
Software Visualization via Hierarchic Micro/Macro Layouts

Martin Nöllenburg1, Ignaz Rutter2 and Alfred Schuhmacher2

1TU Wien, Vienna, Austria
2Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Keywords: Hierarchical Graph Layout, Compound Graphs, Software Visualization.

Abstract: We propose a system for visualizing the structure of software in a single drawing. In contrast to previous work
we consider both the dependencies between different entities of the software and the hierarchy imposed by the
nesting of classes and packages. To achieve this, we generalize the concept of micro/macro layouts introduced
by Brandes and Baur (Baur and Brandes, 2008) to graphs that have more than two hierarchy levels. All entities
of the software (e.g., attributes, methods, classes, packages) are represented as disk-shaped regions of the plane.
The hierarchy is expressed by containment, all other relations, e.g., inheritance, functions calls and data access,
are expressed by directed edges. As in the micro/macro layouts of Brandes and Baur, edges that “traverse” the
hierarchy are routed together in channels to enhance the clarity of the layout. The resulting drawings provide an
overview of the coarse structure of the software as well as detailed information about individual components.

1 INTRODUCTION

Source code is the natural textual representation of
software. While it can be read and modified by humans
and is suitable for transformation into an executable, it
lacks communicative power on larger scales. Beyond
the smallest software, getting familiar with a software
by means of the code alone or even analyzing the
overall condition of a software based on only its code
is a difficult if not impossible task. It is therefore
desirable to create visualizations of software that give
a better overview, facilitate exploration of a software
and allow to recognize the dependencies of certain
parts of a software.

In this paper we propose and demonstrate a graph-
based, node-link diagram visualization technique for
software extending the micro/macro layout style of
Baur and Brandes (Baur and Brandes, 2008) to mul-
tiple hierarchy levels. It is natural to model software
by a graph that contains a vertex for each entity in
the source code, such as packages, classes, methods,
and fields. Relations are modeled as (usually directed)
edges between these entities; for example code cou-
plings such as inheritance, method calls, and field
accesses. One characteristic of graphs obtained from
software is that they usually contain a very strong
multi-level hierarchy in addition to non-hierarchic re-
lations; methods and fields are contained in classes,
which are contained in packages, which may again

be grouped in larger packages. Since the hierarchic
structure is created explicitly by the software design-
ers, it can be assumed to encode key insights in the
software architecture. A main feature of our visual-
ization technique is that it places a special emphasis
on these hierarchic relations and encodes them dif-
ferently from non-hierarchic relations. A node-link
diagram in micro/macro style that stresses the hierar-
chical relations may serve as a large overview map of
a software project, but it still maintains details when
focusing on a particular part of the layout. Much like a
cartographic map that gives an overview when viewed
from a distance, with only larger geographic features
(or higher-level nodes) visible, but that also presents
detailed information when moving closer.

1.1 Related Work

There are various methods and systems for visual-
izing certain aspects of a software, for two surveys
see (Diehl, 2007; Diehl and Telea, 2014). Here we
focus on graph-based approaches using node-link dia-
grams since we want to create a spatial overview map
of the hierarchical structure of a software project. We
note that in the literature, matrix-based and hybrid ap-
proaches are also successfully applied to software visu-
alization, e.g., (van Ham, 2003; Rufiange et al., 2012;
Abuthawabeh et al., 2013; Rufiange and Melançon,
2014).

Nöllenburg, M., Rutter, I. and Schuhmacher, A.
Software Visualization via Hierarchic Micro/Macro Layouts.
DOI: 10.5220/0005785901530160
In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 2: IVAPP, pages 155-162
ISBN: 978-989-758-175-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

155



There are several previous papers that employ
force-based graph layout algorithms to visualize
graphs derived from software projects (Collberg et al.,
2003; Beyer, 2005; Palepu and Jones, 2013). Some
approaches apply clustering methods or use hierarchi-
cal information to indicate grouping patterns either
by color or by spatial grouping. However, these ap-
proaches show only straight-line edges and do not
properly use a containment metaphor for visualizing
hierarchies. Other works focus on the hierarchical
structure of software using space-filling, treemap-like
3D visualizations in the style of a city map (Wettel and
Lanza, 2007), which may be enriched by showing hi-
erarchically bundled edges on top of the city (Caserta
et al., 2011). Polyptychon (Daniel et al., 2014) is an
interactive tool for creating node-link diagrams of soft-
ware compound graphs that focuses on dependency
edges with respect to a selected view node and a lo-
cal context. Hierarchical edge bundling itself has also
been applied to software visualization as an indepen-
dent edge layout method on top of existing hierarchical
layouts (Holten, 2006) (e.g., radial, treemap, and bal-
loon layouts).

The visualization of graphs with a hierarchy has
also been investigated from a more generic graph draw-
ing perspective, for a recent survey see (Vehlow et al.,
2015). From a theoretical point of view, the most
closely related problem is that of drawing clustered
graphs. The question whether a planar drawing can be
achieved where each cluster is a simply-connected re-
gion whose boundary is crossed at most once by every
edge, is the famous c-planarity problem. This problem
has been studied for more than 20 years, see (Patrig-
nani, 2013) for an overview, but its complexity remains
open and it is still an active research topic.

In the context of more applied generic algorithms,
Frishman and Tal (Frishman and Tal, 2004) presented
a force-based algorithm for drawing straight-line lay-
outs of graphs with a flat clustering that forms a two-
level hierarchy. Baur and Brandes (Baur and Brandes,
2008) proposed (multicircular) micro/macro layouts
for visualizing hierarchic graphs. These layouts fea-
ture circular macro vertices, each representing a cluster
of micro vertices and containing a circular layout of
its micro vertices and edges. Unlike Frishman and Tal,
their visualization makes use of edge bundling by rout-
ing micro edges through channels defined by macro
edges, which reduces the clutter from connections be-
tween different clusters of the drawing. However, their
approach, too, is limited to only two layers in the hi-
erarchy. There are also approaches for visualizing
graphs with more than two levels in the hierarchy, us-
ing treemap-based layouts (Muelder and Ma, 2008),
using force-based layouts (Bourqui et al., 2007; Dogru-

soz et al., 2009) or combinations of the two (Didimo
and Montecchiani, 2012). In contrast to our proposed
method they use straight-line drawings and do not sup-
port edge bundling or other edge routing techniques.

1.2 Contribution and Outline

We propose a new technique for software visualiza-
tion that is designed to emphasize the inherent hierar-
chy of software besides showing all other edges in a
bundled fashion that reduces edge clutter and avoids
edge-node overlaps. It extends the idea of micro/macro
layouts (Baur and Brandes, 2008) to multiple levels,
uses hierarchical force-based node placement, and
routes the individual (non-hierarchical) edges as poly-
lines bundled within the wider macro edges defined at
higher levels of the hierarchy.

Note that our main goal is to provide a map of
a software project that displays all parts of the Soft-
ware simultaneously and contains all details. Naturally,
when the whole map is shown details may become very
small, just like a cartographic map one has to stand
close or scale the visualization and select a suitable
viewport to view detail information.

We first describe our graph model and layout style
in Section 2. Afterwards, we present our layout algo-
rithm in Section 3. Finally, we present and discuss an
illustrative real-world example in Section 4.

2 MODEL

In the most general setting we can model software
structures as compound graphs (Sugiyama and Misue,
1991). A compound graph is a triple D = (V,E, I),
where V is a set of vertices, E is a set of (directed)
adjacency edges on V forming the adjacency graph
Da = (V,E), and I is another set of directed inclusion
edges on V forming the inclusion graph Dc = (V, I);
see Fig. 1a for an example. In our model, the set V
contains all relevant structural entities as vertices, e.g.,
packages, classes, interfaces, methods, fields, etc. The
adjacency edges represent references between those
entities such as method calls, field accesses, inheri-
tance and others, whereas the inclusion edges repre-
sent containment relations of these entities as given
by the software architecture, e.g., methods contained
in classes contained in packages etc. Frequently, as
in our case of Java source code, the inclusion graph
Dc can be further restricted to being a rooted tree that
naturally represents a hierarchy on V .

Generally, adjacency edges may be defined be-
tween arbitrary vertices with respect to Dc. However,
since we will represent inclusion edges by geometric

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

156



a

b

c f

e

d

rµ

rγ

rν

a) b)

a rµb

rγ f

erνdc

µ ν

γ

a

b

c

µ

f

e

d
ν

γ G TD

Figure 1: Example of a compound graph D (a) and the corresponding clustered graph C = (G,T ) (b). The inclusion edges in
(a) are represented by inclusion of the vertices. The representative vertices in G as well as the cluster nodes in T are shaded.
Note that edges of G only connect leaves of T .

containment, it would be difficult to draw adjacency
edges between descendants and ancestors. Hence we
attach in Dc to each non-leaf vertex v of Dc an addi-
tional child rv, called representative vertex of v, and
reconnect all edges in Da originally incident to v to
rv instead. What we obtain now is a clustered graph
C = (G,T ) consisting of the modified adjacency graph
Da as the graph G and the inclusion tree T =Dc, whose
leaves are now exactly the vertices of G; see Fig. 1 for
an example, where Fig. 1b shows the clustered graph
corresponding to the compound graph from Fig. 1a.
Throughout the rest of this paper we use this clustered
graph C as the representation of the software structure;
we refer to C as the hierarchic software graph.

The inclusion tree T = (N, I) consists of a set of
nodes N = {µ1, . . . ,µk}∪V and the set of inclusion
edges I, where each µi is an internal node and each
v ∈V is a leaf. We further define for each node µ ∈ N
the set Lµ ⊂V of leaves in the subtree of T rooted at
µ. Let µ be an internal node of T . Then we define the
local graph Gµ = (Vµ,Eµ) of µ to be the graph with
vertex set Vµ = {ν ∈ N | (ν,µ) ∈ I} consisting of all
children of µ in T and edge set Eµ = {(ν,η) | ∃u ∈
Lν,v ∈ Lη,(u,v) ∈ E} consisting of all edges induced
by the descendants of Vµ in the adjacency graph.

Our drawing convention for visualizing hierarchic
software graphs is as follows. We represent each node
of T (including the leaves) as a disk. Edges of G are
represented as (polygonal) curves connecting the disks
of their endpoints. For simplicity, we identify vertices
and edges with their corresponding disks and curves.
Edges of T are represented by containment, i.e., for
every internal node µ, we require that all its children
are positioned inside the disk representing µ. We fur-
ther require that no two disks overlap properly or, in
other words, that any two disks are either disjoint or
one is contained in the other. For the adjacency edges
we demand that they do not pass through node disks
(of course they may enter them if their destination is
positioned inside). Our optimization criteria are that re-
lated vertices should be positioned close to each other
and that edge crossings should be avoided. To facilitate

the latter, we bundle edges with similar source or des-
tination into channels that are routed together similar
to micro/macro layouts (Baur and Brandes, 2008).

3 ALGORITHM

Our algorithm follows a two-phase approach. In the
first phase, vertex and node placement, we perform
a bottom-up traversal of the hierarchy and determine
for each vertex of the graph and for each node of the
hierarchy a corresponding disk. It ensures that disks
are properly nested according to the inclusion edges.

In the second phase, edge routing, we draw the
edges. We first decompose every edge into segments,
each connecting either a child and a parent in the hier-
archy or two siblings. Each segment is associated with
a weight describing how many edges contain it. We
then draw the segments as thick corridors (or channels)
using a geometric heuristic to route around obstacles,
e.g., non-incident vertices. Crossing segments that
share a common endpoint are merged into a larger
segment to avoid crossings. Afterwards, we draw the
actual edges inside the corresponding channels.

3.1 Vertex and Node Placement

For the vertex and node placement we perform a
bottom-up traversal of the cluster tree T . For each
cluster µ, we assume that its children ν are already
represented by disks Dν. We assume that the leaves
are represented by disks of a fixed size. When process-
ing an inner node µ, our goal is to arrange the disks
Dν representing the children of µ in such a way that
(i) they do not overlap, (ii) children that are adjacent
in Gµ are close to each other, and (iii) the size of the
smallest enclosing disk of the arrangement centered
at the representative vertex rµ is as small as possible
(over all arrangements of the disks Dν).

To meet these requirements, for any two vertices
u and v whose corresponding disks have radius ru and

Software Visualization via Hierarchic Micro/Macro Layouts

157



a) b)

Figure 2: Illustration of channel routing. a) Offsetting channels at common ports. b) Reducing overlaps by adding bend points;
iterating results in smooth routing around nodes.

rv, we define an offset function

off(u,v) = cmin min{ru,rv}+ cmax max{ru,rv}, (1)

where cmin,cmax ≥ 0 with cmin + cmax = 1 control the
weighting of the smaller and the larger disk radius. To
avoid overlaps, we require that the center points of Du
and Dv have distance at least

dmin(u,v) = ru + rv +bmin ·off(u,v), (2)

where bmin ≥ 1 is a weighting parameter controlling
the amount of white space between the nodes. To
ensure that adjacent disks are close together, we define
for adjacent nodes u and v a preferred distance

dpref(u,v) = ru + rv +bpref ·off(u,v), (3)

where bpref ≥ bmin controls the preferred distance of
adjacent vertices. The values cmin and cmax allow a
better control of white space in case the two disks have
very different radii.

Let Γµ denote the corresponding arrangement of
Gµ. We then fix the radius of the disk Dµ representing
µ to be slightly larger than the radius of the smallest
enclosing disk of Γµ centered at a central node in the
graph, i.e., a node with small distance to all other
nodes. Once the whole tree T has been processed, the
final arrangement of disks is obtained from the root
drawing Γr (r is the root of T ) by iteratively replacing
the interior of disks Dµ representing non-leaf nodes µ
by the corresponding arrangement Γµ.

For computing the layouts of the Gµ, we first com-
pute an initial arrangement by taking a maximum
weight spanning forest of Gµ (edges are weighted by
the corresponding number of edges of G) and using a
radial tree layout. This avoids node overlaps in the ini-
tial drawing. Afterwards, we refine the vertex position-
ing using the force-directed algorithm of Fruchterman
and Reingold (Fruchterman and Reingold, 1991) with
some simple modifications to the forces so that disk-
shaped vertices of non-zero size are handled correctly.
In particular, we use strong repulsive forces to ensure
the minimum distance dmin(u,v) for all pairs {u,v} of
nodes, and attraction forces for adjacent vertices {u,v}
whose distance is larger than dpref(u,v). For practical
purposes we found that cmin = 0.05 and cmax = 0.95
with 2≤ bmin ≤ 6 and bpref = 2bmin gives good results;
see (Schuhmacher, 2015) for more details.

3.2 Edge Routing

Let D and D′ be two disjoint disks. We define the
segment s(D,D′) connecting D and D′ as the line seg-
ment between the intersections of the boundaries of D
and D′ and the straight-line segment connecting their
centers. We consider points as disks of radius 0.

We would like to draw the edges as polygonal
curves as follows. For an edge (u,v) in G let µ de-
note the lowest common ancestor of u and v in T and
let ν and η denote the children of µ whose subtrees
contain u and v, respectively. We first draw the seg-
ment s(Dν,Dη) and denote its endpoints as two ports
pν and pη lying on the respective disk boundaries. It
remains to draw two polygonal curves between u and
pν as well as between v and pη. This can be done
independently of each other. We describe the curve
between u and pν, the other curve is constructed anal-
ogously. Let u = ν1, . . . ,νk = ν be the unique path
between u and ν in T . We abbreviate the disk Dνi
as Di. We define the port pk to be pν and iteratively
obtain pi−1 as the port of s(pi,Di−1) on the boundary
of Di−1. The sequence of ports p1, . . . , pk defines the
desired polygonal curve. Linking the three subcurves
yields the polyline for edge (u,v). In the following we
refer to a straight-line segment between two consecu-
tive ports on such a polyline as a segment.

When applying this procedure to all edges, some
segments are encountered multiple times and implic-
itly give rise to edge bundles. We want to avoid over-
plotting by separating overlapping edges. At the same
time, we want to maintain the bundling as it empha-
sizes macro structures of the hierarchic software graph.
To that end, we draw each segment as a thick curve
between its ports, whose thickness is proportional to
the number of edges containing it. We call these thick
curves channels and use them as geometric containers
for drawing in a second step the individual edges with
a fixed pairwise offset.

The first step of our drawing procedure performs
the channel routing. Initially, each channel is simply a
thick straight-line segment between its ports. For each
port p the thickness (or size) of the thickest channel at
p equals the sum of the sizes of the other channels at p.
If more than two channels share a port p, we offset the
port positions of the smaller channels such that they
do not overlap, see Fig. 2a. It may still happen that a

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

158



Figure 3: Visualization of a Java software project at three different zoom levels. In the top level, we see the domain model
on the left, the GUI package at the bottom and a utility package in the top right. The middle zoom level shows the internal
structure of the utility package. The lowest level shows the test class of the utility package.

channel crosses non-incident nodes. In order to resolve
such crossings, we iteratively reroute those channels
by introducing an additional bend point and moving it
out of the respective node, see Fig. 2b. This is repeated
until no further improvement is achieved. Finally, we
apply a simple fix to resolve crossings between two
neighboring channels with the same target by merging
them at their first intersection into a thicker channel.

The second step routes individual edges within
their induced sequence of channels. In order to avoid
unnecessary crossings within the channels, we use a
simple heuristic to order the outgoing edges at the
vertices of G in a way that reflects as much as possible
the hierarchic bundling expressed by the channels.

4 REAL-WORLD EXAMPLES

In this section we present several example visualiza-
tions of real-world software projects. Figure 3 demon-
strates the use of our visualizations for visualizing a
software at different levels of detail. The software
has three main components: a graphical user inter-
face, a domain model and a utility package. The top,
coarsest zoom level gives an overview of the overall
structure and highlights the three main packages (gray
circles) and their relations. The middle view depicts
the internal structure of the utility package. Here, the
bundling inside the channels allows to analyze how
different submodules relate to the external components.
Finally, the bottom, detailed view exhibits the internal
structure of a single class (black circle) composed of
methods (blue disks), constructors (light-blue disks),
fields (orange disks), as well as some subclasses.

Figure 4 shows a couple of classes and the corre-
sponding test classes. The visualization clearly shows
that each test classes only refers to one class.

Figure 5 shows an example, where by visual inspec-
tion of our layouts we found some code duplication in
a formula parser, which lead to a refactoring.

CursorTest

Cursor

FormulaParserTest

FormulaParser

Figure 4: Visualization of classes and corresponding tests.

5 CONCLUSION

In this paper we have presented a prototype system
for visualizing hierarchical software graphs as mi-
cro/macro node-link diagrams. Our focus in this paper
was the presentation of a tailored algorithm and its pro-
totypical implementation for visualizing hierarchical
compound graphs as they arise in software engineer-
ing. Our current implementation serves as a proof
of concept, but it can already be used to interactively
explore Java software projects. Still, it must be ex-
tended in multiple ways to meet the needs of software
visualization in practice. Thus the next step is to in-
tegrate it into IDEs (e.g., Eclipse) to visually support
software engineering tasks, in particular to enable in-
teractive linking between the visual representations
and the corresponding source code. This includes a
dynamic label placement step that shows the names
of all software entities relevant at the current level of
detail. Figure 7 and Figure 8 show screenshots of a
preliminary integration into Eclipse for a specific soft-
ware project, which also includes highlighting and a
simple labeling algorithm. Further improvements on
the layout quality comprise additional postprocessing
steps to minimize white space and to improve edge
routing by using smooth curves instead of hard bends
and spreading edges more evenly at vertices.

Once this is done, a more formal validation (Se-
riai et al., 2014) together with software engineers and

Software Visualization via Hierarchic Micro/Macro Layouts

159



Figure 5: Visualization of a formula parser. The left side visually depicts code duplication (the four marked classes). The right
side shows the same sofware project after a refactoring that removes the code duplication.

GUI

domain model

controller (logic)
main GUI class

GUI element

Figure 6: Visualization of a Java software project (labels have been added manually). The package in the bottom right of the
overview is a utility package. The main package displays very clearly the model view controller architecture of the software.
The top right shows a GUI element (actually a table view). The large node inside represents a subclass used for connecting to
the model. The lower right shows a focus view of the main GUI class, where only the connections of that class are highlighted.
This makes it easy to see that this class references all classes in the GUI package but does not refer to objects outside the GUI
package.

comparison against existing software visualization ap-
proaches is another important step for future work.

REFERENCES

Abuthawabeh, A., Beck, F., Zeckzer, D., and Diehl, S.
(2013). Finding structures in multi-type code couplings
with node-link and matrix visualizations. In Software
Visualization (VISSOFT’13), pages 1–10.

Baur, M. and Brandes, U. (2008). Multi-circular layout of
micro/macro graphs. In Hong, S.-H., Nishizeki, T., and
Quan, W., editors, Graph Drawing, volume 4875 of
Lecture Notes in Computer Science, pages 255–267.
Springer Berlin Heidelberg.

Beyer, D. (2005). Co-change visualization. In Proceedings
of the 21st IEEE International Conference on Software
Maintenance - Industrial and Tool volume, ICSM 2005,
25-30 September 2005, Budapest, Hungary, pages 89–
92.

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

160



Bourqui, R., Auber, D., and Mary, P. (2007). How to
draw clustered weighted graphs using a multilevel
force-directed graph drawing algorithm. In Proc. 11th
Int’l Conference on Information Visualization (IV’07),
pages 757–764. IEEE.

Caserta, P., Zendra, O., and Bodénès, D. (2011). 3d hierarchi-
cal edge bundles to visualize relations in a software city
metaphor. In Visualizing Software for Understanding
and Analysis (VISSOFT’11), pages 1–8. IEEE.

Collberg, C. S., Kobourov, S. G., Nagra, J., Pitts, J., and
Wampler, K. (2003). A system for graph-based visu-
alization of the evolution of software. In Proceedings
ACM 2003 Symposium on Software Visualization, San
Diego, California, USA, June 11-13, 2003, pages 77–
86, 212–213.

Daniel, D. T., Wuchner, E., Sokolov, K., Stal, M., and
Liggesmeyer, P. (2014). Polyptychon: A hierarchically-
constrained classified dependencies visualization. In
Software Visualization (VISSOFT’14), pages 83–86.

Didimo, W. and Montecchiani, F. (2012). Fast layout com-
putation of hierarchically clustered networks: Algorith-
mic advances and experimental analysis. In Proc. 16th
Int’l Conf. Information Visualization (IV’12), pages
18–23. IEEE.

Diehl, S. (2007). Software Visualization: Visualizing
the Structure, Behaviour, and Evolution of Software.
Springer.

Diehl, S. and Telea, A. C. (2014). Multivariate networks in
software engineering. In Kerren, A., Purchase, H. C.,
and Ward, M. O., editors, Multivariate Network Visual-
ization, volume 8380 of LNCS, chapter 2, pages 13–36.
Springer International Publishing.

Dogrusoz, U., Giral, E., Cetintas, A., Civril, A., and Demir,
E. (2009). A layout algorithm for undirected compound
graphs. Information Sciences, 179(7):980–994.

Frishman, Y. and Tal, A. (2004). Dynamic drawing of
clustered graphs. In Information Visualization (IN-
FOVIS’04), pages 191–198. IEEE.

Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph
drawing by force-directed placement. Software: Prac-
tice and Experience, 21(11):1129–1164.

Holten, D. (2006). Hierarchical edge bundles: Visualiza-
tion of adjacency relations in hierarchical data. IEEE
Transactions on Visualization and Computer Graphics,
12(5):741–748.

Muelder, C. and Ma, K.-L. (2008). A treemap based method
for rapid layout of large graphs. In Proc. IEEE Pacific
Visualization Symposium (PacificVis’08), pages 231–
238.

Palepu, V. K. and Jones, J. A. (2013). Visualizing constituent
behaviors within executions. In 2013 First IEEE Work-
ing Conference on Software Visualization (VISSOFT),
Eindhoven, The Netherlands, September 27-28, 2013,
pages 1–4.

Patrignani, M. (2013). Handbook of Graph Drawing and Vi-
sualization, chapter Planarity Testing and Embedding,
pages 1–42. Discrete Mathematics and its Applications.
CRC Press.

Rufiange, S., McGuffin, M. J., and Fuhrman, C. P. (2012).
Treematrix: A hybrid visualization of compound
graphs. Computer Graphics Forum, 31(1):89–101.

Rufiange, S. and Melançon, G. (2014). Animatrix: A matrix-
based visualization of software evolution. In Software
Visualization (VISSOFT’14), pages 137–146.

Schuhmacher, A. (2015). Software visualization via hier-
archic graphs. Master’s thesis, Karlsruhe Institute of
Technology (KIT).

Seriai, A., Benomar, O., Cerat, B., and Sahraoui, H. (2014).
Validation of software visualization tools: A system-
atic mapping study. In Software Visualization (VIS-
SOFT’14), pages 60–69.

Sugiyama, K. and Misue, K. (1991). Visualization of struc-
tural information: Automatic drawing of compound
digraphs. IEEE Trans. Syst. Man Cybern., 21(4):876–
892.

van Ham, F. (2003). Using multilevel call matrices in large
software projects. In Information Visualization (INFO-
VIS’03), pages 227–232.

Vehlow, C., Beck, F., and Weiskopf, D. (2015). The state
of the art in visualizing group structures in graphs. In
Borgo, R., Ganovelli, F., and Viola, I., editors, Eu-
rographics Conference on Visualization (EuroVis’15),
STARs.

Wettel, R. and Lanza, M. (2007). Visualizing software sys-
tems as cities. In Proceedings of the 4th IEEE Inter-
national Workshop on Visualizing Software for Under-
standing and Analysis, VISSOFT 2007, 25-26 June
2007, Banff, Alberta, Canada, pages 92–99.

Software Visualization via Hierarchic Micro/Macro Layouts

161



APPENDIX

Figure 7: Integration of our visualization into Eclipse for a specific software project.

Figure 8: The left shows a package in the eclipse integration and highlights only the objects that are referenced from within this
package. The right demonstrates the inclusion of a simple algorithm that labels the entities shown in the visualization.

IVAPP 2016 - International Conference on Information Visualization Theory and Applications

162


