
Teaching Programming Fundamentals to Modern University Students

Anton Bogdanovych and Tomas Trescak
School of Computing, Engineering and Mathematics, Western Sydney University, NSW, Australia

Keywords: Programming Education, Learning by Doing, Clara, Gamification.

Abstract: In this paper we investigate how teaching programming to the modern generation of students, “digital natives”
who grew up with Google and Facebook and do not know the world before the Internet, can be improved
through a highly visual game-like approach. Many programming teachers report that modern programming
students have short attention span, lack concentration and have poor motivation to learn programming. We
show how we were able to improve the motivation of students and their marks by changing the study program
so that the entire entry-level programming course (Programming Fundamentals) is being taught using a visual
set of in-class examples and assignments. The paper presents a set of successful teaching patterns that helped
to convert one of the most hated subjects in our school into a subject that many students loved and were able to
master. The corresponding statistics suggests that one of the key achievements of our approach is a dramatic
change in students’ motivation to learn programming, which has resulted a significant improvement in their
overall results and was noticeable in the follow-up subjects.

1 INTRODUCTION

In recent years many programming teachers have no-
ticed that teaching introductory level programming
courses is associated with great difficulties for stu-
dents (Bergin and Reilly, 2005). Educators are con-
cerned with high failure and drop-out rates, poor aca-
demic performance and lack of motivation to study
by modern students. Some researchers believe that
the reason for this change in students’ attitude to pro-
gramming is a global phenomenon and is not only
programming related.

In our digital age technology surrounds students
from early childhood; they play video games, watch
movies and use the Internet more frequently than
reading books or going to the library (Prensky, 2007).
As the result, the information becomes “cheap” and
readily available, so educators have to compete for
student attention with too many distractions intro-
duced by technology as well as with other online ma-
terial (Small and Vorgan, 2008).

Indeed, the amount of quality educational con-
tent on the Internet is increasing at an astonishing
rate. Platforms like Coursera1, provide open on-
line access (sometimes for free) to courses from the
world’s best universities. Many universities them-

1https://www.coursera.org/

selves e.g. Massachusetts Institute of Technology2

and Stanford3 choose to upload their course materials
online (including lectures videos, tutorials and solu-
tions to exercises) and allow anyone to access them.
This presents a great opportunity for students and, at
the same time, creates a huge problem of how to man-
age the learning process in this “ocean” of informa-
tion - vast, disorganised, and continually in a state of
flux between updating and stagnating. The problem
is further complicated by the new generation of stu-
dents, who have grown up with Google and Facebook
and who do not know the world before the Internet.
The way these “digital natives” learn and how their
brain processes information is believed to be different
to the “pre-Internet” generations (Vassileva, 2008).
Easily operating with multiple and diverse informa-
tion streams at the same time, “digital natives” have
learned to frequently multitask, but as the result of
this multitasking they are believed to process informa-
tion in a more superficial manner (Vassileva, 2008).
In general, educators observe that contemporary stu-
dents are less efficient in their school work, have
shorter span of attention and tend to struggle with
in-depth analysis (Small and Vorgan, 2008). This is
not a reflection of being less capable to learn, but
rather being disengaged with traditional instruction

2http://mit.edu
3http://stanford.edu

308
Bogdanovych, A. and Trescak, T.
Teaching Programming Fundamentals to Modern University Students.
In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 2, pages 308-317
ISBN: 978-989-758-179-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(Prensky, 2007). Constant interaction with techno-
logy made modern students comfortable with multi-
ple information streams; they prefer inductive reason-
ing, want frequent and quick interactions with con-
tent, and have good visual literacy skills, but this is
not something that is easy to offer through traditional
instruction (Prensky, 2007).

Despite the changing nature of the students, mod-
ern education often fails to adapt to their new learning
habits and capabilities. In a traditional classroom the
changing demands of digital natives are often ignored
as teachers expect the same levels of focus, attention
and self-motivation as from the pre-Internet students
and are resilient to change their style of delivery and
to engage with new technologies. We believe that this
is one of the key problems that has to be addressed
in order to improve the situation in teaching program-
ming. Our key hypothesis is that modern educators
have to adapt their teaching practices with a particular
focus to improve the motivation of modern students.
We strongly believe that in the world, where infor-
mation is cheap, the role of educational institutions
and teachers has to shift from simply being knowl-
edge providers toward motivators and mentors (Pal-
freyman, 2008).

The advancement of video games and internet
technology shows a huge drift towards entertainment
in modern societies. This growth in the entertainment
industry has certainly affected education as well as
many other aspects of our lives (Pine II and Gilmore,
1998). Students demand engaging learning experi-
ences in traditional learning environments and ex-
isting literature suggests video games as one of the
best mediums to provide such experiences to stu-
dents (Vassileva, 2008). The unique advantage of
these games is the player’s engagement: (Prensky,
2007) demonstrates it as the ability to keep people
in their seats for hours and hours, actively trying to
achieve new goals, determined to overcome their fail-
ures and immersed as part of this interactive entertain-
ment. While digital natives are being criticised for
their lack of concentration and poor motivation, at the
same time they show these very characteristics when
playing video games. In this work we will investigate
the range of factors that make playing video games
so effective and how to integrate these factors into the
classroom when teaching programming fundamentals
to university students.

The remainder of the paper is structured as fol-
lows. In section 2 we analyse the problem and attempt
to understand the reasons causing it. Section 3 out-
lines existing research on teaching programming to
digital natives with a particular focus on using game-
based approaches. Section 4 outlines and provides

motivation for the changes in teaching Programming
Fundamentals in our school. Section 5 presents the
research methodology and other details of the study
that was conducted in our school. Section 6 outlines
the results of this study and Section 7 presents further
discussion of results and concluding remarks.

2 PROBLEM STATEMENT

In order to understand how teaching introductory pro-
gramming courses could be improved, we first have to
formulate the key problems that need to be addressed,
understand the reasons for these problems and pro-
duce research hypotheses that can be tested in regards
to successfully developing an appropriate solution.

2.1 Problems

To understand the problems associated with teaching
introductory programming, we have conducted an ex-
tensive analysis of academic feedback in this respect.
At the level of the dean of our school the problem
with programming has been raised as an alarming
phenomenon and the dean has initiated a regular dis-
cussion group among academics involved in teaching
programming, as well as academics whose subjects
require programming as a pre-requisite. Below is the
summary of key problems raised by the academics:

• Lack of engagement and motivation to study pro-
gramming

• Poor academic performance

• High dropout and failure rates

• Poor programming skills after the course

In order to obtain a more complete picture it was also
important to understand the perspective of students.
The student perspective was analysed by a number
of qualitative and quantitative surveys that were con-
ducted by two lecturers in their subjects, among the
students who have completed Programming Funda-
mentals. The analysis of student survey responses
showed that many students simply developed a strong
sense of dislike to programming in general and could
not really explain the rationale behind these strong
emotional reactions. Apart from the emotional com-
ponent, the key concerns of the students can be sum-
marised as follows:

• The subject is too difficult

• Poor engagement in the classroom

• Fighting errors and compiling code

Teaching Programming Fundamentals to Modern University Students

309



• Writing code and sticking to the confusing syntax
of the programming language

• The textbook is hard to understand

• The lectures are hard to understand

• Not clear why learning programming is important

• Boring and difficult assignments

2.2 Reasons

Having the feedback from lecturers and students was
important in understanding the key concerns of both
sides, but even more important was to understand
the deep roots of these problems that could be re-
sponsible for the identified problems. In an attempt
to understand the reasons behind these problems we
have initiated informal talks with academics and stu-
dents, where the aim of establishing the high-level
reasons for problems with programming was declared
and an attempt to understand these was made through
a brainstorming session in each group (a group of
academics and a group of students). The discussion
with students was the least productive one as students
kept repeating the problems and were unable to of-
fer something constructive beyond blaming program-
ming to be too hard and useless, having bad teachers
and the course being too difficult. Talking with aca-
demics proved to be more productive and the follow-
ing set of reasons was formulated there:

• Digital natives require different instruction prac-
tices

• Low entry requirements for students starting at
university

• Most modern students have to work and have little
time for assignments

The initial analysis of problems in teaching program-
ming and underlying reasons for those showed that
further analysis was needed to understand how to im-
prove the situation. So next we discuss our findings in
the relevant literature and summarise successful prac-
tices in teaching programming to modern students.

As educators, we realise that from the list of the
identified reasons for the problems associated with
teaching programming we will not be able to offer a
solution to addressing low entry requirements, which
is the job of university management rather than edu-
cators. We will also not be able to change the working
patterns of the students. Therefore, the key focus of
our further analysis is on improving the instruction
practices, so that they are more suitable for digital na-
tives and improving student motivation is the prime
focus of our work.

3 BACKGROUND

When looking at developing better teaching practices
for educating digital natives some educators claim
that the focus of modern universities has to change
from providing information to providing mentoring
services (Palfreyman, 2008). The times when uni-
versities have actually possessed the knowledge and
could easily restrict the outsiders from accessing it are
long gone. Now most of the necessary information is
freely available and is only one click away, so the role
of modern universities has to change from simply giv-
ing the information to students (hoping that they are
motivated enough to absorb it) to selecting the rele-
vant subset of information and making sure they are
focusing on the right things and are progressing in the
right direction, which essentially is mentoring rather
than lecturing. The lack of such mentoring services is
believed to cause education to become less “higher”
and more “tertiary” as it shifts from a pedagogical
emphasis on liberal education to a skills/curriculum
dominated agenda (Palfreyman, 2008). Such shift in
education, in the authors’ view, fails to properly pre-
pare graduates for rapidly changing economic condi-
tions and related employment opportunities (Palfrey-
man, 2008).

Offering personalised mentoring and tutoring ser-
vices is not something that is only relevant to dig-
ital natives and not something that has to be fully
re-invented for the modern age. Building education
around mentoring was one of the key features of bet-
ter world universities in the late 1800s and is often
named as the key reason for high quality and price
of the degree provided by these institutions (Palfrey-
man, 2008). Each student back then was provided
with a personal tutor whose key role was in mediat-
ing students’ access to knowledge. One of the fun-
damental works on assessing the tutorial system in
(Moore, 1968) claims that the tutor is not teacher in
the usual sense: it is not his job to convey informa-
tion, but the role of the tutor is to act as a constructive
critic and help in sorting out the knowledge of the stu-
dent. The usefulness of inquisitive nature of the tutor
is supported by the French philosopher Peter Abelard,
who said “the key to wisdom is this — constant and
frequent questioning. . . for by doubting we are led to
question and by questioning we arrive at the truth”
(Gaskin, 1998).

While we can rely on the teaching practices of the
past, we should not ignore the new demands of the
modern age. Universities can no longer afford hav-
ing small classes and offering personalised mentoring
services to each of the students. The fact that the vast
majority of the students are digital natives also forces

CSEDU 2016 - 8th International Conference on Computer Supported Education

310



us to integrate corrections in the teaching practices.
Apart from mediating access to knowledge and ques-
tioning, one of the key demands of our times is to help
students with their motivation to learn. There is strong
evidence suggesting that intrinsic motivation to study
programming has a strong correlation with academic
performance (Bergin and Reilly, 2005).

As per findings from (Prensky, 2007), a good way
of improving motivation of digital natives is to use
highly visual interfaces and employ game-like assign-
ments and lecture examples. Graphical Frameworks
in teaching Programming Fundamentals have become
an effective motivational mechanism (Moskal et al.,
2004). This approach is growing in popularity, espe-
cially in primary school programming classes. Sys-
tems like ALICE (Dann et al., 2011) and Scratch
(Resnick et al., 2009) have been successfully used
in primary and secondary schools, but they are often
abandoned by university educators for their simplic-
ity, specific appearance and due to the fact that they
teach students framework specific languages that can-
not be used beyond these tools.

Another framework that is being used at some uni-
versities is Karel (Pattis, 1981). Karel represents a
Java plugin that can be used together with classical
Java editors and, essentially, teaches pure Java rather
than some other framework specific language. The
Karel approach is to teach programming in a discre-
tised environment, where students control a robot us-
ing a small set of standard commands: move(), turn-
Left(), putBeeper(), removeBeeper(). Figure 1 shows
an example of a typical interface of a Karel assign-
ment. An extensive explanation of the Karel frame-
work is presented in (Pattis, 1981).

In most Karel-based courses students use this in-
terface for a short period of time (e.g. three weeks
like in Stanford) and then move on to pure Java. In
our study we use a similar approach to Karel, but
extend it to the entire course. Karel is rather out-
dated and its black-and-white graphics lack modern
appeal. A more advanced framework is Greenfoot
(Koelling, 2010). We found Greenfoot to be suitable
for our purposes, but we have decided to further en-
hance it with gamification and automatic student feed-
back features, so we have developed our own frame-
work called “Clara”. All assignments worked both in
Greenfoot and Clara and students had a choice to se-
lect one of the two frameworks for working on their
assignments.

Improving academic performance through moti-
vation was one of our key goals, but another goal was
to improve the situation with high dropout and failure
rates. These, apparently, are not easy to fix. While
high motivation is certainly connected with dropout

and failure rates, introductory programming requires
dedication and a lot of work and high dropout and
failure rates are a norm. A study in (Bennedsen and
Caspersen, 2007) shows that indeed the failure rates
are significant (33% on average from 80 institutions
who participated in the study). The authors also men-
tion that they do not consider 33% being a very high
number as their study has also shown that the number
of people enrolling vs the number of people graduat-
ing from a university is around 27%.

4 SUMMARY OF CHANGES

Based on the analysis of the data obtained from staff
and students, as well as using the results of the liter-
ature review we have decided to introduce a number
of changes in the introductory programming unit in
our school (Programming Fundamentals). In order for
us to be able to measure the results of the introduced
changes we made a decision to maintain a high degree
of similarity in terms of lecture material, the degree of
difficulty of assignments and tests as well as the struc-
ture of the new course and the original course. In this
way if there is indeed any difference in the course out-
come it can be attributed to specific changes we made
rather than the new structure of the course or its dif-
ficulty level. Next, we explain the key changes that
were introduced in the new Programming Fundamen-
tals course.

4.1 Highly Visual Programming
Examples

One of the key novelties of our approach was to make
all examples shown in lectures and assignments be-
ing highly visual. We wanted to benefit from the suc-
cess of highly visual systems like ALICE (Dann et al.,
2011) and Scratch (Resnick et al., 2009), but after dis-
cussions with other academics and potential employ-
ers, conversations with students and the analysis of
the job market we have decided to keep a strong focus
on predominantly teaching a popular programming
language and minimise teaching other things that are
not directly related to this language. In case of Scratch
and ALICE, while they offer highly visual and intu-
itive frameworks, a lot of the knowledge gained as
the result is the knowledge of the framework itself,
as well as the knowledge of specific commands that
are only used in those environments. Furthermore,
our analysis of the teaching resources offered with
Scratch suggests that this framework is more suitable
for primary and secondary school and is not a good fit
for teaching at university. As the result, the approach

Teaching Programming Fundamentals to Modern University Students

311



Figure 1: An example of a Karel exercise. Picture source (Pattis, 1981).

we took is similar with that of Karel the Robot used
at Stanford (Pattis, 1981). The framework we use
(Clara) is similar to Karel, but has a modern graphical
interface that is more appealing and also includes var-
ious gamification elements. Unlike most Karel based
courses our entire course was taught using the visual
Clara approach.

Figure 2 shows an example of one of the practi-
cal assignments as well as the interface being used
there. On the right hand side of the figure there is a
practical assignment showing the main character (la-
dybug Clara) located in a discrete environment. Here
Clara must find her way out of a maze. The exit is
marked by a leaf, which after finding she has to eat.
On the left hand side there is a programming solu-
tion for this problem. The code is written in pure
Java and uses a small set of additional Clara specific
commands (move(), turnLeft(), turnRight, onLeaf(),
removeLeaf() ).

Using the Clara approach we were able to translate
the entire programming course to be based on prob-
lems with Clara. All programming assignments and
lecture examples are Clara problems.

4.2 Problem-Oriented Lectures

From our previous teaching experience we know that
students respond well to stories that touch upon things
that interest them. So, to better engage with students
and capture their attention we built all lecture mate-
rial around interesting and challenging practical prob-
lems, which can be translated into terms of a lady-
bug manipulating leaves and moving around a dis-
crete environment. Each lecture would start with a
story or a video focused on some interesting internet
phenomenon, a popular hobby topic or just some fun
story from a TV series. After discussing the story fur-
ther lecture material was presented as new knowledge
that could help to solve the problem discussed through
the story in the beginning of the class. Most of such

stories that we used were from the domains of gam-
ing and entertainment. Such problems ranged from
building a robot vacuum cleaner to implementing the
friendship algorithm from the Big Bang Theory4.

4.3 Learning by Doing and Interactivity
in the Classroom

One of the important elements of the digital natives
is their predisposition to learning by doing (Schank
et al., 1999). To address this need each of the lectures
was structured so that a bigger problem presented
in the beginning of the class was broken down into
smaller sub-problems and these smaller sub-problems
were interactively solved during the lecture using the
new knowledge that was learned in the class. Solving
the sub-problems in the class represented a moderated
process, where the lecturer presented the problem and
asked the students for help with continuing to solve it.
The moderation helped to make sure that the problem
is being solved in a focussed manner. Apart from sim-
ply asking students for help and typing their proposed
commands, we have also experimented with more en-
gaging forms of interaction. One of such forms is to
translate the process of problem solving into interac-
tive theatre. In this interactive theatre the students en-
acted the elements of Clara’s world (e.g. each student
enacting a leaf, a tree or Clara) and other students con-
trolled the changes in the simulated environment by
proposing commands to be enacted.

4.4 Generating Flow and Making
Programming Fun

A good way to motivate students is to generate flow,
which is the state associated with a high degree of ex-
citement. One of the conditions that allows for expe-
riencing the flow state in the classroom is to structure

4http://the-big-bang-theory.com

CSEDU 2016 - 8th International Conference on Computer Supported Education

312



Figure 2: Clara’s World: An online assignment in Programming Fundamentals.

the practical assignments so that they incrementally
increase in difficulty and the difficulty of each new
problem is such that the amount of skills required to
solve it is slightly above the current level of skills of
the person solving it (Csikszentmihalyi, 2002).

Flow is associated and is considered to be much
easier to achieve in video games as games environ-
ments often represent puzzles or problems to solve
and can be easily structured by the aforementioned
principle of incrementally increasing the difficulty of
the problem together with the growing level of player
skills. An important work that documents this phe-
nomenon in video games is (Koster, 2013). This work
does not explicitly explore the concept of flow, but in-
vestigates the principles that make video games fun
and enjoyable. One such principle (that can poten-
tially address the issue of high dropout rates) is that
players will quit playing the game if it is too hard to
win or if it is too easy to win. So, the increase in diffi-
culty should be carefully tested on an average player
to make the game fun (Koster, 2013).

Both lectures and practical assignments were care-
fully designed to potentially be fun and generate the
flow. To be able to do so, we have modelled an av-
erage student and made practical assignments and ex-
amples being solved during the lectures incrementally
more difficult, so that the skills required for solving
each problems are slightly above the current set of
skills of an average student.

While we had clear cases of reaching the state of
flow by many students that we were able to witness
in the tutorial rooms, this approach is also associated

with the drawback that students who for some rea-
son missed some of the assignments showed much
lower engagement thereafter due to the growing gap
between their skills and skills required to solve the
problem.

4.5 Maintaining Motivation via
Gamification and Social Experience

Apart from generating flow, having highly visual as-
signments and facilitating learning by doing (Victor,
2012) presents a number of other recommendations
for building programming frameworks that could im-
prove student motivation. Providing quick (or even
automatic) feedback in case of errors, reflecting on the
quality of the student code are some of the factors that
are claimed to be responsible for better understanding
of the programming concepts and improved motiva-
tion to learn programming. Additionally, (Prensky,
2007) states that offering a competition element to
the coding and using gamification principles are also
known to be associated with an improved motivation
to study.

Therefore, in our online Clara framework5 we
have incorporated some of these features. The Clara
framework employs game-based learning and gamifi-
cation approaches to motivate students to learn, con-
tinuously improve their solutions and possibly design
their own in their spare time (Figure 2 depicts the on-
line editor). We studied and evaluated effects and

5http://pf.scem.uws.edu.au

Teaching Programming Fundamentals to Modern University Students

313



Figure 3: Programming attitude.

significance of various gamification approaches. To
achieve our goal, we decided to employ star ratings,
badges and challenges with user created content.

To motivate students to submit better code we
used the approach popular in games like Angry
Birds6. Each submitted solution received up to five
stars for the shortest and most effective code. Five
stars were awarded when Clara used the least amount
of steps to complete the solutions. Completed solu-
tion received hints on how much the solution needs
to be improved to receive a better star rating. Results
were published in leaderboards and often were the tar-
get of heated discussions between students fighting
for the best result. Anecdotal evidence obtained from
the tutors suggests that students who have used the
Clara framework were less eager to share their solu-
tions with their colleagues and they preferred to not
to reveal their solutions but to guide other students to
come up with their own.

Another form of using gamification was to award
badges to the best performing students with the most
efficient code, as well as for the first five solutions
turned in the given week. This approach encouraged
students not to procrastinate, and to complete their so-
lutions as fast as possible. Badges could be “stolen”
by creating a better solution than the badge holder. In
this case, badge holder would be notified to try to get
the badge back by revisiting and improving the solu-
tion, effectively improving student engagement.

Challenges with user generated content aimed at

6https://www.angrybirds.com

highly motivated students that completed their assign-
ments fast and wanted to improve their expertise by
creating their own set of problems, publishing them
online and challenging their colleagues. Often, such
students created problems that were then used in the
class to explain a specific topic, which further encour-
aged students to actively participate in the educational
process.

Our online system also improved communication
between students and tutors, where solutions could
be discussed remotely, not only in class. In this sce-
nario, both student and tutor connect to the same page,
which is automatically updated, allowing for collabo-
rative coding and presentation of results.

5 USER STUDY

In order to find a solution for improving the situa-
tion with teaching Programming Fundamentals in our
university we have combined the knowledge obtained
from academics and students together with the find-
ings from the literature. As the result, we have for-
mulated the following research hypotheses:

5.1 Research Hypotheses

• H1: Supplying visual and animated game-like ex-
amples throughout the course would help to in-
crease interest in the subject and motivation.

CSEDU 2016 - 8th International Conference on Computer Supported Education

314



• H2: Generating flow is associated with increased
motivation.

• H3: Student academic performance will improve
as the result of increased motivation.

• H4: Adding Gamification and social elements
would further increase student engagement and
their academic performance.

5.2 Research Methodology

The introductory programming unit at our university
is composed of the two hour lecture and two hour
laboratory session every week over one semester. In
general, most students in Australia do not study pro-
gramming before entering university. The majority
of students in the Programming Fundamentals course
(58.7% of students in Autumn 2013) had no prior pro-
gramming experience.

Performance in this module is based on continu-
ous practical assessments (30% of the overall mark),
major assignment (10% of the overall mark), mid-
semester test (10% of the overall mark) and the final
examination (50% of the overall mark).

A number of studies were carried out in the aca-
demic years 2013-2015. Students enrolled in the first
year “Programming Fundamentals” course in our de-
partment voluntarily participated in this study.

The study aimed at testing H1-H3 has been car-
ried out in Autumn 2013. Overall 458 students were
enrolled in this course in Programming Fundamen-
tals in Autumn 2013. Only 92 students have decided
to complete the study survey. This survey was con-
ducted after the final lecture, when all the practical
assignments have been completed and only the final
exam was pending.

Testing H4 was carried out throughout 2014-2015
with 160 students in total. The students had a choice
to employ either the Greenfoot framework (90 stu-
dents) or our experimental Clara framework (70 stu-
dents) that featured gamification and social elements.
The performance of the students was evaluated to see
whether the choice of the Clara framework would
have any impact in regards to H4. An additional qual-
itative survey with overall 90 students has been con-
ducted to understand particular benefits of using the
Clara framework.

6 RESULTS

The outcomes of the study confirm the validity of hy-
potheses H1-H4. The evidence obtained in favour of
H1-H2 comes from a survey that was conducted in

Autumn 2013 where students explicitly report on vi-
sual aspects of the course contributing to their engage-
ment and better understanding of the course material.
Some students explicitly report about them reaching
the state of flow and programming becoming “addic-
tively enjoyable” as the result of this.

6.1 Impact of Visual Delivery and
Assignments Designed to Generate
the Flow

The results of our study show that the attitude toward
programming has dramatically changed after the in-
troduced changes. From the students who were inter-
viewed after completing the previous version of the
course 43.5% have reported that they hate program-
ming and only 13% said that they love it. In an online
survey that was completed by the students enrolled in
the new version of the course (after sitting through all
lectures and finishing all their assignments) indicates
that only 5.4% of the students claim to “hate program-
ming” and 38% said that they love programming. Fig-
ure 3 shows the comparison between student attitude
toward programming in the previous course (labelled
as “Before changes”) and the course after we’ve in-
troduced the changes to the study program (labelled
as “After changes”).

6.2 Changes in the Academic
Performance

Due to maintaining a similar level of difficulty in the
assignments and in the final exam across the new
course and the old course we were able to measure
the impact of the introduced changes on the aca-
demic performance of the students (testing the H3).
Ensuring the similarity across practical assignments
was a difficult task, as the nature of assignments has
changed from printing numbers on the screen to mov-
ing a lady bug and eating leaves, but we ensured that
each practical problem in the new course requires a
comparable amount of time for an average student
to solve it and targets the same topics of the course.
Maintaining a similar level of difficulty in the exam
was achieved by reusing the same exam questions that
were used in previous years of teaching Programming
Fundamentals. The new exam paper was a compila-
tion of exam questions from multiple past exam pa-
pers, but all questions had to be adopted to Java from
C++. It is important to note that despite teaching the
entire course in the visual framework all exam ques-
tions were pure Java questions and did not feature
Clara. This was done so that we could achieve better

Teaching Programming Fundamentals to Modern University Students

315



Figure 4: Marks comparison.

comparison. Given that in order to pass the subject
students had to pass the final exam we can claim that
students graduating from this unit had pure Java skills
and not only Java in the context of Clara.

One of the key achievement that we would like to
report is the difference in the grade distribution that
we connect to the difference in the student motivation.
Figure 4 features a comparison between two versions
of the Programming Fundamentals course with clear
indication of the percentage of students receiving the
corresponding mark in the course “before changes”
and “after changes”. The marks are coded as follows:
“HD” stands for High Distinction, “D” stands for Dis-
tinction, “C” stands for Credit, “P” stands for Pass and
“F” stands for Fail.

Figure 4 shows that in the previous version of the
course the majority of the students (32.2%) received
the pass mark and only a small minority (5.7%) re-
ceived High Distinction and Distinction. In contrast.
after introducing the changes the mark distribution
looks rather flat. Many more people have achieved
higher marks with 16.6% receiving High Distinction
and 15.7% receiving Distinction. The number of stu-
dents receiving Pass and Credit has significantly de-
clined. Our explanation of this phenomenon is that
in the updated version of the course the students have
shown an improvement in their level of motivation to
study programming and, hence, they were much more

keen to obtain higher grades.

6.3 Impact of Gamification Elements

The impact of the gamification elements (H4) intro-
duced in the Clara framework was measured using
quantitative and qualitative approach. The qualita-
tive measure came in the form of surveys, given to ten
groups of students in three semesters. During this sur-
vey, students responded to questions regarding their
experience with both original solution (i.e. Greenfoot)
and the online system. The results show that students
prefer the innovative online solution and find the re-
ward system highly motivating, making them revisit
and improve their solutions. This was happening very
sparsely with the original system. Students have par-
ticularly enjoyed the automated feedback in the form
of detecting their errors as they type, helping to iden-
tify infinite loops etc. Students reported that such au-
tomated feedback improved their submitted code.

The quantitative measure evaluates the quality of
the student code. On average, students who used
the gamified system wrote almost 20% shorter code
and 17% more effective solutions (taking less steps to
complete). Moreover, no online solution has ended in
an infinite loop, while almost 8% of offline solutions
did. One of the greater successes of the online system
is that 0% of students failed the unit for not achieving

CSEDU 2016 - 8th International Conference on Computer Supported Education

316



required points from practicals. Points received from
practicals were 16% higher than average and comple-
tion of the unit is 15% higher than average.

7 CONCLUSION

We showed how by basing the lectures and all as-
signments of the Programming Fundamentals course
around game-like visual examples structured so that
an average student is likely to encounter the state of
“flow”, we were able to dramatically improve stu-
dents’ motivation to learn and interest in the subject.
To make it a fair comparison the level of difficulty
of the practical assignments as well as the difficulty
of questions in the final exam was made similar to
those that were used in the Programming Fundamen-
tals course prior to introducing the aforementioned
changes. The results show that while maintaining a
comparable level of difficulty of the assignments, the
grade distribution has shifted towards High Distinc-
tion and Distinction and the student feedback has be-
come much more positive. Moreover, despite learn-
ing in a highly visual framework and only with visual
animated examples the students were able to success-
fully learn pure Java. The exam questions were delib-
erately designed to include no Clara related questions
and were made comparable with those from previous
years. The students showed good performance on the
exam and experienced no difficulty with switching to
console programming in pure Java as reported by the
lecturers from the follow-up courses.

Additionally, we have obtained evidence suggest-
ing that the inclusion of such gamification elements
as awarding badges, employing ratings and introduc-
ing challenges helped students to produce better cod-
ing solutions and had a positive impact on their aca-
demic performance (when compared with students
who were not exposed to these features).

REFERENCES

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in
introductory programming. SIGCSE Bull., 39(2):32–
36.

Bergin, S. and Reilly, R. (2005). The influence of moti-
vation and comfort-level on learning to program. In
Proceedings of the 17th Annual Workshop of the Psy-
chology of Programming Interest Group, pages 293–
304, University of Sussex, Brighton.

Csikszentmihalyi, M. (2002). Flow: the classic work on
how to achieve happiness. The Random House Group
Ltd, London, UK, 2 edition.

Dann, W. P., Cooper, S., and Pausch, R. (2011). Learning
to Program with Alice (W/ CD ROM). Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition.

Deterding, S., Sicart, M., Nacke, L., O’Hara, K., and Dixon,
D. (2011). Gamification. using game-design ele-
ments in non-gaming contexts. In CHI’11 Extended
Abstracts on Human Factors in Computing Systems,
pages 2425–2428. ACM.

Gaskin, R. (1998). The Philosophy of Peter Abelard by
John Marenbon. Cambridge University Press. Philos-
ophy, 73(2):305–324.

Koelling, M. (2010). Introduction to Programming with
Greenfoot: Object-Oriented Programming in Java
with Games and Simulations. Prentice Hall, Univer-
sity of Kent.

Koster, R. (2013). Theory of fun for game design. ” O’Reilly
Media, Inc.”.

Moore, W. G. (1968). The tutorial system and its future, by
Will G. Moore. Pergamon Press Oxford, New York,,
[1st ed.] edition.

Moskal, B., Lurie, D., and Cooper, S. (2004). Evaluat-
ing the effectiveness of a new instructional approach.
In Proceedings of the 35th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’04,
pages 75–79, New York, NY, USA. ACM.

Palfreyman, D. (2008). The Oxford tutorial : ’Thanks, you
taught me how to think’, volume 2nd. OxCHEPS, Ox-
ford.

Pattis, R. E. (1981). Karel the Robot: A Gentle Introduction
to the Art of Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition.

Pine II, B. J. and Gilmore, J. H. (1998). Welcome to the
experience economy. Harvard Business Review, pages
97–105.

Prensky, M. (2007). Digital Game-Based Learning.
Paragon House.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., and Kafai, Y.
(2009). Scratch: Programming for all. Commun.
ACM, 52(11):60–67.

Schank, R. C., Berman, T. R., and Macpherson, K. A.
(1999). Learning by doing. Instructional-design the-
ories and models: A new paradigm of instructional
theory, 2:161–181.

Small, G. W. and Vorgan, G. (2008). iBrain : surviving the
technological alteration of the modern mind. Collins
Living, 1 edition.

Vassileva, J. (2008). Toward social learning environments.
IEEE Trans. Learn. Technol., 1(4):199–214.

Victor, B. (2012). Learnable programming : designing a
programming system for understanding programs.

Teaching Programming Fundamentals to Modern University Students

317


