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Abstract: Maximizing the share of renewable resources in the electric energy supply is a major challenge in the design 
of smart cities. Concerning the smart city power distribution, the main focus is on the Low Voltage (LV) level 
in which distributed Photovoltaic (PV) units are the mostly met renewable energy systems. This paper 
demonstrates the usefulness of smart metering (SM) data in determining the maximum photovoltaic (PV) 
hosting capacity of an LV distribution feeder. Basically, the paper introduces a probabilistic tool that estimates 
PV hosting capacity by using user-specific energy flow data, recorded by SM devices. The probabilistic 
evaluation and the use of historical SM data yield a reliable estimation that considers the volatile character of 
distributed generation and loads as well as technical constraints of the network (voltage magnitude, phase 
unbalance, congestion risk, line losses). As a case study, an existing LV feeder in Belgium is analysed. The 
feeder is located in an area with high PV penetration and large deployment of SM devices. The estimated PV 
hosting capacity is proved to be much higher than the one obtained with a deterministic worst case approach, 
considering voltage margin (magnitude and unbalance).

Table 1: Abbreviations. 

MV/LV Medium Voltage/Low Voltage 
PV Photovoltaic 
DER Distributed Energy Resource 
DSO Distribution System Operator 
SM Smart Meter 
CDF Cumulative Distribution Function 
HC Hosting Capacity 
Povervoltage Probability of exceeding upper voltage limit 

Pundervoltage Probability of exceeding lower voltage limit 

Punbalance 
Probability of exceeding voltage unbalance 
limit 

Vi,j Grid voltage at node i, phase j 
Vnom Nominal voltage in the feeder 

Prated,l,i 
Installed PV power at node i, considered in 
iteration l in case it is a future PV node 

Prated,tot Installed PV power in whole feeder 

Pstep 
Increase step of the installed PV power at a 
node 

fi Reference factor  

1 INTRODUCTION 

A major challenge in the design of smart cities is to 
maximize the share of renewable resources in their 
electric energy supply. The principal objective is to 
increase the self-sufficiency of a city, based on local 
resources, while responding to the climate change. 
The smart city power distribution mainly concerns the 
Low Voltage (LV) electric network. Photovoltaic 
(PV) generation is the mostly met Distributed Energy 
Resource (DER) in such systems. 

So far, the biggest share of distributed PV units 
came with no strategic design or reinforcement of the 
network while monitoring data in the small-usage 
(residential or small business) sector were absent 
almost everywhere in Europe. Given the lack of 
controllability in common LV networks, the 
uncoordinated integration of PV units often leads to 
distinct power quality issues. Moreover, it slows 
down the increase of renewable energy share. Thus, 
the growing volatility of electricity consumption and 
generation in the distribution network urges the 
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adoption of a streamlined planning approach for the 
future smart cities.  

In this evolving framework, Distribution System 
Operators (DSOs) are called to safeguard a stable and 
secure power supply in all possible demand 
conditions while fostering the massive integration of 
DER generation. In cost-efficiency terms, this fact 
highlights the necessity of leaving behind 
deterministic worst case planning approach. This 
traditionally applied approach focuses on the least 
favourable network operation states, which are very 
rare. Naturally, it leads to very restrictive decisions in 
terms of PV hosting capacity or to costly network 
reinforcements.  

Given the current uncertainty of DSO costs and 
revenues, new planning tools are required for 
considering the constant variability of the energy 
network (EDSO, 2015). In a smart city vision, this 
argument becomes even more solid in view of the 
upcoming integration of electric vehicles and the 
development of flexibility services. As a matter of 
fact, both are seen as basic components of the future 
smart cities. The large deployment of smart metering 
(SM) devices in the residential and commercial sector 
will drastically enlarge the potential of cost-effective 
planning approach. Indeed, user-specific data will 
result in a better insight of the smart city power 
distribution system.  

Considering the above facts and the probabilistic 
character of the EN 50160 technical standard 
(EN50160, 2012; Antoni Klajn, 2013) (which 
addresses the LV network) this paper presents a 
feeder- and user- specific probabilistic methodology 
that estimates the DER hosting capacity of an LV 
feeder. Practically it introduces a probabilistic tool 
that uses user-specific energy flow data recorded by 
SM devices, installed in the studied feeder. The 
probabilistic evaluation and the use of historical SM 
data yield a reliable estimation that considers the 
volatile character of distributed generation and loads 
as well as network operational criteria.  

Section 2 of this paper presents literature review 
regarding this subject and the drivers for developing 
the proposed analysis tool. Section 3 presents the 
overall structure of the developed algorithm and 
Section 4 thoroughly describes the important role of 
user-specific SM measurements in this development. 
Section 5 explains the computation process of the 
maximum acceptable PV hosting capacity. 

In Section 6, a real LV feeder in Belgium is 
analysed. The feeder is located in an area with high 
PV penetration and large deployment of SM devices.  
When the probabilistic character of EN 50160 
standard’s voltage limits is considered, the estimated 

PV hosting capacity is proved to be much higher than 
the one obtained with a deterministic approach, based 
on worst case energy flow profiles. Moreover, the use 
of long term SM measurements verifies the 
computation of technical metrics that can only be 
considered with a deterministic approach (violation 
of the maximum current capacity of the lines). 

2 CURRENT FRAMEWORK 

Slow or over rigid hosting capacity review processes 
hamper DER integration in many regions worldwide. 
Very often, users who want to invest and play an 
active role in managing their energy usage are 
increasingly unable, in expediency and cost-
efficiency terms, to do so. In this context, a stream-
lined approach together with the expansion of 
allowable DER integration approvals seem to be a 
necessity  (Solar City Grid Engineering, 2015). 

For increasing penetration levels while shortening 
the application review timeline, DSOs should 
incorporate automated DER hosting capacity 
analyses. A process flow for incorporating such 
analysis into the DER integration review process is 
outlined in Figure1. 

 

Figure 1: Process flow for incorporating hosting capacity 
analysis into the DER integration process. 

Recently, many energy utilities are adapting their 
DER hosting capacity review so as to remove or 
update restrictive maximum allowable limits (Noone, 
2013). As far as the fast track analysis part is 
concerned (second step in Figure 1), the Electric 
Power Research Institute (EPRI) presents a set of 
models that could be used by DSOs or electric utilities 
(Smith, 2015; Electric Power Research Institute, 
2012). These feeder-based methodologies are very 
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solid computation examples that take account of all 
steady state operational criteria.  

Focusing on PV hosting capacity, EPRI 
recommends stochastic analysis as a highly 
appropriate tool for determining PV hosting capacity 
in distribution feeders (Smith, 2015; Electric Power 
Research Institute, 2012). The stochastic deployment 
concerns the position and size of future PV units 
while the steady state estimation of the feeder is done 
with deterministic approach.  

In the same vein, a set of studies addressing the 
European framework and the EN 50160 standard 
highlight the efficiency of stochastic and probabilistic 
analysis in determining hosting capacity or otherwise 
the impact of PV generation in LV feeders (Bollen 
and Hassan, 2011; Conti and Raiti, 2007; Conti et al., 
2003; Hernandez et al., 2013; Ruiz-Rodriguez et al., 
2012; Billinton and Bagen, 2006; Billinton and Karki, 
2003). Meanwhile, the European Photovoltaic 
Industry Association (EPIA) and the technical 
standard EN 50160 suggest that distribution networks 
should be designed on a probabilistic basis. For 
example, EN 50160 standard deals with the voltage 
characteristics of LV feeders in probabilistic terms. It 
gives recommendations that, for a percentage of 
measurements (e.g. 95%) over a given time, the 
voltage value must be within specified limits.  

Most of the existing methodologies deploy the 
stochastic analysis regarding the size and position of 
PV units and not the load/generation profiles of users. 
However, the ongoing integration of SM devices in 
LV networks enlarges the potential of using feeder-
specific or even user-specific data for modelling 
energy flows. According to (Bollen and Hassan, 
2011) , deploying long-term measurements in the LV 
network is highly valuable, not only for estimating the 
maximum PV hosting capacity, but also for voltage 
coordination of the network in general.  

The EPRI’s report (Electric Power Research 
Institute, 2012) estimates PV hosting capacity using 
feeder-specific data to create either absolute worst 
case scenarios (maximum recorded generation-
minimum recorded load) or load/PV time-of-day 
coincident worst case scenarios. As previously 
mentioned, although feeder-specific data are used, the 
steady state estimation of the feeder is still done with 
a deterministic approach. Indeed, this approach does 
not consider the fact that the time-of-day in which 
worst case values apply for a specific user does not 
necessarily coincide with the one of other users 
connected to the same feeder. Nevertheless, the 
operational criteria of the feeder are determined both 
by the individual user’s demand and by the 
simultaneous demands of other network users. Since 

the demands of every user and the degree of 
coincidence between them constantly varies, so does 
the operation of the feeder (Antoni Klajn, 2013). 

The above argument demonstrates that although 
user-specific SM data are primordial for creating 
reliable network models, there is another challenge 
that needs to be addressed. The latter lies in the fact 
that users follow volume-wise (kWh) or capacity-
wise (kW) an almost stable daily pattern. However, 
this pattern does not necessarily remain the same on 
the time axis. In long term decision making, profiles 
should be based on the recorded ones considering all 
possible deviations. Those deviations could be 
inserted either as random statistical errors or by 
making random possible combinations of the 
recorded values or by combining both approaches. 

Therefore, reliable models that take into account 
load/PV time- and user-variability are necessary for a 
less conservative and more cost-effective hosting 
capacity review. Probabilistic and particularly Monte 
Carlo approach are very suitable to address this 
modelling challenge. 

3 THE PV HOSTING CAPACITY 
COMPUTATION TOOL 

This paper presents a tool that uses probabilistic state 
estimation (Vallee et al., 2013; Klonari et al., 2015), 
15-min user-specific SM data and feeder-specific 
technical parameters to estimate the PV hosting 
capacity of a given LV feeder. Hosting capacity is 
defined as the maximum amount of PV that can be 
accommodated in the feeder without impacting 
system operation (reliability, power quality, etc.) 
under existing control and infrastructure 
configurations (Electric Power Research Institute, 
2012).  

The proposed methodology aims to address the 
central block of Figure 1 by providing a detailed 
feeder- and user-specific DER hosting capacity 
analysis. The analysis takes into account the EN 
50160 standard operational criteria (EN 50160, 2012; 
Antoni Klajn, 2013). The focus is on voltage 
magnitude and unbalance which are the primary 
technical concerns in LV feeders with distributed PV 
generation. The maximum line capacity is also 
considered so as to address important reverse power 
flows due to high PV injection.  

Apart from steady state constraint management, 
there are other considerations that could be accounted 
for, such as transformer aging factor, grid losses, etc. 
Such criteria are included in cost-benefit analysis 
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(CBA) but they are not addressed by the EN 50160 
standard. Depending on the country and the applied 
DSO tariff methodology (“cost-plus”, “revenue cap”, 
etc.), DSOs are incentivised to reduce certain 
operation costs that can or cannot be integrated in 
their tariffs. Thus, the impact of such criteria on 
decision making, varies in function of the distribution 
utility. Consequently, this paper determines PV 
hosting capacity based on commonly adopted EN 
50160 standard criteria and line capacity issues, 
however line losses are also determined by the 
probabilistic analysis. 

3.1 Overview of the Simulation Tool 

As previously said, this chapter presents a 
probabilistic algorithm that determines the PV 
hosting capacity of an LV feeder by elaborating 
feeder-specific SM measurements. The SM 
measurements are the necessary input for performing 
a reliable steady-state analysis of various possible 
energy flow scenarios in the studied feeder. The 
flowchart in Figure 2 presents the structure of the 
simulation algorithm, which is entirely developed in 
MATLAB®.  

 

Figure 2: Flowchart of the PV hosting capacity computation 
tool. 

The energy exchange scenarios are generated by a 
Monte Carlo algorithm sampling from the historic 
SM data of the feeder (Vallee et al., 2013; Klonari et 
al., 2015). The power flow analysis is performed with 
the three-phase algorithm that is presented in 

Appendix A. Both balanced and unbalanced 
situations can be considered in this study.  

3.2 Feeder Model 

The feeder model is constructed based on the 
technical parameters of the lines, the position of the 
users, the installed PV power per node, the voltage at 
the MV/LV transformer secondary output and the 
respective set points and bandwidths in case voltage 
control algorithms are integrated. The feeder model 
also assigns the load/PV generation SM datasets to 
the respective users. This necessary information is 
directly available to the DSO.  

Regarding the PV hosting capacity computation, 
the possible future locations of the PV units have to 
be specified in the feeder model. This analysis is not 
based on stochastic random distribution of PV units 
along the feeder. A set of scenarios regarding the 
positions of future PV nodes is specified and each one 
of them is studied separately so as to focus on its 
specific impact on the feeder.  

The technical constraints that must be respected 
for the current situation and for future scenarios are 
the ones specified in local, regional or national 
directives. However, these operational constraints 
can be determined in a more restrictive manner, 
depending on the case. In the EU framework, the 
steady-state constraints are set by the EN 50160 
standard. Regarding voltage magnitude and 
unbalance, 95-percentile limits are suggested. Based 
on this standard, the simulation tool verifies that the 
following criteria apply for the whole system (in 
current and future installed PV power scenarios): 

௢ܲ௩௘௥௩௢௟௧௔௚௘൫ ௜ܸ,௝ ൐ 1.10 ∙ ௡ܸ௢௠൯ ൏ 0.05 (1.a)

௨ܲ௡ௗ௘௥௩௢௟௧௔௚௘൫ ௜ܸ,௝ ൏ 0.90 ∙ ௡ܸ௢௠൯ ൏ 0.05 (1.b)

௨ܲ௡௕௔௟௔௡௖௘ሺܸܷܨ௜ ൐ 2%ሻ ൏ 0.05	 (1.c)

where ௢ܲ௩௘௥௩௢௟௧௔௚௘, ௨ܲ௡ௗ௘௥௩௢௟௧௔௚௘	and		 ௨ܲ௡௕௔௟௔௡௖௘ 
represent respectively the probability of having an 
overvoltage, an undervoltage or exceeding the phase 
voltage unbalance limit at any node over a number M 
of simulated network states. In ௜ܸ,௝ , i stands for nodes 
1 to N (total number of nodes in the feeder) and j 
stands for phase a, b or c.  

The thermal limits of the cables are also 
considered in the computation. The current carrying 
capacities of the lines should not exceed the DSO 
requirements or the recommended values in technical 
standards such as  (IEC). 

The load flow analysis of each system state is 
performed   with   the   three-phase   algorithm  that is 
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presented in (Klonari et al., 2016). 

4 THE USE OF SM 
MEASUREMENTS  

4.1 User Profiles and Feeder State 
Modelling based on Historic SM 
Datasets 

The load/ PV profiles of existing users are created by 
using their respective SM recorded datasets. The 
generation of the system states is practically based on 
a very large number of random combinations of 
users’ energy flow values. The methodology for 
creating the energy flow profiles and for generating 
the system states under analysis are thoroughly 
explained in (Vallee et al., 2013; Klonari et al., 2015). 
Longer recording periods of SM readings result in 
more reliable estimation of the PV impact on the 
feeder.   

The probabilistic deployment of this simulation 
tool relies on the principle that load/PV generation 
profiles of users are highly time-varying. This time-
variability induces another variability that concerns 
the time coincidence of the load profiles of various 
users. Both arguments are very important when 
assessing the impact of PV generation on a LV 
network. Indeed, the consideration of this variability, 
both in the time axis and regarding users coincidence, 
makes more realistic the simulation of the network 
operation. Such an approach can lead to less 
restrictive and more cost-effective decisions that do 
not rely on rare extreme cases but on the most 
frequent ones.  

4.2 Generation Profiles of Future PV 
Nodes 

A key component in accurately assessing the impact 
of future PV units is reliably representing their 
generation profiles. Based on the findings of several 
studies, geographically close customers are entirely 
correlated as far as their PV generation profiles are 
concerned (Shedd et al., 2012; Vallée et al., 2015). 
For this reason, this study considers that the 
generation profiles of future PV customers will be 
very similar, along the time axis, to the ones of the 
existing PV units.  

As previously explained, the load/PV generation 
profiles of customers with SM devices are made of 96 
Cumulative Distribution Functions (CDFs) of 
probability built with the 15-min recorded datasets. 

Concerning PV generation, such CDFs are apparently 
not available for the future PV units. For this reason, 
the available SM datasets are used in this case to 
create a reference CDF, based on the 15-min 
generation SM datasets of the existing PV owners 
(Lefebvre, 2015), which is used to simulate the time-
variability of PV generation at the future PV nodes.  

In reality, customers that are connected to the 
same LV feeder can have different PV units’ sizes. 
Assuming an equivalent statistical distribution of 
their PV power profiles due to geographical 
proximity, the principle is to create a standardized 
reference CDF for PV generation in the specific 
feeder, based on the measurements of the available 
SM devices (Rousseaux et al., 2015). Initially, the 
CDF for the 15-min PV energy generation Einj,pv,j,q of 
each existing PV node j is normalized by applying the 
following relation, for each time step q: 

௜௡௝,௣௩,௝,௤ܧ ൌ
ா೔೙ೕ,೛ೡ,ೕ,೜
ா೟೚೟,ೕ

,, for j = 1:NSM (2)

where NSM is the number of users in the feeder that 
are equipped with an SM device,  ܧ௜௡௝,௣௩,௝,௤	values are 
the normalized 15-min energy generation values of 
customer j during time step q, ܧ௜௡௝,௣௩,௝,௤ values are the 
recorded 15-min energy generation values of 
customer j during time step q and ܧ୲୭୲,୨ is the total 
yearly PV energy generation of customer j. 

Once this is done, the 15-min CDFs of every user 
are aggregated in order to create one reference CDF 
that can represent all PV owners in the specific 
feeder. For creating the CDF of each particular future 
PV owner, this reference CDF should be normalised 
in function of his annual PV generation. For existing 
PV owners, such information is usually available to 
the DSO even if the customer is not monitored by an 
SM device. In case of future PV nodes, such 
information is apparently not available since no PV 
unit is connected. Consequently, the reference CDF is 
normalised with the annual PV generation of an 
existing PV unit (in the feeder or in proximity) 
multiplied by a reference factor f, as explained in the 
following section. 

5 PV HOSTING CAPACITY 
COMPUTATION 

Practically, the algorithm starts with the probabilistic 
analysis of the current situation (existing PV units), 
by simulating a large number M of possible system 
states. One should note that although system states are 
based on 15-min resolution data, each one of them is 
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considered as a possible instantaneous state of the 
system. Thus, the accuracy and reliability of the 
computation increases with the number of treated 
system states. 

The probabilities Povervoltage, Pundervoltage and 
Punbalance are computed at every node, based on the 
analysis results. Compliance with the conditions set 
by (1.a, 1.b, 1.c) is verified for the whole feeder. In 
case the conditions are respected, the algorithm 
increases the installed PV power at the future 
(specified by the user) PV nodes by the defined 
increase step. Therefore, an LV feeder is simulated 
considering a total number N of PV nodes. Some of 
the simulated N nodes may be currently existing PV 
nodes while the rest of them are the considered future 
PV nodes.   If the total number of future PV nodes is 
equal to K (K ≤ N), the new installed power at each 
future PV node i is computed as follows: 

௥ܲ௔௧௘ௗ,௟,௜ ൌ ௥ܲ௔௧௘ௗ,௟ିଵ,௜ ൅ ௦ܲ௧௘௣,௜		, ݅
ൌ 1:  nodes	ܭ

(3)

 

where ௥ܲ௔௧௘ௗ,௟ is the new installed PV power at node 
i in the current configuration l that will be analysed 
by the algorithm (in step 5, Figure2), ܲ ௥௔௧௘ௗ,௟ିଵ,௜ is the 
installed PV power at node i that was analysed (and 
accepted in terms of impact on the technical 
constraints) in configuration l-1 and ௦ܲ௧௘௣ is the 
increase step (defined by the user). A small 
௦ܲ௧௘௣	value (≈ 0.5-1kVA for residential or small 

commercial users) is recommended so as to make a 
more precise computation. In several countries, the 
maximum admissible installed power per distributed 
PV unit in the LV network, concerning residential and 
small-business users, is equal to 10kVA. In such 
cases, the condition ௥ܲ௔௧௘ௗ,௟,௜ 	൑ 10kVA	should be 
integrated in step 5 of the algorithm. 

Once relation (2) is applied, the new installed PV 
power ௥ܲ௔௧௘ௗ,௟,௜	is defined at every new PV node 
before the algorithm performs the next “hosting 
capacity review” iteration (step 5, Figure2). However, 
the reference CDF that represents the time-variability 
of generation at the new PV nodes needs to be scaled 
in function of ௥ܲ௔௧௘ௗ,௟ at each node. As previously 
highlighted, since the annual PV generation of new 
PV units cannot be available, the reference CDF is 
normalised with the annual PV generation of an 
existing PV unit (in the feeder or in proximity). Then, 
a reference factor f is introduced for scaling the 
normalised CDF in function of ௥ܲ௔௧௘ௗ,௟. The factor fi 
is computed as follows: 

௜݂ ൌ
௥ܲ௔௧௘ௗ,௟,௜

௥ܲ௔௧௘ௗ,௥௘௙
൘   , i=1: K           (4)

where ୰ܲୟ୲ୣୢ,୰ୣ୤ is the installed PV power of the 
existing PV unit that has been used to normalize the 
reference CDF. 

Once the generation profiles have been set up for 
the future PV nodes, the algorithm repeats steps 2 and 
3 for analyzing the current configuration l. At this 
point, it is important to clarify that each “hosting 
capacity review” iteration l practically performs the 
power flow analysis of configuration l by applying a 
full MC simulation, similar to the one of step 2. This 
means that each “hosting capacity review” iteration l 
runs the same large number of MC iterations M that 
was analysed in step 2. Thus, in every iteration l, a 
very large number of system states is analysed 
(=M·96) so that the values of Povervoltage, Pundervoltage 
and Punbalance converge. Thanks to this procedure, the 
verification of compliance with equations (1.a, 1.b, 
1.c) for each configuration l is assumed to be reliable. 
If the analysis of M system states, in configuration l, 
demonstrates that the operational constraints are not 
violated, the installed PV power is again increased at 
each future node. Then, the algorithm passes again to 
steps 4 and 5.  

The described iterations stop as soon as the 
operational constraints are for the first time exceeded 
at least at one of the nodes. Therefore, the PV size of 
some units could probably increase even more, given 
that the operational constraints at their PCC are not 
violated. However, this study treats the LV feeder as 
a whole since the violation of limits at one node is 
always affected by the energy flow at all nodes. The 
௥ܲ௔௧௘ௗ,௟,௜	that is applied in the last iteration l, which led 

to a violation of acceptable limits, is the one 
considered as the maximum admissible hosting 
capacity per node.  

The aggregated PV hosting capacity of the feeder 
is computed by adding ௥ܲ௔௧௘ௗ,௟,௜  (existing and new) 
along the feeder:  

௥ܲ௔௧௘ௗ,௧௢௧ ൌ෍	 ௥ܲ௔௧௘ௗ,௟,௜

ே

௜ୀଵ

	 (5)

where N is the total number of PV nodes in the feeder. 
In order to make a more detailed computation, 
different increase steps could be applied per node in 
function of its position in the feeder. The voltage 
limits are usually more easily violated at the end of 
the line. Consequently, the PV power steps could be 
bigger for the nodes at the head of the line. However, 
this strategy could eventually result to an earlier (in 
terms of PV size) violation of the limits at the last 
nodes, which does not tally with a common welfare 
among end-users. 
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6 CASE STUDY: AN LV FEEDER 
IN BELGIUM  

6.1 Description of the Simulation 

This section describes the application of the 
previously described analysis tool for computing the 
PV hosting capacity of an LV feeder in Flobecq. 
Flobecq is a municipal area in Belgium with high 
penetration of distributed PV generation (≈25% of 
Flobecq LV grid users) and large deployment of SM 
devices. Thanks to an official research fellowship 
between the local DSO and the authors’ affiliation, 
the technical parameters of the feeder and SM 
datasets of the respective users have been 
communicated strictly for research purposes. The 
datasets cover a total period of one year (2013).  

The topology of the simulated three-phase feeder 
is presented in Figure 3. Currently, four PV units are 
installed in the feeder which supplies a total of 19 
residential users. These PV units are located at nodes 
4,5,12 and 14, by means of single-phase inverters, 
and their installed PV power is respectively 5kVA, 
10kVA, 2.63kVA and 5kVA.  

 

Figure 3: The simulated LV feeder of the power distribution 
network of Flobecq (conductors colour code as in IEC 
60446 standard). 

A spatial correlation study had already been 
performed for the specific feeder and the generation 
profiles of the users were proved to be entirely 
correlated (Vallée et al., 2015). This consideration is 
taken into account in this analysis, regarding also 
future PV nodes. Practically, this means that for every 
simulated system state, the randomly sampled 
probability for defining the respective PV generation 
value is common for all PV units. 

Concerning operational constraints, the ones of 
EN 50160 standard have been considered in the 
simulation. Therefore, compliance with the group of 

equations (1.a, 1.b, 1.c) has been verified for each 
system state, as far as voltage magnitude and 
unbalance are concerned. The maximum current 
capacity of the lines has been determined based on 
table (IEC). The PV size increase step is defined 
equal to 1kVA and the power factor of all PV 
inverters is considered equal to 1, unless reactive 
power control is considered in the simulation. 

A set of different scenarios have been simulated 
regarding the position and phase connection of future 
PV units as well as the action of voltage control 
schemes. The analysed scenarios are listed in Table 2. 
Concerning the scenarios A-D, only the on-off 
control scheme is considered, which is currently 
implemented by most DSOs in Europe. This control 
scheme enables a total cut-off of the PV unit (in most 
cases during 3 minutes) as soon as the voltage limit 
has been locally exceeded for a period longer than 10 
minutes. This analysis considers each simulated state 
as instantaneous. Therefore each violation of the 95-
percentile limit of EN 50160 standard is counted in 
the probabilities even though in reality it might had 
lasted less than 10 minutes. This means that the 
computed maximum PV hosting capacity is possibly 
slightly lower than the one that the feeder can really 
support, considering voltage margin. 

Table 2: The simulated PV hosting capacity scenarios. 

No Description 

A

12 new PV units at nodes 2, 3, 6, 7, 8, 10, 11, 13, 15, 
16, 17, 18, 19. The PV units at nodes 8, 11, 17, 18, 19 
are connected to phase A, the PV unit at node 3 is 
connected to phase B and the PV units at nodes 2, 6, 
7, 10, 13, 15 are connected to phase C.  

B 
12 new PV units at nodes 2, 3, 6, 7, 8, 10, 11, 13, 15, 
17, 18, 19. All new PV units connected to phase B, 
except from PV unit at node 15 (phase A). 

C 

12 new PV units at nodes 1, 2, 3, 6, 8, 10, 11, 13, 15, 
16, 17, 18. The PV units at nodes 1, 8, 11, 15, 16 are 
connected to phase A, the PV units at nodes 3, 17 and 
18 are connected to phase B and the PV units at nodes 
2, 6, 10, 13 are connected to phase C. 

D 1 new PV unit connected to node 16 (phase A). 

E 

Similarly to scenario A but considering 100-
percentile limits. Practically the PV hosting capacity 
is not increased as soon as voltage and VUF limits are 
exceeded at least once in the feeder. 

F 

Similarly to scenario A but considering the action of 
three-phase damping control integrated in the new PV 
inverters. In this case, the new PV units need to be 
connected by means of three-phase PV inverters.

G 
Similarly to scenario A but considering the action of 
reactive power control of (CEI, 2012) 
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The control scheme applied in scenario F is the 
three-phase damping control scheme which behaves 
resistively towards the negative- and zero-sequence 
voltage component, without modifying the injected 
power, so as to eliminate phase voltage unbalance 
(Meersman et al., 2011). This control scheme requires 
a three-phase PV inverter, it is very promising in 
terms of voltage magnitude and unbalance mitigation. 
It is actually implemented in a EU pilot program (FP7 
INCREASE Project). The third control scheme is 
reactive power control in the way it is implemented 
in the Italian distribution system (CEI, 2012) 
concerning new PV units in the LV network. These 
voltage control schemes are integrated in the 
simulation tool as explained in (Klonari et al., 2016). 

6.2 Comparing with a Deterministic 
Approach 

One of the main purposes of this study is to 
investigate, up to which extent, a probabilistic method 
based on user specific data leads to a less restrictive 
computation of PV hosting capacity, compared to a 
deterministic approach. For this purpose, a 
deterministic approach has been implemented 
simulating worst case energy flow profiles. The load 
profiles of all users and the PV generation profiles of 
existing PV units have been also based on SM 
recorded data. The deterministic steady state analysis 
has been conducted for scenarios A-D, F, G. Scenario 
E is not mentioned because, in a deterministic 
framework, it coincides with deterministic scenario 
A. The following load/ PV generation profiles have 
been considered: 

I. Maximum PV power per node (installed PV 
power) – Minimum recorded load per node; 
absolute values, irrespective of time 
coincidence among users 

II. Maximum PV power recorded in the feeder – 
Coincident PV generation/load values for the 
other nodes. 

III. Minimum recorded load in the feeder during PV 
injection hours – Coincident PV 
generation/load values for the other nodes. 

6.3 Results and Discussion 

The probabilistic hosting capacity review results are 
illustrated in Figure 4 and analytically listed in Table 
3. The aggregated maximum admissible PV hosting 
capacity in the feeder, considering only voltage 
margins (magnitude and unbalance), is presented in 
the second column for each individual scenario. The 

third column presents the violation due to which PV 
hosting capacity could not be further increased for the 
respective scenario. The aggregated PV hosting 
capacity obtained with deterministic analysis is 
presented in Figure 5 and Table 4 for all scenarios and 
worst case load/ PV generation profiles (§6.2). 

 

Figure 4: The computed aggregated PV hosting capacity of 
the feeder for scenarios A-G. The number of new PV units 
is also indicated. 

Table 3: Aggregated maximum PV hosting capacity 
considering only EN 50160 voltage margins (Probabilistic 
Simulation). 

No  Voltage margin consideration (EN 50160 standard)

 
Aggregated 

HC  
Violation 

A 
154.63kVA 
(11kVA per 
new PV) 

-- Povervoltage at nodes 18 and 19 
(phase (B)) resulted 5.7% and 
6.4% respectively (> 5%, which is 
the value accepted by the EN 
50160 standard) 

B  144.63kVA  
-- Povervoltage at nodes 13,14,15 
(phase (C), resulted 5.4%, 6.16% 
and 6.18% respectively  

C  178.63kVA   -- Povervoltage at nodes 13, 14 
resulted 6.78%  and 6.77% 

ti l

D  65.63kVA  
-- Povervoltage at node 19 
(phase (B)) resulted 5.15%  

E  94.63kVA  

-- Povervoltage at nodes 13,14, 
(phase (C)), resulted 0.0001% in 
both cases (> 0%, which is the 
condition in scenario E) 

F  202.63kVA  
-- Povervoltage at nodes 2-19 (at all 
three phases) resulted from 5.5% 
to 28%  

G  154.63kVA   -- Povervoltage at node 19 (phase 
(B)) resulted 5.17%  
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Figure 5: Aggregated PV hosting capacity of the feeder for 
probabilistic & deterministic scenarios (A to D). 

Table 4: Aggregated maximum PV hosting capacity for 
each simulated scenario (Deterministic Approach). 

No Aggregated PV Hosting Capacity (kVA) 

A 70.63kVA  82.63kVA 82.63kVA  OV at all new 
PV nodes 

B 58.63kVA 58.63kVA 58.63kVA 
OV at all new 
PV new PV 

nodes

C 94.63kVA 94.63kVA 106.63kVA 
OV at all new 

PV nodes 

D 43.63kVA 49.63kVA 52.63kVA 
OV at all new 
PV new PV 

nodes 

Considering only voltage margin as a constraint (both 
magnitude and unbalance), one should note that the 
result of scenario E (applying 100-percentile limits) 
is close to the ones of the deterministic scenarios A.I, 
A.II and A.III which analyse the same topology as 
scenario A but with a deterministic approach. Based 
on this remark, it can be reasonably assumed that the 
probabilistic computation covers (samples and 
analyses) almost the whole range of possible system 
states, including the ones recorded in reality (the 
combination of coincidently recorded values) which 
are treated in the deterministic scenarios A.II and 
A.III.  

However, accounting for voltage margins, the 
restrictive condition of scenario E according to which 
voltage limits must never be exceeded (in none of the 
simulated states), results in a quite lower admissible 
PV hosting capacity compared to scenario A (same 
topology as scenario E). Basically, in scenario E, PV 
hosting capacity could not further increase because 
the computed Povervoltage resulted equal to 99.99% 
(>95% is the condition in EN 50160). Therefore, if 
the admissible PV hosting capacity does not exceed 
94.63kVA, the operational limits will most probably 
never be violated in the feeder, based on the 

elaboration of the available historic data. Otherwise, 
if the admissible PV hosting capacity increases up to 
154.63kVA, as in scenario A, voltage limits’ 
violation will only take place in less than 5% of total 
system states. Even with such an increase of the 
aggregated PV hosting capacity, the temporary cut-
offs of the PV units due to overvoltage will be very 
rare. Scenario A takes advantage of the probabilistic 
character of EN 50160 standard (limits violation 
allowed during 5% of week time), which is not the 
case in scenario E or in the deterministic approach.  

Investigating congestion risk for all scenarios, PV 
hosting capacity results much lower than in case only 
voltage margins are considered. For a more rigorous 
view, statistical distributions of current values of all 
line segments have been constructed based on the 
total number of simulated states. In all cases, the 
violation of maximum line capacity took place in 
segment 6-7 (Table 5). For this reason, the 
configuration in scenario A was reordered in order to 
address this remark by examining scenario C. 

Table 5: Aggregated maximum PV hosting capacity 
considering both EN 50160 voltage margins and maximum 
line capacity. 

No  Maximum current capacity and voltage margins 
consideration 

  Aggregated HC  Violation 

A  70.63kVA (4kVA/ 
per new PV)  

Imax of line 6-7: 13% deviation 
(13% higher than the maximum 
current capacity of the lines) 

B  58.63kVA (3kVA/ 
per new PV) 

Imax of line 6-7: 50% deviation 

 (50% higher than the maximum 
current capacity of the lines) 

C  94.63kVA (6kVA/ 
per new PV) 

Imax of line 6-7: 0.18% deviation 

 (10.5% higher than the 
maximum current capacity of 
the lines) 

D  37.63kVA (15kVA/ 
per new PV) 

Imax of line 6-7: 6.2% deviation 

 (6.2% higher than the 
maximum current capacity of 
the lines) 

E  70.63kVA (4kVA/ 
per new PV) 

Imax of line 6-7: 13% deviation  

F  70.63kVA (4kVA/ 
per new PV) 

Imax of line 6-7: 11% deviation  

G  70.63kVA (4kVA/ 
per new PV) 

Imax of line 6-7: 11% deviation  
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Practically, scenario C considers the same number 
and phase configuration of scenario A but new PV 
units are distributed at different nodes aiming to 
reduce current flows in line segment 6-7. Indeed, the 
analysis of scenario C, taking into account congestion 
risk, resulted in an improved hosting capacity 
compared to scenario A (94.63kVA > 70.63kVA). 
Considering voltage margin, scenario C also led to 
higher hosting capacity (178,63kVA > 154.63kVA). 

In Figure 6 the probabilistic consideration of 
overvoltage is illustrated with the evolution of the 
CDF of probability of phase voltage (B) at node 19 
while the total installed PV power increases (scenario 
A). If total installed PV power increases by 144kVA 
(12kVA per new PV unit), phase voltage (B) at node 
19 respects the defined limits in 94.6% of the 
simulated states (< 95% is the EN 50160 limit). Thus, 
the maximum PV power that can be added to the 
feeder, considering this configuration, is 132kVA 
(11kVA per new PV unit).  

 

Figure 6: CDFs of probability for phase voltage (B) at node 
19, for each increase step of the total installed PV power in 
the feeder (scenario A). 

The above arguments should be considered in a cost-
benefit analysis (CBA) that compares network 
operational costs, eventual penalties for low DER 
integration, and potential revenue loss for users and 
energy utilities. For highlighting the cost-
effectiveness of deploying long-term measurements 
in the LV network and analysing it with a 
probabilistic approach, a more detailed computation 
of line losses in the feeder was performed. Assuming 
that the computed maximum admissible PV power is 
installed (=154,63kVA if one considers only voltage 
margin in scenario A), the study focuses on the total 
energy losses along the lines of the feeder during 
hours of high PV injection in a typical day (this period 
varies with the month). 

The worst case approach considers only one 
system state which will more likely take place during 
hours with the highest PV injection. Based on the 
available historic data for the feeder, this period is 
between 12:00AM and 18:30PM on a typical July 
day.  The  sum  of  energy  losses  has  been   computed 

 

Figure 7: CDF of probability of total energy losses in the 
feeder during high PV injection hours in a typical July day, 
considering the maximum admissible installed PV power 
(scenario A). 

along the feeder for the considered period, for each 
simulated day. Figure 7 illustrates the statistical 
distribution (CDF of probability) of the computed 
daily line losses, obtained with the probabilistic 
approach.  

The probabilistic approach and the consideration 
of the SM measurements demonstrated that total 
energy losses in the feeder vary significantly, 
depending on the system state. Consequently, in 95% 
of the simulated days, total energy losses during high 
PV injection hours (12:00AM to 18:30PM) do not 
exceed 35kWh in a day. In the deterministic approach 
which assumes the worst case scenario taking place 
all along the high PV injection period, the respective 
energy losses result equal to 148kWh. This important 
difference highlights that the probabilistic approach 
considers the extremely low frequency of worst case 
scenarios to take place simultaneously for all feeder 
users. Considering such probabilities, the DSO could 
manage a less conservative and more cost-effective 
long-term strategy.  

Undoubtedly, the computed PV hosting capacity 
values depend on the load profiles of the customers 
that are located in the feeder. However, the results 
clearly indicate in relative terms, that smaller 
distributed PV units have a much smoother impact 
than the bigger ones concentrated in one small area of 
the feeder. This fact is demonstrated by the 
comparison of scenario A to scenario D. Moreover, 
as previously mentioned, in certain countries the 
maximum admissible installed power per PV unit 
connected to the LV network is equal to 10kVA. In 
such cases, scenario D might not be appropriate based 
on the probabilistic simulation results. As a matter of 
fact, the admissible total installed power would have 
to limit to 32.63kVA although the network would be 
able to support 37.63kVA. The difference between 
the PV hosting capacity computed with the 
probabilistic and the deterministic approach for these 
cases (considering only voltage margin) is not as big 
as for scenarios A and B. Indeed, in scenarios A and 
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B, the volatile character and the extremely rare 
coincidence of worst case values for 12 units cannot 
be reliably represented by a deterministic model.  

Regarding the distribution of units among phases, 
the comparison of scenarios A and B shows that the 
existing phase unbalance affected the computation. 
Indeed, the violated parameter in this case is voltage 
magnitude of phase (C) although all new PV units are 
connected to phase (B). Therefore, the unfair 
distribution of new PV units among phases did not 
directly affect Punbalance but it had an impact on the 
voltage magnitude of phase (C). Considering voltage 
limits, the aggregated PV hosting capacity for 
scenario B resulted equal to 144.63kVA, if one 
considers only voltage constraints. However, the 
connection of most new PV units at phase (B) resulted 
in very high current values so that the maximum 
current capacity was exceeded by 50%. 

In scenario F, the connection of new PV units by 
means of three-phase inverters integrating three-
phase damping control can increase the aggregated 
hosting capacity by 36%, considering voltage margin. 
Thanks to the resistive behaviour of this control 
scheme towards the zero- and negative-sequence 
voltage component, the deviation of voltage 
magnitude and unbalance becomes much smoother 
compared to the currently applied on-off control. 
Thus, the risk of exceeding the defined limits is 
reduced and a bigger share of PV generation can be 
integrated. Applying this control in scenario C would 
definitely lead to even higher PV hosting capacity. 

Based on the results of scenario G, reactive power 
control does not result in higher PV hosting capacity 
compared to scenario A (on-off control). Voltage 
profile in the feeder is however improved compared 
to scenario A. As a matter of fact, voltage limits are 
not violated in scenario G whereas the maximum 
current capacity limit is exceeded for the same 
amount of PV integration compared to scenario A. 

In the first two cases (scenarios A and B), 
comparing the probabilistic simulation results to the 
respective ones of the deterministic approach, an 
important difference in the aggregated admissible 
hosting capacity is observed. One should notice that 
the violated parameter in the deterministic 
approaches is mainly the voltage magnitude and 
secondly the maximum current capacity of the lines. 
The deterministic approach led to 58-146% lower 
aggregated PV hosting capacity (compared to the one 
computed with the probabilistic approach) due to a 
violation that according to the probabilistic 
elaboration of the historic SM dataset took place for 
much less than 6% of the simulated system states. 
Indeed, based on figure 8, the addition of 12 new PV 

units of 4kVA each (deterministic scenario A.I) 
generated an overvoltage risk that is lower than 1%. 

The studied feeder currently hosts 22.63kVA of 
distributed PV generation and supplies 19 residential 
customers. The analysis of the current conditions 
(based on the historic SM datasets) demonstrated that 
both voltage violation risk and congestion risk are 
very low. Moreover, the above probabilistic load-
flow analysis proved that congestion and voltage 
problems will only appear if 48kVA and 132kVA 
respectively of distributed PV generation (scenario 
A) are further integrated. This remark highlights the 
cost-efficiency of designing distribution networks 
based on the most frequent system states and on well-
studied future scenarios. Such probabilistic approach 
can lead to customised solutions and help to avoid 
over-dimensioning and costly initial investments for 
the DSO. 

Finally, a general remark concerns the self-
sufficiency potential of the feeder. Based on the 
available user specific data, the annual generated PV 
energy in the feeder is in the range of 22400kWh 
corresponding to 22.63kVA of currently installed PV 
generation. The annual aggregated load for all users 
is in the range of 87200kWh. Given that PV users are 
entirely correlated regarding their PV profiles, the 
potential annual PV generation in the whole feeder 
has been roughly estimated for each analysed 
scenario s as follows: 

௣௩,௧௢௧,௡௘௪,௦ܧ ൌ ௧݂௢௧,௦ ∙ ௧௢௧ (6)ܧ

where ௧݂௢௧,௦	is	the reference factor introduced in (3) 
applied for the total installed PV generation in 
scenario s and ܧ௧௢௧ is the total annual generated PV 
energy in the feeder at present (≈22400kWh). The 
estimation demonstrated that the annual potential PV 
generation in scenarios A, C, F and E would 
correspond to 80 to 107% of the annual load in the 
feeder (with hosting capacity considering both 
voltage margin and line capacity). This is only an 
orders of magnitude observation. For determining the 
self-sufficiency of the feeder, further studies should 
be deployed, including congestion risk or other 
technical and economic issues that would have to be 
encountered for storing the generated PV power 
(Thirugnanam et al., 2015). 

However, based on this rough estimation, certain 
renewable integration scenarios could potentially 
increase to an important extent the self-sufficiency of 
feeders like the studied one. As a result, their 
dependency on big conventional power plants, 
connected at the transmission level, could be 
efficiently reduced. However, big conventional plants 
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are important for maintaining grid stability. In a high 
DER integration scenario, without large and reactive 
storage facilities and/or flexibility services, the 
amount of RES should be carefully reviewed. To this 
end, costs induced by the use of grid services, 
including insurance against periods when it is not 
possible to consume own generated electricity, should 
be considered and reflected in the bill of generator 
owners (EDSO 2015). Reliable feasibility studies and 
comprehensive CBAs are necessary for evaluating 
various strategies in the decision making process. 

7 CONCLUSIONS 

This paper addresses the problem of determining the 
maximum PV hosting capacity that can be 
accommodated in a LV distribution feeder, while 
respecting local technical standards. To this purpose, 
a probabilistic simulation tool that uses as input user-
specific SM energy flow data and feeder-specific 
parameters is presented. A PV hosting capacity 
review for a municipal area in Belgium is used as a 
case study for evaluating the usefulness and reliability 
of the proposed tool. The study outcome 
demonstrates that it is to the interest of the DSO and 
of the grid users to deploy probabilistic analysis that 
considers the time-variability of load/PV generation, 
both in the time axis and between different users’ 
profiles. This variability of network state can be taken 
into account thanks to the deployment of long-term 
SM measurements. Consequently, the further 
deployment of SM devices is strongly recommended 
for a more cost effective long-term planning and 
coordination of the LV network. 

ACKNOWLEDGEMENTS 

The authors of this chapter acknowledge the support 
of ORES, the DSO who manages the electricity and 
natural gas distribution grids in 193 communes in 
Wallonia (Belgium), in terms of funding and SM data 
supply, both indispensable elements for conducting 
this research work.  

REFERENCES 

Antoni Klajn, M.B.-P., 2013. Application Note Standard 
EN50160 Voltage Characteristics of Electricity 
Supplied by Public Electricity Networks. , (March). 

Billinton, R. & Bagen, 2006. Generating capacity adequacy 

evaluation of small stand-alone power systems 
containing solar energy. Reliability Engineering and 
System Safety, 91(4), pp.438–443. 

Billinton, R. & Karki, R., 2003. Reliability/cost 
implications of utilizing photovoltaics in small isolated 
power systems. Reliability Engineering and System 
Safety, 79(1), pp.11–16. 

Bollen M.H.J. & Hassan, F., 2011. Integration of 
Distributed Generation in the Power System IEEE 
Press., Wiley. Available at: http://site.ebrary.com/ 
id/10494547. 

CEI, C.E.I., 2012. Reference technical rules for the 
connection of active and passive users to the LV 
electrical utilities, 

Conti, S. et al., 2003. Integration of multiple PV units in 
urban power distribution systems. Solar Energy, 75(2), 
pp.87–94. 

Conti, S. & Raiti, S., 2007. Probabilistic load flow using 
Monte Carlo techniques for distribution networks with 
photovoltaic generators. Solar Energy, 81(12), 
pp.1473–1481. 

EDSO, 2015. European Distribution System Operators for 
Smart Grids Adapting distribution network tariffs to a 
decentralised energy future, 

Electric Power Research Institute, 2012. Stochastic 
Analysis to Determine Feeder Hosting Capacity for 
Distributed Solar PV 1026640, 

EN50160, 2012. Voltage characteristics of electricity 
supplied by public electricity networks, 

FP7 INCREASE Project, http://www.project-increase.eu/. 
Hernandez, J.C., Ruiz-Rodriguez, F.J. & Jurado, F., 2013. 

Technical impact of photovoltaic-distributed generation 
on radial distribution systems: Stochastic simulations for 
a feeder in Spain. International Journal of Electrical 
Power and Energy Systems, 50(1), pp.25–32. 

IEC, IEC, 60364-5-52 Table A5210. 
Klonari, V. et al., 2015. Probabilistic Analysis Tool of the 

Voltage Profile in Low Voltage Grids. In 23rd CIRED. 
Klonari, V. et al., 2016. Probabilistic Assessment of a 

Voltage Unbalance Mitigation Control Scheme. In 
Energycon. 

Lefebvre, S., 2015. Contribution à l’utilisation d’un outil 
d’analyse technico-économique de réseaux de 
distribution Basse Tension en l’absence de compteurs 
électriques intelligents, 

Meersman, B. et al., 2011. Three-phase inverter-connected 
DG-units and voltage unbalance. Electric Power 
Systems Research, 81(4), pp.899–906. Available at: 
http://dx.doi.org/10.1016/j.epsr.2010.11.024. 

Noone, B. (Australian P.A., 2013. PV Integration on 
Australian distribution networks: Literature review, 

Rousseaux, P. et al., 2015. A new formulation of state 
estimation in distribution systems including demand 
and generation states. In Powertech. 

Ruiz-Rodriguez, F.J., Hernández, J.C. & Jurado, F., 2012. 
Probabilistic load flow for photovoltaic distributed 
generation using the Cornish-Fisher expansion. Electric 
Power Systems Research, 89, pp.129–138. 

Shedd, S. et al., 2012. A Statistical Characterization of 
Solar Photovoltaic Power Variability at Small 

Photovoltaic Integration in Smart City Power Distribution - A Probabilistic Photovoltaic Hosting Capacity Assessment based on Smart
Metering Data

177



Timescales Preprint. Workshop on Integration of Solar 
Power into Power Systems Conference, (August). 

Smith, J., 2015. Alternatives to the 15% Rule: Modeling 
and Hosting Capacity Analysis of 16 Feeders, 

Solar City Grid Engineering, 2015. Integrated Distribution 
Planning: A holistic approach to meeting grid needs 
and expanding customer choice by unlocking the 
benefits of distributed energy resources, 

Thirugnanam, K. et al., 2015. Battery Integrated Solar 
Photovoltaic Energy Management System for Micro-
Grid. In ISGT ASIA. 

Vallee, F. et al., 2013. Development of a probabilistic tool 
using Monte Carlo simulation and smart meters 
measurements for the long term analysis of low voltage 
distribution grids with photovoltaic generation. 
International Journal of Electrical Power & Energy 
Systems, 53, pp.468–477. Available at: <Go to 
ISI>://WOS:000325445600049. 

Vallée, F. et al., 2015. Clustering of Photovoltaic 
Generation for the Consideration of Time Changing 
Geographical Correlation in Probabilistic Analysis of 
Low Voltage Distribution Systems. In 5th Solar 
Integration Workshop. 

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

178


