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Abstract: Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis 
of the parallel algorithm, the definition of the logical configuration of the platform, the mapping of the 
algorithm to the logical configuration platform and the implementation of the source code. Applying this 
process from scratch for each parallel algorithm is usually time consuming and cumbersome. Moreover, for 
large platforms this overall process becomes intractable for the human engineer. To support systematic reuse 
we propose to adopt a model-driven product line engineering approach for mapping parallel algorithms to 
parallel computing platforms. Using model-driven transformation patterns we support the generation of 
logical configurations of the computing platform and the generation of the parallel source code that runs on 
the parallel computing platform nodes. The overall approach is illustrated for mapping an example parallel 
algorithm to parallel computing platforms. 

1 INTRODUCTION 

Although Moore’s law (Moore, 1998) is still in effect, 
currently it is recognized that increasing the 
processing power of a single processor has reached 
the physical limitations (Frank, 2002). Hence, to 
increase the performance the current trend is towards 
applying parallel computing on multiple nodes. Here, 
unlike serial computing in which instructions are 
executed serially, multiple processing elements are 
used to execute the program instructions 
simultaneously. To benefit from the parallel 
computing power usually parallel algorithms are 
defined that can be executed simultaneously on 
multiple nodes. As such, increasing the number of 
processing nodes will increase the performance of the 
parallel programs (Gustafson, 1988). An important 
challenge in this context is the mapping of parallel 
algorithms on a computing platform that consists of 
multiple parallel processing nodes. The mapping 
process requires several activities such as the analysis 
of the parallel algorithm, the definition of the logical 
configuration of the platform, the mapping of the 
algorithm to the logical configuration platform and 
the implementation of the source code.  

Usually the mapping process is done from scratch 
for each parallel algorithm and the given parallel 

computing platform. Hereby, practically no reuse is 
applied. However, the current parallel algorithms, the 
computing platform and the overall mapping process 
seem to have lots of commonality. Exploiting this 
commonality will support systematic reuse and 
likewise decrease the time to map the parallel 
algorithm to the parallel computing platform and 
increase the overall quality.  

Further, the overall process is usually applied not 
only from scratch but also largely manual whereby 
practically no automation is applied. This is not a 
huge problem in case we are dealing with a limited 
number of processing nodes. However, the current 
trend shows the dramatic increase of the number of 
processing nodes for parallel computing platforms 
with now about hundreds of thousands of nodes 
providing petascale to exascale level processing 
power. As a consequence the manual mapping of the 
parallel algorithm to computing platforms has 
become intractable for the human parallel computing 
engineer.  

To support the mapping of the parallel algorithm 
to parallel computing platforms, we adopt a 
systematic product line engineering approach. The 
approach aims to reduce the development time by 
reusing the features of the algorithms and platforms, 
and the code templates. Using model-driven 
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transformation patterns we support the automatic 
generation of logical configurations of the computing 
platform and the generation of the parallel source 
code that runs on the parallel computing platform 
nodes. The overall approach is illustrated for mapping 
an example parallel algorithm to parallel computing 
platforms 

The remainder of the paper is organized as 
follows. In section 2, we describe the problem 
statement with a running example. Section 3 presents 
the overall approach. Section 4 presents the toolset 
that implements the model-driven automation 
process. Section 5 presents the related work and 
finally section 6 presents the conclusions. 

2 PROBLEM STATEMENT 

To illustrate the problem statement in more detail we 
will shortly discuss the mapping of the parallel matrix 
transpose algorithm to a parallel computing platform. 
The pseudo code of the algorithm is shown in Figure 
1. We aim to map the algorithm to a parallel 
computing platform that consists of pxq processing 
nodes. 

1. Procedure Matrix-Transpose(A, p, q): 
2. For j = 0 to p-1 
3. Do 
4.   For i = 0 to q-1 
5.   Do 
6.     Copy all blocks of A[p+i, q-j]   //gather 
7.     Swap A[p+i, q-j] A[p-i, q+j]  // exchange 
8.     Restore all blocks of A[p-i, q+j] 
9.   Done 
10. Done 

Figure 1: Matrix Transpose Algorithm. 

The matrix transpose algorithm swaps the column and 
row values with each other. The algorithm consists in 
essence of three parallel sections that are executed 
iteratively for all nodes. In the first section (line 6), 
the data blocks that will be swapped are copied to 
dominating nodes (Tsai and McKinley, 1994). A 
dominating node is a node that coordinates the 
interaction with a group of nodes. In the second 
section (line 7), these copied data blocks are swapped 
between nodes. Finally in the third section (line 8), 
the data blocks are restored to destination nodes. In 
essence the three sections can be characterized as 
gather, exchange and scatter operations, respectively 
(İmre et al., 2011).  

Given the physical parallel computing platform 
consisting of pxq nodes, we need to define the 
mapping of the different sections to these nodes. In 
this context, the logical configuration is a view of the 
physical configuration that defines the logical 

communication structure among the physical nodes. 
Typically, for the same physical configuration we can 
have many different logical configurations (Arkin et 
al., 2013). Hereby, some nodes are selected as 
dominating nodes that collect data, exchange data 
with each other and distribute the data to the other 
nodes. For example for the physical configuration 
consisting of 3x3 nodes (p=3, q=3) three different 
example logical configurations are provided in Figure 
2. 

 

Figure 2: Physical configuration of a topology (left figure)  
with example logical configurations (right three figures). 

In general, many different logical configurations can 
be defined for the same physical configuration. 
Hereby, each logical configuration will perform 
differently with respect to different quality concerns 
such as speedup and efficiency. Once the logical 
configuration is defined the corresponding code that 
needs to be deployed on the nodes must be 
implemented. 

It appears that the above process for mapping a 
parallel algorithm to parallel computing platform is 
similar for other parallel algorithms. The process 
includes the same steps, that is, first the parallel 
algorithm needs to be analyzed, the logical 
configuration needs to be selected and the parallel 
code needs to be written and mapped on the 
corresponding nodes. Currently this process is done 
from scratch and reuse is primarily implicit or ad hoc. 

Table 1: Operation Descriptions for Parallel Algorithms. 

Operation Description 

Gather 
Each dominating node gets data from its 
dominated nodes in a pattern. 

Scatter 
Each dominating node sends data to its 
dominated nodes in a pattern. 

Collect 
A dominating node gets data from other 
dominating nodes. 

Distribute 
A dominating node sends data to other 
dominating nodes. 

Exchange 
All dominating nodes exchange data with each 
other dominating nodes. 

Broadcast 
A dominating node sends data to all other 
nodes. In general, the broadcast operation 
consists of distribute and scatter operations. 

Serial  Serial code block that runs on a single node. 

An analysis of the parallel algorithms in the 
literature shows that these use abstract well-known 
operations (İmre et al., 2011). Table 1 shows, for 
example,  six  operations  that  form  part  of different 
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parallel algorithms. 
Table 2 shows an example set of parallel 

algorithms with the implemented operations of Table 
1. For example, the parallel algorithm Matrix 
Transpose can be defined as a combination of Gather, 
Exchange and Scatter operations. The Matrix 
Multiply algorithm consists of the operation 
Distribute, Serial, Collect and Serial. Similar to these 
algorithms other parallel algorithms can be in essence 
defined as consisting of these predefined operations.  

Table 2: Operations for Parallel Algorithms. 

Algorithm Operations 

Matrix 
Transpose 

Gather; Exchange; Scatter 

Matrix Multiply 
Distribute; Serial (multiply);Collect; 
Serial (sum) 

Array Increment Distribute; Collect; Serial (increment) 
Complete 
Exchange 

Scatter; Exchange; Gather 

Map Reduce Scatter; Serial (custom); Gather 

Besides of lack of reuse, the mapping process is 
currently largely manual. Due to the small size of the 
computing platform the required code can be 
implemented manually. For larger platform sizes the 
required code will be largely similar. However, one 
can easily imagine that manual implementation of the 
code for larger configurations such as for petascale 
and exascale computing  platforms becomes more 
time consuming, tedious and error prone. For this 
automated support of the overall mapping process is 
required. 

3 APPROACH 

In this section we provide a model-driven approach 
for supporting systematic reuse of the mapping of 
parallel algorithms to parallel computing platforms. 
For this, we apply a software product line engineering 
(SPLE) approach targeted to the development of 
parallel algorithms and deployment code. The key 
motivation for adopting a product line engineering 
process is to develop products more efficiently, get 
them to the market faster to stay competitive and 
produce with higher quality. In alignment with these 
goals different software product line engineering 
approaches have been proposed. These approaches 
seem to share the same concepts of domain 
engineering, in which a reusable platform and product 
line architecture is developed, and application 
engineering, in which the results of the domain 
engineering process are used to develop the product 
members (Clements and Northrop, 2002).  

The mapping process of parallel algorithms to 
parallel computing platforms has been defined by 
several authors. Usually the following four steps are 
defined in the overall process (Foster, 1995):  
 Partitioning: Partitioning is related to the 

decomposition of the parallel algorithm to the 
multiple sections. Hereby, a section can be either 
serial or parallel. Further, partitioning is also 
related to the decomposition of the parallel 
computing platform, i.e. the physical 
configuration.  

 Communication: After partitioning, 
communication is defined between the nodes. 
Nodes can communicate with neighbours using a 
certain geometric or functional pattern. In 
essence, the communication patterns define the 
logical configuration of the system.  

 Agglomeration: Different logical configurations 
can be selected and each configuration alternative 
will perform differently with respect to the 
speedup and efficiency metrics.  

 Mapping: In the final step the parallel algorithm 
needs to be implemented according to the selected 
feasible logical configuration. 

Based on the SPLE process and the general steps for 
mapping parallel algorithms to parallel computing 
platforms we present the approach for model-driven 
product line engineering as shown in Figure 3. 
Similar to the traditional SPLE process the presented 
process also includes two separate life cycle 
processes including domain engineering and 
application engineering. The domain engineering 
process includes domain requirements engineering, 
domain design and domain implementation. In the 
domain requirements engineering activity the domain 
model for the addressed parallel algorithms and 
computing platforms are defined using feature 
models. In the domain design the reference 
architecture for the logical configuration together 
with the parallel communication patterns (tiles) are 
developed. In the domain implementation the code 
fragments for the communication patterns of the 
logical configurations are implemented. The results 
of the domain engineering activity are stored in the 
asset base and later reused during the application 
engineering process. In the application requirements 
engineering process a particular parallel algorithm 
and parallel computing platform is provided as an 
input. By reusing the domain model of the domain 
requirements engineering the algorithm 
decomposition and physical configuration are 
defined. In the application design the logical 
configuration is generated based on the reference 
architecture and the corresponding predefined 
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patterns and tiles that define the common 
communication structures. Further, a feasible logical 
configuration alternative is selected. Finally, in the 
application implementation activity the parallel 
source code is again generated by reusing the 
predefined code templates and the selected logical 
configuration.  

In the overall process the transformation between 
the application activities are automated using model-
driven development techniques. The automation is 
shown using the corresponding automation symbol 
(gears). The generation of the logical configuration is 
realized using model-to-model transformations, 
while the generation of the final parallel code is 
realized using model-to-text transformations (Arkin 
and Tekinerdogan, 2015). In the following 
subsections, we will elaborate on each activity and 
discuss the approach in more detail using a running 
example. 

 

Figure 3: Approach for model-driven software product line 
approach for mapping parallel algorithms to parallel 
computing platforms. 

3.1 Domain Engineering 

In this section we describe the domain engineering in 
detail, which describes the development of the 
reusable core assets for the mapping of parallel 
algorithms to parallel computing platforms. 

3.1.1 Domain Requirements Engineering 

The domain requirements engineering process aims 
to define the common and variant parts of both 
parallel algorithms and parallel computing platforms. 

The corresponding feature model represented using 
cardinality based feature modeling (Czarnecki and 
Helsen, 2005) is shown in Figure 4. Parallel 
Algorithm consists of feature Type that can be either 
Data Parallel or Task Parallel, or both. In data 
parallelism, the same calculation is performed on 
different sets of data. In task parallelism different 
calculations can be performed on either the same or 
different sets of data (Navarro et al., 2014). A parallel 
algorithm consists of zero or more Parallel Sections 
and zero or more Serial Sections. Each parallel 
section can be considered as an Operation which is 
either Gather, Scatter, Collect, Distribute or 
Exchange. These operations have been derived from 
an analysis to parallel programming language 
abstractions such as defined in MPI. 

 

Figure 4: Domain Model for Parallel Algorithm Mapping. 

Parallel Computing Platform has a Type, Core 
size, and Memory. The type defines whether the 
platform is homogenous or heterogeneous. In 
homogeneous platforms each core is identical, 
whereas in heterogeneous platforms the cores can 
change with respect to processing power. Further, 
Memory can be either distributed or shared. In 
distributed memory model each core has its own 
memory, whereas in shared memory model each core 
uses the same memory. The Core Size gives the 
number of cores in the parallel computing platform 
which the algorithm will be mapped to. 

3.1.2 Domain Design 

The domain requirements define the characteristics of 
the parallel algorithm and the parallel computing 
platform. Based on the domain model the feasible 
logical configuration needs to be defined. As stated 
before, the logical configuration is a view on the 
physical configuration based on the selected 
operation. The logical configuration defines both the 
structure of the nodes imposed by the operation as 
well as the communication pattern among the nodes. 
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The metamodel for the reference architecture of the 
logical configuration is shown in Figure 5. In essence 
each logical configuration defined in the application 
engineering process will conform to this metamodel. 
Each logical configuration consists of a set of tiles. 
Tiles as such can be considered as the basic building 
blocks of the logical configuration. A tile is used for 
addressing group of processing elements that form a 
neighbourhood region on which processes and 
communication links are mapped. The smallest part 
of a tile is a core. The dynamic behaviour of the tile 
is the communication between the inner cores of the 
tile and the communication with other tiles. Hence, 
after defining the primitive tiles, we need to define the 
dynamic behaviour among the cores as the 
communication pattern. A communication pattern 
includes communication paths that consist of a source 
node, a target node and a route between the source 
and target nodes. 

 

Figure 5: Metamodel for the reference architecture. 

The logical configuration is defined by the 
semantics of the operation. Each parallel operation 
will typically require different logical configurations. 
The structure of the logical configuration is further 
defined by the total number of physical cores. Figure 
6 shows the logical configurations for selected set of 
operations and size of nodes. For example, for the 
operation Gather we have shown 4 different 
examples of logical configurations (2x2, 3x3, 4x4, 
and 5x5). Other logical configurations could be 
defined as well.  

Each operation will in the end run on the tiles of 
the logical configuration. To compose the logical 
configuration using the primitive tiles, the tiles must 
be scaled to larger dimensions. When the tiles are 
scaled to a larger size, the operations, in other words 
the communication patterns assigned to operations, 
must also be scaled to larger logical configuration. 
Hereby, the scaling strategy of the operation affects 
the order of communication patterns when scaling the 
operations. Scaling strategy is the order of 
communication pattern generation for operation as 
bottom up or top down. 

Each of these primitive communication patterns 

can be also used to define more complex 
communication patterns by composing multiple 
different operations. For example, the Broadcast 
operation as shown in Figure 7 is a composition of the 
operation Distribute and Scatter. 

 

Figure 6: Predefined primitive Communication Patterns per 
Tile for Operation. 

 

Figure 7: Example composite communication pattern, 
Broadcast, consisting of sequence of Distribute and Scatter 
operations. 

The logical configurations of all primitive 
operations together with the important composite 
operations are stored in the asset base for supporting 
the application engineering process later on. In 
addition to the logical configuration also the 
generators for defining application logical 
configurations are stored in the asset base. This is 
necessary for generating large scale logical 
configurations that cannot be defined manually. The 
generator is defined as a model-to-model 
transformation (Bézivin, 2005) in which the source 
model is the application feature model and the output 
is the generated logical configuration. The 
transformation code is written in the Epsilon 
Transformation Language (ETL) (Epsilon, 2015). 

3.1.3 Domain Implementation 

The previous steps have focused on providing 
reusable primitive operations and the definition of 
transformation definition that can be used to generate 
logical configurations. In the domain implementation 
we provide a reusable code template that implements 
the common code and provides means to generate the 
variant code. The generated code is provided for a 
particular computing platform. In practice there are 
several computing platforms to implement the 
mapping such as, MPI, OpenMP, MPL, and CILK 
(Talia, 2001). For different purposes different 
platforms might need to be selected. For example, if 

LogicalConfiguration
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CorePattern

Communication

from to

Data
1..n

1..n
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Operation defines

Distribute Scatter
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the parallel computing platform is built using 
distributed memory architecture then the MPI 
implementation platform needs to be chosen. In case 
shared memory architecture is used then OpenMP 
will be typically preferred. Other considerations for 
choosing the implementation platform can be driven 
by performance of these platforms. As such, in the 
domain implementation we provide multiple code 
templates that can be used for various different 
platforms. 

3.2 Application Engineering 

In this section we describe the application 
engineering in detail, which describes the 
development of the mapping of parallel algorithms to 
parallel computing platforms by reusing the core 
assets. 

3.2.1 Application Requirements Engineering 

In the application requirements engineering process, 
the algorithm feature model including common and 
variant parts is defined based on the domain feature 
model. The design and implementation for the 
mapping of the parallel algorithm to parallel 
computing platform is done based on the selected 
features.  

 

Figure 8: Matrix Transpose algorithm feature model. 

Figure 8 depicts the feature model for the earlier 
given matrix transpose algorithm. At the top of the 
figure, the features of the matrix transpose algorithm 
are defined. An analysis of the algorithm reveals that 
the type of the algorithm is data parallel. Further the 
algorithm consists of three parallel sections as 
described in the problem statement. Based on the 
analysis of the algorithm, the parallel section 
CopyBlocks implements the Gather operation, Swap 
implements Exchange, and RestoreBlocks 
implements Scatter. 

The lower part of the figure defines the features 
of the parallel computing platform. Here, based on the 
analysis of the platform the computing platform type 
is selected to be homogeneous. Further the platform 
is constructed by 6x6 cores and uses distributed 
memory. 

3.2.2 Application Design 

In the application design process, the logical 
configuration is generated using a predefined 
LogicalConfigurationGenerator. The input that is 
needed for the transformation, the application feature 
model, is defined in the application requirements 
engineering. The matrix transpose algorithm 
consisted of the operations Gather, Exchange and 
Scatter. Figure 9 shows the logical configurations for 
these operations after executing 
LogicalConfigurationGenerator. Because the core 
size of the parallel computing platform is 6x6, based 
on prime factorization the tiles 2x2 and 3x3 are used 
to construct the logical configuration. 

3.2.3 Application Implementation 

The application implementation process aims to 
implement the final parallel source code. The source 
code is generated automatically from the logical 
configurations using the required parallel 
programming language code templates by executing 
the model-to-text transformation. After the 
generation the resulting code is deployed on the 
parallel computing platform. This process can be 
done manually or in case of large platforms various 
tools can be used to automate the deployment as well. 
This is however beyond the scope of this paper. 

 

Figure 9: Logical Configurations for Matrix Transpose 
Algorithm steps. 
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4 RELATED WORK 

In this paper we have applied a model-driven 
software product line engineering approach for 
mapping parallel algorithms to parallel computing 
platforms. Since the approach as such integrates the 
paradigms of software product line engineering, 
model-driven development and parallel computing, 
we consider the related work on model driven 
development for parallel computing, model driven 
software product lines and product line approaches 
for parallel computing. 

In the domain of model-driven software 
development for parallel computing, Palyart et al., 
(2011) propose an approach for using model-driven 
engineering in high performance computing. They 
focus on automated support for the design of a high 
performance computing application based on abstract 
platform independent model. The approach includes 
the steps for successive model transformations that 
enrich progressively the model with platform 
information. The approach is supported by a tool 
called Archi-MDE. Gamatié et al., (2011) represent 
the Graphical Array Specification for Parallel and 
Distributed Computing (GASPARD) framework for 
massively parallel embedded systems to support the 
optimization of the usage of hardware resources. 
GASPARD uses MARTE (Object Management 
Group, 2009) standard profile for modeling 
embedded systems at a high abstraction level. 
MARTE models are then refined and used to 
automatically generate code. Taillard et.al (2008) 
propose a graphical framework for integrating new 
metamodels to the GASPARD framework. They used 
model-driven development techniques to generate 
OpenMP, Fortran or C code. Travinin et al., (2005) 
introduce pMapper tool which generates mappings 
for numerical arrays. It supports user to generate an 
optimal mapping solution by using heuristics. The 
heuristics are supplied by an expert parallel 
computing engineer and minimize the mapping 
search space. The tool generates the source code and 
run on parallel system. In our earlier study (Arkin et 
al., 2013), we proposed a model driven development 
approach for mapping parallel algorithms to parallel 
computing platforms based on tiles and 
communication patterns to support selecting from 
feasible mapping alternatives.  

For scientific computation algorithms, the SPLE 
process is used for library-centric application design. 
The Generative Matrix Computation Library 
(Czarnecki and Eisenecker, 1999) is a framework 
based on expression templates, idioms and template 
meta-programming facilities. The Template 

Numerical Toolkit (Pozo, 1997) is a collection of 
interfaces and reference implementations of 
numerical objects such as multidimensional arrays 
and sparse matrices, which are commonly used in 
numerical applications. 

Software product line engineering for parallel 
programming, has been carried out for grid 
computing. Silva de Olivera and Rosa (2010) applied 
the product line architecture for grid computing 
middleware systems. The authors adopted to evaluate 
family architecture evaluation method for grid 
systems. 

In our earlier study (Arkin et al., 2013), we have 
proposed an approach for automating the generation 
of parallel algorithm that are deployed on parallel 
computing platforms. Hereby, we did not consider the 
systematic software reuse based on software product 
line engineering. Also we focused on the design of 
feasible deployment alternatives based on metrics. 
The current approach considers the problem from a 
product line scope perspective and integrates both 
product line engineering and model-driven 
engineering approaches to support the reuse as well 
as the automation of the generation of logical 
configurations and parallel algorithm source code.  

In our another study (Tekinerdogan and Arkin, 
2013) we have proposed an architecture framework 
for modeling various views that are related to the 
mapping of parallel algorithms to parallel computing 
platforms. An architectural framework organizes and 
structures the proposed architectural viewpoints. We 
have proposed five coherent set of viewpoints for 
supporting the mapping of parallel algorithms to 
parallel computing platforms.  

5 CONCLUSIONS 

In this paper we have provided a model-driven 
product line engineering approach for mapping 
parallel algorithms to parallel computing platforms. 
With the approach we have aimed to solve the tedious 
and error prone mapping process. By adopting a 
software product line engineering process the 
mapping does not need to be developed from scratch 
but can be largely based on reusing predefined assets. 
Further, by providing model-driven development 
approaches we have supported the automation of the 
generation of the logical configuration and the 
parallel source code. The approach as such integrates 
the paradigms of software product line engineering, 
model-driven development and parallel computing, to 
solve an important and practical problem. To the best 
of our knowledge the approach is novel in this sense. 
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The approach has also been implemented using the 
corresponding toolset. In the toolset we have 
implement several parallel algorithms, the required 
primitive operations, the generators for the logical 
configurations, and the code generators for different 
platforms. So far we have focused on mapping 
parallel algorithms to homogenous platforms, 
therefore in our future work we will also consider the 
heterogeneous platform. 
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