 2. Let be the MAX-SAT following problem:
F = (¬v1)∧ (¬v2 ∨ v1)∧ (¬v1 ∨¬v2∨¬v3)∧ (v1∨
v2)∧ (¬v4∨v3)∧ (¬v5∨v3)
Note that this problem is UNSAT because there is no

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

474



possible value for v1 or v2 that satisfies the clause v1∨
v2. The success ratio of this instance is 83% because
only 5 clauses out of 6 can be satisfied.

Table 1: Variables and their Frequency.

Variables Frequency

v1 04

v2 03

v3 03

v4 01

v5 01

To compute the center-clause of the six ones c1
to c6, we first compute the centroid l. Here l=
1+2+3+2+2+2

6 = 2. Then, the l frequent variables are
selected. According to the table 1,{v1,v2} are fre-
quent variables. So centerclause= {v1,v2}.

3.2 BSOGD1: A First BSO Algorithm
Guided by Decomposition

This section aims to present a first BSO algorithm
Guided by Decomposition calledBSOGD1. Intu-
itively, BSOGD1 proceeds like BSO-MAXSAT, ex-
cept that each bee explores its region by taking into
account the structural knowledge coming from the de-
composition step (the clusters and/or separators). The
principle of BSOGD1 is formally described by algo-
rithm 2.

Algorithm 2: Algorithm BSOGD1.

Input: A MAX-SAT instanceP
Begin

1: Decompose(P, k, G1, G2, . . . ,Gk)
2: Sre f← Initial Solution
3: FindSearchRegion1 ( k,G1, G2, . . . , Gk, R1,R2,

. . . , Rk)
4: while non stopdo
5: TabuList← Sre f
6: for each bee ido
7: LocalSearch1( Sre f , Ri , BestSoli)
8: TableDance← BestSoli
9: end for

10: Sre f← BestSolution1(TableDance)
11: end while
12: End

BSOGD1 consists of two main steps described as
follows:

• The first step (Proceduredecompose) partitions
the constraint network corresponding to the ini-
tial problemP to be solved in order to identify
some relevant structural components such as the
clusters and the separators for instance. The de-
composition method used in this algorithm is the

Kmeans one presented in subsection 3.1. The pro-
cedureDecompose(P, k, G1, G2, . . . , Gk) splits a
given MAX-SAT instanceP into a collection ofk
clustersG1, G2, . . . ,Gk, wherek is the number of
bees. Each cluster is a subset of the initial set of
clauses ofP. A clause belongs to only one clus-
ter. Two clustersGi andG j are connected if they
share at least one variablev, which is a variable
used both by a clause ofGi andG j.

• The second step concerns the principle of BSO
for solving MAX-SAT. The specificity of this ap-
proach is to use the procedureFindSearchRe-
gion1 instead of the conventional procedure of
BSO for determining the regions. The proce-
dure FindSearchRegion1 takes as input a set
of clustersG1, G2, . . . , Gk obtained from the
Kmeans procedure and returns a collection of re-
gions R1,R2 . . . ,Rk. Initially, a set of variables
Var(Gi) in Gi is assigned to each regionRi . When
a variablev belongs simultaneously to bothRi and
Rj it is removed from the cluster that contains the
minimum clauses includingv. This heuristic gen-
erates independent regions allowing each bee to
improve locally the solution. The procedureLo-
calSearch1 improves in the solutionSre fonly the
variables of its region and returns in TableDance a
solution with a partial improvement. The function
BestSolution1 determines the next solutionSre f
as follows:

Sre f← s← BestSol1[R1]⊙ . . .⊙BestSol1[Rk]

whereBestSol1[Ri ] is the partial solution found by
a beei and⊙ is a simple concatenation of the par-
tial solutions.

3.3 BSOGD2: A Second BSO
Algorithm Guided by
Decomposition

BSOGD2 differs from BSOGD1 by the determination
of regions, the local search procedure and the election
of the next solutionSre f. BSOGD2 determines the
regions in a conventional way, like BSO-MAXSAT.
However unlike BSO-MAXSAT, each bee explores its
own region by considering in its search all the clusters
G1, G2, . . . ,Gk. This heuristic enables a bee to guide
more finely its research because ih has a global in-
formation unlike than the bee in BSOGD1. The next
solutionSre f is the best solution among all the solu-
tions found by the bees. The principle of BSOGD2 is
formally described by algorithm 3.

Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT

475



Algorithm 3: Algorithm GDBSO2.

Input: A MAX-SAT instanceP
Begin

1: Decompose(P, k, G1, G2, . . . ,Gk)
2: Sre f← Initial Solution
3: while non stopdo
4: TabuList← Sre f
5: FindSearchRegion2(Sre f, k, SR1,SR2, . . . ,

SRk)
6: for each bee ido
7: LocalSearch2(SR1, G1, G2, . . . ,Gk, Soli)
8: TableDance← Soli
9: end for

10: Sre f← BestSolution(TableDance)
11: end while
12: End

4 PERFORMANCE ANALYSIS

4.1 Experimental Conditions

To validate the proposed approaches several experi-
ments were carried out in a Single MachinePentium-
I3 with 4Gomemory. The proposed approaches have
been implemented usingJavaenvironment and tested
on 21 instances of the well knownDIMACSinstances
and 10Uniform Random-3-SATinstances. All the
considered instances are available at SATLIB site2.
The DIMACS instances used in this study were di-
vided into three classesaim-50, aim-100, and par-
ity8. Theaim-50class contains 8 different instances
involving 50 variables and a number of clauses which
varies from 80 to 100. Theaim-100class includes 8
instances defined on 100 variables, while the number
of clauses varies from 160 to 200. The last class con-
tains 5 instances ofParity8 with 350 variables and a
number of clauses varying from 1149 to 1171. More-
over, for theUniform Random-3-SATinstances, the
number of variables varies from 20 to 250 while the
number of clauses varies from 91 to 1065.
In this section, the results of the following tests are
presented:

1. First, the results obtained with theBSO-MAXSAT
algorithm on the three classes ofDIMACS in-
stances are compared to the ones obtained with
the GASAT algorithm (the well-known incom-
plete algorithm for theMAXSATproblem).

2. Then, the two proposed algorithms BSOGD1 and
BSOGD2 are compared to the BSO-MAXSAT

2http://www.cs.ubc.ca/h̃oos/SATLIB/benchm.html

algorithm on the same instances (the DIMACS
ones).

3. Finally, in order to further analyze the gain of our
contribution, the two algorithms BSOGD1 and
BSOGD2 are confronted to each other on theUni-
form Random-3-SATinstances.

To validate our approach from a practical point of
view, the following performance measures are consid-
ered: the CPU time, the average success rate (SR%)
and the best success rate (BestSR%). Note that the
results reported in all the tables are an average of the
results obtained on 100 executions. Moreover, the
column (n,m) gives the size of an instance where n
is the number of variables and m is the number of
clauses. The execution times were not reported since
all the times are comparable, although the slight dif-
ferences are in favor of the BSO algorithm.

4.2 Comparison of the GASAT and the
Hybrid BSO-MAXSAT Algorithms

As mentioned in section 1, inGASAT, a simple local
search is added at the end of the Genetic Algorithm
to improve the quality of the final solution. In or-
der to compareBSO-MAXSATto GASAT, the same
local search used inGASATis added to the classical
BSO-MAXSAT. The resulting algorithm is called Hy-
brid Bees Swarm Optimization for Maximal Satisfia-
bility Problem (HBSO-MAXSAT).

Table 2 summarizes the results of the comparison
between these two algorithms. Note that for GASAT,
only the best success rates are presented by the au-
thors, while for HBSO-MAXSAT, both the average
success rate and the best success rates are presented.
Clearly, our approach presents a better stability. In-
deed the average results are almost closed to the best
ones, and are often around the order of 92% for the
first two groups of instances. Furthermore, the results
are also comparable for all instances (around 90%) for
each instance. For the third family, the best success
rates are of about 60%, because this class includes
very hard instances. However the stability of this ap-
proach is still kept. Unlike HBSO-MAXSAT, GASAT
presents too distant success rates from one instance
to another (only 6% for the instance 1-6yes1-2 and
100% for the instance 1-6-yes1-3). The results are
very bad for the third family of problems. Finally,
regarding the average results, HBSO-MAXSAT out-
performs everywhere GASAT. This encouraging re-
sult confirms the relevance of our idea that aims to
guide the BSO algorithm by decomposition.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

476



Table 2: Comparing HBSO-MAXSAT and GASAT algorithms.

Class Instances (n,m) HBSO-MAXSAT GASAT
SR (%) BestSR (%) Best SR (%)

1-6yes1-1 (50,80) 92,39 97,75 100
1-6yes1-2 (50,80) 93,12 97,5 6
1-6yes1-3 (50,80) 90,27 93,75 100

aim50 1-6yes1-4 (50,80) 90,01 93,75 100
2-0yes1-1 (50,100) 91,96 95 68
2-0yes1-2 (50,100) 90,53 95 100
2-0yes1-3 (50,100) 92,13 97 100
2-0yes1-4 (50,100) 90,39 95 100

Average 91,35 95,59 84,25
1-6yes1-1 (100,160) 90,93 95 2
1-6yes1-2 (100,160) 91,96 96,25 0
1-6yes1-3 (100,160) 92,91 96,25 0

aim100 1-6yes1-4 (100,160) 92,37 96,25 0
2-0yes1-1 (100,200) 90,65 94 10
2-0yes1-2 (100,200) 90,34 93,5 74
2-0yes1-3 (100,200) 91,33 94 98
2-0yes1-4 (100,200) 92,06 95 18

Average 91,74 95,25 25,25
1 (350,1149) 55,51 60,57 17,02
2 (350,1157) 56,23 61,8 25,53

Parity8 3 (350,1171) 55 59,78 21,28
4 (350,1155) 54,18 58,78 15,22
5 (350,1171) 54,86 59,95 21,74

Average 55,16 60,18 20,16

4.3 Performance of the Approaches
Guided by Decomposition

The aim of this second series of tests is to show the
benefit obtained with the two proposed approaches.
For this purpose, the Hybrid version ofBSOGD1
(constructed in the same manner as the HBSO-
MAXSAT algorithm) called (HBSOGD1and the Hy-
brid BSOGD2called (HBSOGD2are compared to
HBSO-MAXSAT.

4.3.1 Results Obtained on the DIMACS
Instances

Table 3 shows the success rates and the best success
rates obtained usingHBSO-MAXSAT, HBSOGD1and
HBSOGD2on the DIMACS instances. According
to this table, one can remark that thanks to the ex-
ploitation of the structural knowledge extracted from
theKmeansdecomposition (the clusters are intercon-
nected via small separators), bothHBSOGD1and
HBSOGD2behave better than theHBSO-MAXSAT
approach in all the cases. Moreover, when deal-
ing with hard instances ofDIMACSsuch as thePar-
ity8, the success rate grows from 60% forHBSO-
MAXSATto 72% for HBSOGD1and 73% forHB-
SOGD2. These results are very promising.

4.3.2 Results Obtained on the Uniform
Random-3-SAT Instances

This last series of tests aims to more analyse the
behaviour of the proposed approaches when dealing
with harder MAXSAT instances. Therefore, theHB-
SOGD1andHBSOGD2algorithms are compared on
theUniform Random-3-SATinstances. Table 4 shows
the success rates and the best success rates ofHBSO-
MAXSAT, HBSOGD1andHBSOGD2for different in-
stances.

This table reveals thatHBSOGD2improvesHB-
SOGD1. Indeed, the success rate of the second algo-
rithm is up to 90% in all the used instances, while it
does not exceed 90% in some cases for HBSOGD1.
This is because the bees in the second approach have
a global vision of the decomposed problem and each
bee can access to all clusters and their separators if
necessary. In the second approach, each bee im-
proves the worst cluster, which is the one that has
the least satisfied clauses. Nevertheless, the bees in
the first approach have access to only a restricted part
of the problem, which more specifically refers to a
cluster. Moreover, the obtained results show that the
two approaches improve again the results ofHBSO-
MAXSATby more than 13% in most cases.

Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT

477



Table 3: Positionning HBSOGD1 and HBSOGD2 versus HBSO-MAXSAT: results obtained on the DIMACS instances.

Class Instances (n,m) HBSO-MAXSAT HBSOGD1 HBSOGD2

SR (%) BestSR (%) SR (%) BestSR (%) SR (%) BestSR (%)

1-6yes1-1 (50,80) 92,39 97,75 96,06 98,75 96,01 98,75

1-6yes1-2 (50,80) 93,12 97,5 96,14, 98,75 96,4 98,75

1-6yes1-3 (50,80) 90,27 93,75 94,31 97,5 93,99 96,25

aim50 1-6yes1-4 (50,80) 90,01 93,75 93,77 96,25 93,89 96,25

2-0yes1-1 (50,100) 91,96 95 96,07 98 96,06 98

2-0yes1-2 (50,100) 90,53 95 94,53 97 94,17 97

2-0yes1-3 (50,100) 92,13 97 95,86 98 96,05 99

2-0yes1-4 (50,100) 90,39 95 94,53 97 94,51 97

Average 91,35 95,59 95,16 97,66 95,13 97,62

1-6yes1-1 (100,160) 90,93 95 94,53 97 94,51 97

1-6yes1-2 (100,160) 91,96 96,25 95,66 97,5 95,76 98,12

1-6yes1-3 (100,160) 92,91 96,25 96,39 98,75 96,49 98,12

aim100 1-6yes1-4 (100,160) 92,37 96,25 96,48 98,75 96,41 98,75

2-0yes1-1 (100,200) 90,65 94 95,08 97 95,21 96,5

2-0yes1-2 (100,200) 90,34 93,5 94,64 96,5 94,65 96,5

2-0yes1-3 (100,200) 91,33 94 94,5 97,5 96,93 98

2-0yes1-4 (100,200) 92,06 95 95,91 97,5 95,99 98

Average 91,74 95,25 95,67 97,56 95,80 97,62

1 (350,1149) 55,51 60,57 72,55 74,32 72,52 74,32

2 (350,1157) 56,23 61,8 73,2 74,93 73,22 74,5

Parity8 3 (350,1171) 55 59,78 72,16 74,04 72,16 73,7

4 (350,1155) 54,18 58,78 71,26 72,81 71,26 72,81

5 (350,1171) 54,86 59,95 72,04 73,53 72 74,29

Average 55,16 60,18 72,42 73,93 72,23 73,92

Table 4: Positionning HBSOGD1 and HBSOGD2 ver-
sus HBSO-MAXSAT: results obtained on the Uniform
Random-3-SAT instances.

Instances HBSO-MAXSAT HBSOGD1 HBSOGD2

uf20-91 80,79 88,94 92,13

uf50-218 79,35 90,33 93,52

uf75-325 81,13 90,84 94,22

uf100-430 80,40 90,43 90,43

uf125-538 79,64 89,42 92,65

uf150-645 80,68 89,51 90,25

uf175-763 80,89 89,47 90,31

uf200-860 80,57 89,72 92,32

uf225-960 80,33 89,54 90,24

uf250-1065 80,48 89,47 93,26

5 CONCLUSION

In this paper, two extended Bees Swarm Optimiza-
tion algorithms guided by decomposition namely
BSOGD1 andBSOGD2 where proposed for address-
ing the maximal satisfiability problem. The Kmeans
procedure has been chosen for the decomposition
step. InBSOGD1, each bee of the colony consid-
ers as its region only a part of the problem, which
corresponds to a particular cluster. The bee returns
a partial modification of the reference solution be-
cause it can access the variables in only one cluster.

A bee inBSOGD2 can access to all the clusters. To
demonstrate the performance of the two approaches,
two main series of experimentation have been carried
out. First, the results on theDIMACSinstances indi-
cate that the two approaches outperform the classical
BSO algorithm. Then, the results obtained on the hard
instances of Uniform-Random-3-SAT reveal that the
second approach benefits from the best exploration of
the decomposition and improves the results obtained
by the first approach. As a short term perspective, we
plan to investigate other metaheuristics to analyze in a
deeper way the effect of a decomposition on the max-
imal satisfiability problem. We also plan to apply the
two proposed approaches to other optimization prob-
lems like the Weighted MAXSAT, the coloring Prob-
lem, and Constraint Satisfaction Problems.

REFERENCES

Davis, M., Logemann, G., and Loveland, D. (1960). A com-
puting procedure for quantification theory. InJournal
of the Association for Computing Machinery.

Drias, H., Sadeg, S., and Yahi, S. (2005). Cooperative bees
swarm for solving the maximum weighted satisfiabil-
ity. In Proceeding of IWANN. SpringerVerlag.

Dubois, O., Andre, P., Y., B., and J., C. (1996). Sat versus
unsat. InSecond Dimacs inplementation challenge,

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

478



cliques, colouring and satisfiability, Dimacs Series in
discrete Mathematics and Theoretical Computer Sci-
ences.

Lardeau, F., Saubion, F., and Hao, J. K. (2006). A comput-
ing procedure for quantification theory. InJournal of
the ACM (JACM). ACM.

Li, C. (1997). Heuristics based on unit propagation for sat-
isfiability problems. InProceeding of the IJCAI.

Selman, B., Kautz, H., and Cohen, B. (1994). Noise strate-
gies for improving local search. InIn proc of the
AAAI’94.

Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT

479


