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Abstract: The smart grid concept offers an opportunity to design new environmentally friendly energy markets for re-
ducing CO2 emissions. To achieve this goal, we should increase the use and penetration of green energy while
softening our dependency on gray (non-environmentally friendly) energy too. In this work we show how load
shifting and storage can be incorporated into new energy markets to reduce gray energy consumption. We
used multi-agent-based simulations that are fed with real data to analyze the influence of load shifting and
storage to reduce gray energy demand as well as the behaviour of prices for gray and green energy. Results
suggest that reduction in gray energy consumption is feasible during peak times, i.e. up to 15%. Nonetheless,
if the amount of renewable resources is increased 50%, higher reductions can be achieved, i.e. up to 30%.
Furthermore, one of the findings also suggests that storage helps to keep the price of green energy low.

1 INTRODUCTION coins, NRGcoins are generated by injecting green en-
ergy into the grid rather than using/spendig computa-
Engineering smart grids is a challenging task that tional power (Mihaylov et al., 2014).
must deal with new emerging actors, e.g. prosurhers Although NRG-X-Change promotes the local
as well as with complex interactions between people, yrade and consumption of green energy between resi-
technology and natural systems (Schuler, 2010; Ram-gentjal consumers and prosumers, it does not guaran-
churn et al., 2012). Among those interactions, eco- tee that green energy production fully matches con-
nomic and power flows are of utmost importance (van sumption. In fact, when green energy is not enough
Werven and Scheepers, 2005; Schuler, 2010). to cover demand, consumers and prosumers will con-
Novel mechanisms have been already proposed tosyme gray (non-environmentally friendly) energy to
not only optimize economic and power flows but also  gatisfy theirs needs and maintain a given level of com-
improve the integration of renewable resources (llic fort. To soften the dependency on gray energy, i.e.
etal., 2012; Kok et al., 2005; Capodieci et al., 2011; requcing its consumption, load shifting and storage
Mihaylov et al., 2014). Nonetheless, they have not capapilities can be integrated into NRG-X-Change.
analyzed the potential use of load shlftlng and stor- | this way, “original gray consumption” can be cov-
age to reduce gray energy demand and improve thegred using stored green energy or delayed until green
integration of renewable sources. energy becomes available. Nonetheless, this inte-
As a way to analyze such potential use, we take gration is far from trivial, since it has been already
NRG-X-Change as an example of a novel mechanism shown that such capabilities impact energy demand
that can benefit from load shifting and storage. NRG- gng price (Pruggler et al., 2011), which may poten-

X-Change aims at promoting the trade and flow of tja|ly inhibit trade angor increase consumption.
locally produced green energy within dwellings (Mi-

haylov et al., 2014). It offers to prosumers the pos-
sibility to trade their excess of green energy by us-
ing NRGcoins, which are virtual coins inspired by
the Bitcoin protocol (Nakamoto, 2008). Unlike Bit-

In this work, we present preliminary results on
the integration of load shifting and storage capabil-
ities into NRG-X-Change. Using real consumption
and production data provided by a Belgian retailer,
we performed numerical simulations to analyze the

1The term prosumer refers to energy consumers that canperformance of storage and load shifting as well as
also produce their own power. the impact on energy prices and the reduction of gray
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energy consumption. Our simulations are based onizadeh, 2013; Siano, 2014) and implemented in pi-
a multi-agent system that replicates the behaviour of lots (Niesten and Alkemade, 2016) respectively, they
main stakeholders, i.e. energy retailers, consumersall agree on an important issue: residential cus-
and prosumers. tomers offer a lower potential for demand reduc-
Results suggest that load shifting and storage cantion compared to commercial and industrial con-
reduce energy demand duripgak hoursIn this way, sumers (Gottwalt et al., 2011; Aghaei and Alizadeh,
a 15% reduction can be achieved within a typical Bel- 2013). Likewise, in (Gottwalt et al., 2011; Pruggler,
gian district that is on average composed of 60 house-2013), it is also reported that the economic benefits
holds in which 10% are prosumers. Nonetheless, asare moderate for residential consumers compared to
our results indicate, 30% reduction can be achieved the required investment. Consequently, as an attempt
during peak hours if the number of prosumers reachesto better reduce residential demand for gray energy,
50% within the Belgian market, which is a plausi- we aim at enhancing DR techniques by using storage
ble scenario for the comming years (Rickerson et al., capabilities. This combination will allow not only to
2014). shift energy demand to time slots in which green en-
Furthermore, another finding suggests that storageergy is produced but also to slots in which storage de-
plays an important role to keep green energy prices vices discharge green energy to be consumed.
low as prosumers can inject and trade energy from
batteries, which provides a more constant supply of o o Negotiation Strategies
green energy.
The rest of the paper is organized as follows. Sec- .
tion 2 presents related work covering aspects such as>¢Veral mechanisms have been also proposed to trade
load shifting, demand response and negotiation strate-€1€rgy within smart grids. Nobel (llic et al., 2012)
gies for energy markets. Later on, Section 3 describes@PPlies a marketmechanism in which prosumers offer
green and gray energy markets as well as load shiftingthe'r excess of energy by submitting asks (sell orders)

and storage capabilities. Afterwards, Section 4 shows While consumers submit bids (buy orders). They, both
preliminary results, whereas general conclusions andPrOSUMers and consumers, submitasks and bids based

on predictions about their expected production and
consumption respectively. Later on, asks and bids are
matched based on price, i.e. a scalar value. Like-
wise, PowerMatcher (Kok et al., 2005) uses a market

future work are presented in Section 5.

2 RELATED WORK mechanism for matching supply to demand. Nonethe-
less, bids and asks are not scalar values but price
2.1 Modifying Energy Consumption curves. An aggregator is in charge of grouping in-

dividual curves so that more supply and demand can
Different strategies can be applied to modify the con- be matched. The orderbook then computes price equi-
sumption of energy. On the one hand, storage capabil-librium to match aggregated asks and bids.
ities can reduce demand for energy during critical pe-  In (Capodieci et al., 2011), the authors propose
riods by using green energy that has been previouslya mechanism in which energy is contracted by in-
stored when green energy was abundant (Priigglerdividual consumers and prosumers via negotiations.
et al., 2011). On the other hand, demand responseAlthough no central mechanism rules the price of
(DR) capabilities can be used to reduce customers’ energy, the energy retailer is in charge of assigning
normal consumption pattern by shifting a percentage prosumer-consumer pairs for negotiation. In a sim-
of their demand to off-peak hours (Gottwalt et al., ilar vein, Wang and Wang have proposed adaptive
2011; Aghaei and Alizadeh, 2013). Different tech- negotiation strategies to trade energy between smart
niques have been applied to support DR capabilities, buildings and grid operators (Wang and Wang, 2013).
which can be roughly classified into three schemes: The trade takes the form of a bi-direcctional pro-
1) Price based: in this scheme the price of energy cess in which a seller, e.g. grid operator, continu-
changes over time, which may motivate customers to ously adapts (submits) prices for energy (asks), while
also change their consumption profile. 2) Incentive a buyer replies with counter offers (bids). Bids and
or event-based: customers are rewarded for changingasks can be adapted using the Adaptive Attitude Bid-
their energy demand upon retailer's requests. 3) De-ding Strategy (AABS) or an improved version that
mand reduction bids: customers send demand reduc-applies particle swarm optimization techniques (PSO-
tion bids to energy retailers (Siano, 2014). AABS).

Although several DR techniques and programs Similar to Nobel and PowerMatcher, NRG-X-

have been proposed in literature (Aghaei and Al- Change presents a market mechanism to locally trade
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energy between consumers and prosumers (Mihaylov3.1 Commodity Subsystem
et al.,, 2014). It relies on prosumers injecting their
excess of green energy into the grid and trading 311 Green Energy Market
NRGcoins, which are used to pay for green energy.
In this way, prosumers injecting green energy are re-
warded with NRGcoins, whereas consumers must pay
for the usage with NRGcoins (Mihaylov et al., 2014).
To trade NRGcoins, consumers and pro-
sumers participate in a continuous double auction

(CDA) (Shoham and Leyton-Brown, 2008), where ity grid via a substation (see also Se_ct. 3.2_). Ex-
buyers and sellers apply bidding strategies to sub- cess of locally produced green energy is fed into the

mit bids and asks respectively. NRG-X-Change grid and is withdrawn mostly by consumers. The

- . . billing is performed in real-time by the substation us-
originally uses the so-called adaptive attitude (AA) . . X .
strgtegy?/ which relies on short-te[z)rm and Iong-(ter% ing NRGcoins, which are independently t(aded onan
attitudes foradaptingto market changes (Ma and open currency exchange market for their monetary
Leung, 2007; Mihaylov et al., 2015). Briefly, a cduivalent

short-term attitude encourages the agent to be eager . NRGCOIN is a virtual coin inspired by Bitcoin
for more profit, i.e. selling at high prices or buying whose main advantage is that it can be exchanged for

at low prices, while a long-term attitude encourages & SPECIfic quantity of green energy at any time. Forin-
the agent to be eager for more transactions, i.e.Stance, if a prosumer injects kW hright now, (s)he
submitting low asks or high bids. Based on market will earn NRGcoins accounting for that amount of en-
events (transactions, "atractive’ bids and asks), AA €9y based on the local supply and demand measured

continuously updates an agent's eagerness to sell o?Y the substation (Mihaylov et al.,, 2014). Later on,
buy items. e.g. after few years, regardless of the NRGcoin mar-

In this work, we use the NRG-X-Change to trade ket value, the prosumer can use the same NRGcoins to

green energy as it offers a novel mechanism that in- P2 10kW hof green energy under similar energy sup-
centives prosumers to inject their excess of green Py @and demand conditions as during injection (Mi-

energy while promoting a transparent economic ex- haylov etal., 2014).

change via NRGcoins. To trade gray energy, however, _ Unlike the original NRG-X-Change, to trade
we apply a negotiation approach based on AABS as NRGcoins, we use the Adaptive-Aggressiveness
this type of negotiation mimics retailer's control on (AAggressive) bidding strategy as it applies a learn-
gray energy prices, i.e. they establish prices based on"d @pproach, which has been shown to be very robust
their private reservation price. The next section elab- in dynamic markets (Vytelingum et al., 2008). AAg-
orates on these issues as well as on the overall archi-9ressive is composed of four basic bloclkeuilib-

tecture to support load shifting and storage. rium estimatoy aggressiveness modadaptive layer
andbidding layer(Vytelingum et al., 2008). Based on

historical record of prices, the equilibrium estimator
computes the target price for the trader, whereas the
aggressiveness model determines the trader’s risky
) . ) behaviour to submit high (low) bids (asks). The adap-
Briefly, the electricity system (ES) is composed of all e layer implements short-term and long-tdearn-
systems and actors involved in production,transporta—ing to adapt the behaviour of the trader. While the
tion,_d_istribgtion and trade _of electricity. This ES can  ghort-term learning updates the agent's aggressive-
be divided into a commodity subsystem and a phys- ess, the long-term learning modifies the agent's bid-
ical subsystem (van Werven and Scheepers, 2005) 4ing pehaviour. Finally, the bidding layer implements
The former covers all economic flows resulting from 5 set of rules to determine whether the trader must
electricity trade, whereas the physical subsystem con-g;,pmit bids(asks) or not.

sists of all equipment that produces, transports and

uses the electricity. fth di b gested in (Vytelingum et al., 2008). Nonetheless, we
In our case, as part of the commodity subsystem, g cified constraints for bids and limit prices. On the
we assume the existence of green and gray energyone hand, minimum and maximum allowed bids in

markets, which operate in parallel but use different the market are as follows. The minimum bid i©0
mechanisms. Moreover, the physical subsystem SPECE 0, while the maximum bid is.215 Euro, which is
ifies the overall smart grid architecture as well as the 5 estimated average price for residential customers
way storage and load shifting operate. in Belgium during 2014 (VEA, 2014). On the other

We use the NRG-X-Change approach to allow the
flow and trade of green (solar) energy between pro-
sumers (Mihaylov et al., 2014). We assume con-
sumers and prosumers are connected to the electric-

3 ENERGY TRADE

Parameter tuning for AAggressive is done as sug-
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hand, limit prices for buyers and sellers were ran- The rest of AABS parameters are tuned as suggested
domly defined in the range@L and 0215 Euro. in (Wang and Wang, 2013).

3.1.2 Gray Energy Market 3.2 Physical Subsystem

In (Mihaylov et al., 2014), the authors allow 351 Qverall Architecture
prosumers trading green and gray energy with

NRGcoins. In this work, however, to trade gray |, tis work we use real-world data that has been pro-
energy prosumers must pay in Euro. The main iqeq by a Belgian energy retailer. The physical set-
motivation is that NRGcoins should be perceived i, contains prosumers that are equipped with so-
as assets that guarantee provision of green energy,, panels, which allows them to generate their own
only._ Similar ideas have been' previously explored. power. Both, consumers and prosumers have smart
For instance, ecolabels that inform CUSIOMErS ON meters that report to the substation the amount of en-
w_hether some products_and Services are green or Cgqy heing absorbed from and injected to the grid. As
frlen(_jly (Room and Institute, 2010). meters only report the injected energy after prosumers
Since prosumers and consumers must CONSUMEgjisfieq their own demand, we do not have a full pic-
gray energy whenever there is a lack of green en- .o of the actual energy being produced. The same

ergy, prosumers and consumers use the AABS strat-5 o yjies for the absorbed energy that is reported to the
egy to negotiate prices for gray energy with the sub- opqtation, j.e. we do not have information about the

;tation (Wang and Wang, 2013.)' As despri_bed "? SecC- gyerall energy being consumed by prosumers as part
tion 2.2, the AABS strategy relies on a bi-direcctional ¢t is satisfied with their solar panels. Consequently,

negotiation in which a buyer (prosumer/consumer) \ e 4o not have information about prosumers’ internal
submits bids (price willing to pay for energy) t0 & anargy consumption and production but only about
seller (substation) that responds with asks (desiredgnarqy flows between the meters and the substation.
selling prices). Once the buyer's bid is equal 10 or ¢\, 1hermore, the measurements take place every 15

greater than the seller's ask, an agreement has beeq,intes which are standard time slots in the electric-
reached to trade energy among the two of them. Theity system (Bush, 2014).

final price for energy is the average between the bid
and the ask. 3.2.2 Storage

Substation decreases or increases their asks de-
pending on AABS selling strategy and the availabil- |n our setting we assume prosumers are the only ones
ity of green energy. If green energy supply is bigger ysing batteries since they can generate their own en-
than demand, the price for gray energy goes down, ergy and store their excess after satisfying own con-
otherwise it goes up. The idea is to discourage con- symption. Although commercial batteries offer stor-
sumers and prosumers of using gray energy. This gge capabilities in the range of 4 to &8/h we ran-
way, if gray energy price is higher than their reser- domly assign prosumers storage in the range of 4 to 7
vation price, they will try to shift loads. Nonetheless, kW h Eg Tesla’s powerwa” offers Storage of 7 and
even if the price is high and green energy is not avail- 10kwh (Tesla, 2016), whereas Bosch's offers stor-
able, they will have to use gray energy anyway. age of 44 and 132 kW h(Bosch, 2016) respectively.

To decrease or increase gray energy prices, thepjoreover, to the best of our knowledge, only small
AABS'’ L, parameter (Wang and Wang, 2013), which capacities per prosumer have been properly tested and
is used to modify the substation’s reservation price, is installed within current pilots. E.g. within the project

continuously adapted using Equation 1. Grid4EU, home batteries withk# h capacity have
_ been already installed in the French region of Car-
_ JLa—ax(GS/PwD) if GS>PwD ros (Grid4eu, 2016). Regardless of the capacity of the
Lz = . (1) 1C1 0,
Lo+ a x (GS/PwD) otherwise battery, we assume they have an efficiency of 90%, for

both charge and discharge, which is a lower bound to

where GS is the supply of green energpwD  the efficiency already provided by commercial batter-

is the power demand andl is a random value be- jes. E.g. Tesla and Bosch respectively report 93%
tween 0001 and @005. The reservation price of and 977% efficiency for storage solutions that also

the substation is |n|t|a”y fixed at.D Euro, which include power inverters (Tes|a, 2016; Bosch, 2016)
changes depending &2 and is a bit lower than the

maximum price for green energy (see Section 3.1.1).
Reservation prices for consumers and prosumers are
randomly determined betweenl® and 030 Euro.
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3.2.3 Load Shifting we use a multi-agent system that is modeled and im-
plemented in Repast simphony (North et al., 2013).
As previously reported in (Mert et al., 2008), loads The multi-agent system is fed with real consumption
associated to devices such as washing machines, distand production data provided by a Belgian energy
washers, tumble dryers and air conditioners might retailer. In our simulations, consequently, we use a
be “easily” shiftted since they not only account for week of real consumption and production of electric-
20% to 30% of the overall consumption (Paatero and ity within a typical Belgian district, which is com-
Lund, 2006) but also presented the highest willing- posed of 54 consumers and six prosumers equipped
ness to postpone start according to residential cus-with solar panels and batteries. Storage capacity
tomers (Mert et al., 2008). In this way, when green for batteries is randomly assigned between 4 and 7
energy is not available, we assume 20% to 30% of kWh Finally, due to the plausible increase of pro-
consumers’ and prosumers’ loads can be shifted to re-sumers within the electricity system, and as an at-
duce consumption of gray energy. Although loads can tempt to understand future scenarios, we also present
be shifted to time slots in which green energy is abun- results for settings containing higher percentage of
dant, loads cannot be shifted for an unlimited amount prosumers (Rickerson et al., 2014).
of time. Realistic times to postpone the start of loads
are between 30 min to 3 hours, i.e. 2to 12 slots, as4.2 Energy Consumption
reported in (Mert et al., 2008).

Likewise, we also assume a waiting time before a In this section we present plots of the average amount
consumer/prosumer can delay another load again. Weof gray and green energy being consumed by both
randomly assign waiting times to consumers and pro- prosumers and consumers. We show values for a typ-
sumers in the range of 48 and 96 slots, which meansical Belgian district, i.e. prosumers account for 10%
that they will have to wait at least half day before de- of households, as well as for futuristic/plausible set-
laying another load. Furthermore, since consumerstings in which the percentage of prosumers are re-
and prosumers could all try to shift loads at the same spectively 30% and 50%. To achieve these percent-
time, we need to avoid such case too as it may gener-ages, we fed real consumption and production data of
ate demand peaks at a further stage, e.g. when their18 and 30 prosumers respectively in our simulations.
time slots expire and they need to re-start loads. To These numbers represent the 30% and 50% of house-
this aim, whenever a consumer or prosumer wants to holds in a typical Belgian district (usually composed
start the shift of a load, (s)he can only do it with a of 60 households).
probability of Q5. If probability is in her/his favour at Figure 1 shows the average consumption of green
that time slot, (s)he can start shifting the load, other- energy for different percentage of prosumers for a
wise (s)he will have to try again in the next time slot. whole week. As one can see, the more prosumers,
In this way, we aim at constraining the start of load the more green energy being consumed. Although
shifting as well as at spreading controllable devices’ main consumption occurs at daytime hours, when
loads through a full day. prosumers inject their excess of production after cov-

Finally, to allow load shifting, consumers and pro- ering their own demand, consumption of green energy
sumers use a “set and forget” approach in which they can also be observed at night time thanks to storage.
pre-set the loads that can be shifted (e.g. washing ma-For instance, as seen in Figure 1, green energy con-
chines, dish washers or tumble dryers) as well as thesumption is observed during night hours between the
time they can be delayed, i.e. a number between 2first and second day.
and 12 slots. In addition, as load shifting depends on In the same vein, Figure 2 depicts the average con-
whether green energy is available or not, we assumesumption of gray energy, which shows that the more
that information about availability could be poten- prosumers, the less gray energy is demanded during
tially delivered via internet, sms, or display directly daytime hours. Unlike, green energy consumption,
on the appliance (Mert et al., 2008). gray energy consumption occurs mostly at late after-

noon and early morning, when green energy is not
generated. Consequently, it is extremely important to

4 PRELIMINARY RESULTS reduce the overall energy consumption during those
periods as prosumers and consumers will mostly use
gray energy.

4.1 Simulation Settings

To understand the impact of load shifting and storage
for gray energy demand reduction and energy trade,
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Figure 1: Average consumption of green energy per housdhpldifferent percentage of prosumers in a district. Not& th
green energy can also be consumed at night time thanks @mstand load shifting.

4.3 Consumption Reduction as well as providing storage capabilities to prosumers.
The performance of both capabilities is described in

In order to determine whether reduction in consump- the following sections, i.e. Sections 4.4 and 4.5.

tion can be achieved using load shifting and storage,

we have analyzed the overall consumption, i.e. green4.4 Storage

and gray consumption, of a typical Belgian district for

a whole week. We measured the average energy con-To determine how much green energy can be stored
sumption when neither load shifting nor storage are after prosumers cover their own needs, we measure
available (original consumption) as well as the case the average state of charge (SOC), which indicates
when both are available (adapted consumption). Fig- the percentage of occupancy of prosumers’ batteries,
ure 3 shows both measures, original (dashed line) andi.e. how full batteries are, where 0% empty and
adapted (solid line) consumption, which represent the 100%= full. Figure 5 shows the average SOC per
average demand the susbtation is expected to faceprosumer. It depicts three lines, one per each setting,
Moreover, it also shows the average reduction beingi.e. districts containing 10%, 30% and 50% of pro-
achieved (dotted line). sumers. Batteries have capacities amoRgv and

Although peak reduction can be achieved for some 7kWh
days, such reduction is moderate as the highest re- As it can be observed, batteries constantly charge
duction is around @5 kW h which is approximately — and discharge their energy to meet energy demand.
a 15% reduction compared to the original consump- Discharge usually starts around late afternoon (the
tion. Nonetheless, most of the peak reduction takeshours when green energy production decreases),
place at night time, when green energy is not gener- whereas charge starts before noon. Furthermore, dis-
ated, which implies that demand for gray energy will charge provides green energy to be consumed at night
most likely decrease. time as observed in Figure 1.

As we also wanted to determine whether a higher ~ Batteries, however, only reach full charge during
reduction can be achieved for future settings, we in- the first day. This aspect should be considered before
creased the percentage of prosumers per district. Fig-installing batteries with big capacity as they may not
ure 4 shows the average reduction in districts contain- always be filled, which means a waste of storage ca-
ing 10%, 30% and 50% of prosumers. The highest pacity. Likewise, two more findings should also be
peak reduction is achieved by the district with 50% considered. First of all, load shifting could help to fill
prosumers and is abovel? kWh which represents  batteries as initial consumption can be delayed (see
a reduction of at least 30% compared to the origi- Figure 6), which may give time to store green energy
nal consumption. Nonetheless, one must be awareas seen during the first day in Figure 5. The second
that such reduction is only possible by providing con- finding is related to the drop of production during the
sumers and prosumers with load shifting capabilities second day. Drops in production will not allow batter-
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Figure 3: Average values for original and adapted conswnptorage and load shifting capabilities) per household i
typical Belgian district with 10% prosumers. The dotte@lnepresents the average reduction in consumption per haldse

ies to be completely filled as they will have to provide 4.5 Load Shiftting
green energy at night time. Moreover, since green
energy is also scarce due to production drops, moreajthough load shifting aims at curtailing energy de-
loads would be shifted, which forces batteries to pro- mand by delaying the start of controllable devices
vide energy when the associated time slots expire. (g g. washing machines, dish washers and tumble dry-
In this way, as load shifting directly impacts on ers), the delay cannot last for more than three hours,
the charge and discharge of batteries, an optimal plan-i.e. up to 12 time slots (Mert et al., 2008). In this
ning of storage capacity that takes into account load way, our mechanism allows to shift chunks of energy
shifting is also required. Such planning will allow to consumption whose dimensions are time and power
efficiently use storage (i.e. no waste of capacity) and (watts). Shifted chunks have a time length of 2 to 12
provide more flexibility for load shifting. Nonethe- time slots and a power given by the amount of de-
less, itis clear that storage helps to meet both original mand being curtailed (i.e. 20% to 30% of the overall
and shifted demands. The performance of load shift- consumption). When the chunks of all consumers and
ing is presented in the next section. prosumers are aggregated, they can provide a consid-
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Figure 5: Batteries’ average state of charge (SOC) per prestor different percentage of prosumers. 0% = empty an&6L00
= full.

erable amount of curtailment per slot as depicted in Finally, regardless of the amount of demand be-

Figure 6. ing delayed, a shifted load is always re-started either
Figure 6 shows the total demand being curtailed when green energy becomes available or before the

per time slot for three districts composed of 10%, end of its time slot, so they are never delayed more

30% and 50% prosumers respectively. The highestthan three hours (12 time slots).

amount of curtailment is observed in districts with

low per(_:entage_of prosumers, i.e. ;O% and 3_0%. The 4.6 PriceHistory

reason is that since green energy is scarce, i.e. prices

for green and gray energy go up (see also Section 4.6), i
consumers and prosumers try to shift more loads. Fur-AAS N0t only energy-related measures are important to

thermore, as can be seen, it is possible to curtail up toUnderstand smart grids, butalso economic aspects, we

2KW hwithin a single time slot, e.g. before third day’'s Nave also analyzed the price behaviour of both green
noon. and gray energy. The analysis of energy prices pro-

vides an idea about the expected profits or losses in a
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Figure 6: Total demand being curtailed per slot over sevgs.da
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Figure 7: Gray and green energy prices during a whole weediffarent percentage of prosumers. Gray energy prices are
mostly determined by the energy retailer but increase areése depending on green energy prices. Green energy arees
ruled by the market and influenced by availability or scgroftgreen energy.

given energy market. price when the district has 10% prosumers is around
Figure 7 shows the behaviour of gray and green 0.16 Euro. Moreover, regardless of the percentage of
energy prices. Gray energy prices are negotiated be-prosumers, green prices start relatively high and fall
tween the substation and consumers/prosumers as exas green energy becomes abundant.
plained in Section 3.1.2, whereas green energy prices  On the other hand, as an attempt to discour-
come from a continuous double auction in which the age the use of gray energy, the substation increases
only participants are prosumers and consumers (seeand decreases the price of gray energy based on
Section 3.1.1). whether green energy is abundant or not (see also Sec-
tion 3.1.2). When abundant, the price for gray en-
On the one hand, the price for green energy shows ergy goes down. Otherwise, the price goes up. Con-
a clear pattel’n, the more prosumers ina district, the Sequenﬂy, as seen in Figure 7, the gray energy price
cheaper the price. For instance, the price for greenfo|lows the overall behaviour of green energy prices.

energy when the district contains 50% of prosumers |t drops when green energy prices drop and increases
is almost 012 Euro after the first day, whereas the
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Figure 8: Gray and green energy prices during a whole wedkowitstorage facilities and for different percentage of pro
sumers. Prices for green energy are slightly higher thangarg 7.

otherwise, which is the kind of behaviour we want to reduce gray energy demand. In addition, we simu-
promote as consumers may be less willing to with- late energy markets in which green and gray (non-
draw energy during those periods. environmentally friendly) energy are locally traded.
Finally, we have also tested the behaviour of green Green energy is traded using NRGcoins under the
and gray energy prices when no storage capabilitesNRG-X-Change mechanism, whereas gray energy is
are used. Figure 8 shows the behaviour of both prices.traded in Euro via a bi-direcctional negotiation be-
Although the overall behaviour is similar to the one in tween an energy retailer and users of energy, i.e. con-
Figure 7, one thing is clear, the prices for green energy sumers and prosumers.
are slightly higher, which may suggest that storage  To reduce energy demand, users apply load shift-
helps to keep the price of green energy low. In our jng and storage capabilities. Storage, however, is only
case, a possible explanation of the influence of stor- available for prosumers as they can generate and store
age in energy prices is that prosumers discharge theirtheir own power.
batteries When.no green energy is generated, which  rasuits show that reduction is possible mostly
may keep relatively constant the supply of green en- during night time hours, when no green energy is gen-
ergy, i.e. green energy is less scarce and its price do€gr5ted.  Although, the highest reduction takes place
not increase. Even though this aspect requires a morgyhen districts contain 50% of prosumers, (moderate)
elaborated analysis, energy retailers as well as pro-rgqctions are also observed for lower percentages,
sumers should acknowledge this when considering to , hich encourages us to continue exploring more in-
invest in storage fa_tcilities s_ince they could_directly in- telligent strategies to achieve higher reductions.
e o bl oy Moreover, a5 NRG-.Change s & ading -
iry to keep profitable prices, whereas ,prosumers mayan!sm based on a double auction, i.e. severgl actors
) ’ ) . . trying to buy and sell resources, other mechanisms ap-
try to ensure low prices when buying and high prices Vi imilar aporoach may take advantade of our
when selling energy. Moreover, the impact of storage plying a similar approa y ta 9
in energy prices has been previously observed Whenresults. For instance, in mechanisms such as P_ower—
energy retailers are equipped with storage (PrUggIerMatCher’ energy aggregators can further exploit the
use of storage to influence price curves by strate-
etal., 2011). ; : X X .
gically charging and discharging batteries. Further-
more, regarding the integration of load shifting and
storage, an analysis as the one presented here can be
5 CONCLUSIONSAND FUTURE done for other innovative energy markets, i.e. using
WORK multi-agent systems and real data to explore future but
still realistic scenarios.
We present the application of a multi-agent system In this vein, our future work will focus on apply-
to analyze the impact of load shifting and storage to ing other strategies to exploit storage and load shift-
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ing. For instance, cooperative and coordinated ways Gottwalt, S., Ketter, W., Block, C., Collins, J., and Wein-
to charge and discharge batteries can be applied to  hardt, C. (2011). Demand side management—a sim-
prices. Similarly, load shifting can also be coordi- Energy Policy 39(12):8163 — 8174. Clean Cooking
nated among prosumers and consumers. On the one Fuels and Technologies in Developing Economies.
hand, we can make sure that they all do not delay or G”d4er‘iJ d(f2r?106r){|in’\él-cgcgggsi%%aﬁggﬁﬁgr rltztgzll/waw.mce
re-start loads at the same time. On the other hand, ’ gric.fri. | ' ‘ y e

we can also maximize the amount of demand being 'i¢: - Da Silva, P., Kamnouskos, S., and Griesemer, M.

. . o . (2012). An energy market for trading electricity in
curtailed and provide more flexibility to retailers. smart grid Neighbourhoods. 16th IEEE Interna-

Additionally, we would like to investigate optimal tional Conference on Digital Ecosystems Technolo-
planning for storage location (e.g. retailers and nor- gies (DEST,))pages 1-6.
mal consumers owning batteries) and capacity as it Kok, J. K., Warmer, C. J., and Kamphuis, I. G. (2005). Pow-
can bring economic and energy-related benefits. The ermatcher: Multiagent control in the electricity infras-
former because storage owners can profit from trading tructure. InProceedings of the Fourth International
energy. The latter because well-dimensioned capacity Joint Conference on Autonomous Agents and Multia-
can provide better flexibility for load shifting. gent Systems\AMAS '05, pages 75-82, New York,

Finally, regarding prices for gray energy, we want NY, USA. ACM. ) ) )
to explore different pricing schemes, e.g. time-of- Ma H.and Leung, H.-F. (2007). An adaptive attitude bid-
use, critical-peak or real-time pricing. These schemes ding strategy for agents in continuous double auc-

- . tions. Electronic Commerce Research and Applica-
could potentially provide better responses from cus- tions, 6(4):383 — 398.

tom‘?rs and ImprO\(e energy balancing. Nonethgless’Mert, W., Suschek-Berger, J., and Tritthart, W. (2008). Con
the final message is that to enhance the integration of g mer acceptance of smart appliances. Technical re-

renewables into the smart grid, combination of stor- port, EIE project Smart Domestic Appliances in Sus-
age and DR programs is worth exploring for eco- tainable Energy Systems (Smart-A).

nomic and environmental reasons (Niesten and Alke- Mihaylov, M., Jurado, S., Avellana, N., Razo-Zapata, .,
made, 2016). Van Moffaert, K., Arco, L., Bezunartea, M., Grau, I.,

Cafadas, A., and Nowé, A. (2015). Scanergy: a scal-
able and modular system for energy trading between
prosumers. IfProceedings of the International Con-
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