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Abstract: This paper describes a solution for monitoring and detection of crowds and analysis of density structures 
and movement characteristics, to enhance safety of citizens and security of critical infrastructures. The 
system leverages the Internet of Things concept and heterogenous, energy efficient, networked sensors, with 
support for wireless communication. Privacy protection, instant deployability and auto configuration are 
hereby underlying core objectives. The solution, which will be described, comprises two novel distributed 
crowd analysis algorithms, allowing on the one hand the localisation of critical areas within large crowds 
and on the other hand the recognition of counter streams, which can cause severe impacts on the crowd flow 
and movement velocity and which can transform crowding scenarios into threatening situations. 

1 INTRODUCTION 

Crowd analysis and modelling is a research area 
with a long history involving a variety of disciplines. 
Different types of surveillance systems have been 
proposed in the past and analysis of person streams 
and crowd densities are ongoing research topics. 
However crowd surveillance for identification of 
critical situations is a complex problem and 
establishing a solution, taking into account the 
majority of obtainable information (e.g. velocity, 
density, movement directions, flow), can be 
difficult. To process all the data a global solution is 
necessary with an appropriate set of rules defined 
and with observation in an integrated manner. There 
seems to be still a lack of solutions, which take most 
obtainable crowd parameters into account and 
reason about the information in a comprehensive 
way. Defining rules for identifying critical states of 
dynamic crowds, which evolve over time and can 
change their location, size, density structure, 
direction composition and velocity properties within 
a short time period, is difficult and requires detailed 
information about the crowd. For example a density 
analysis rule, which initiates an alert when a critical 
density value is reached, will not be activated if the 
average crowd density is low and only a small area 
of the crowd exceeds the critical threshold.  

Information about the intrinsic structure of the 
crowd is needed here. 

Video surveillance is a concerning topic in the 
general public and societal acceptance and 
perception of surveillance are delicate topics. Thus it 
is of importance to develop solutions that have 
privacy protection as an underlying objective, aiming 
at respecting privacy of individuals as far as possible. 

The main part of this paper is dedicated to crowd 
analysis mechanisms, with the capability to perform 
a density structure analysis to localise critical areas 
inside of crowds and moreover to identify counter 
streams, which were the main causes for related 
mass disasters in the past. The mechanisms focus on 
robust analysis of density structures and movement 
patterns and are principal parts of a safety and 
security solution, which was developed in the 
context of the French-German research project 
SAFEST (Baccelli et al., 2014). Additional 
objectives of the developed system are intrusion 
detection, identification of critical situations and 
provision of crucial information to security 
personnel using lightweight and networking-capable 
sensors and devices. Privacy preservation is 
addressed via specific cameras (e.g. infrared), 
providing less information about persons, 
application of a vertical camera perspective and 
early-stage anonymisation in the data processing. 
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Figure 1: Infrared overhead camera recording. 

2 RELATED WORK 

In a wider sense on the one hand previous work 
addressing pedestrian flow analysis, crowd 
dynamics, modelling and simulation of pedestrians 
(Helbing et al., 2000, Helbing et al., 1995, 
Hoogendoorn et al., 2005, Schadschneider et al., 
2009) is related to this work, but also crowd density 
estimation (Eiselein et al., 2013, Rahmalan et al., 
2006, Ma et al., 2004) and identification of crowd 
anomalies (Mahadevan et al., 2010, Mehran et al., 
2009). More closely related are the concept by 
Krausz and Bauckhage for realtime detection of 
threatening situations in crowds (Krausz et al., 2011, 
2012), the work for crowd anomaly recognition 
based on the social-force model and video-analysis 
and also the adoption of concepts from pedestrian 
dynamics, which were used for the design of visual 
tracking systems (Mehran et al., 2009). 

Detection of dense crowds can be covered for 
instance by anomaly recognition algorithms. 
However analysis of inner density structures and 
detection of flow disturbances were not covered yet 
in previous work to the authors knowledge. 

3 SOFTWARE PLATFORM 

The requirements for the software platform in the 
Safest-project includes the capability of processing 
significant amounts of data from video and audio 
monitoring devices with a low energy footprint and 
the support for adding and connecting substantial 
numbers of nodes to the system. In addition to the 
video monitoring nodes, which require powerful 
hardware, also light-weight nodes for intrusion 

detection have to be supported by the system. The 
support for heterogenous hardware is therefore a 
requirement. To fulfil these requirements a specific 
IoT middleware (RIOT) has been applied to ensure 
reliable communication and connectability for 
heterogenous sensing hardware. 

The crowd analysis software is realised as a 
component-based architecture, in which each 
analysis functionality is encapsulated in its own 
component. Each software component contains a 
middleware for asynchronous communication with 
other components, using the publish-subscribe 
principle, and additionally encompasses a rule 
engine with data stream analysis and reasoning 
capabilities, inherited from temporal modal logic. 
For each component a set of rules, such as 
thresholds for critical density values, is defined and 
observed by the respective rule engine. Critical 
situations detected by components are 
communicated and published as events to message 
queues, to which other components can subscribe in 
order to receive the events instantly. The underlying 
component-based framework applied is the 
Fraunhofer Knowledgefusion Toolkit (Kriegel et al., 
2013) and the communication platform is realised 
using a Redis-infrastruture.  

4 CROWD ANALYSIS 

The crowd analysis components address the 
following functionalities: 

 Density thresholds and value ranges, which are 
predefined in the system, are applied to 
measured values to detect critical or 
unexpected situations. 

 Movement Directions of people are measured 
and analysed via frequency distribution. The 
distribution values are then compared with 
expected values for respective directions. The 
directions covered are the four cardinal 
directions and the four inter-cardinal directions. 

 Counter Streams which can cause severe 
disturbances in pedestrian flows and tend to 
have a significant velocity-decreasing effect are 
identified and located and as corresponding 
event information made available. 

 Velocities of moving people are determined 
and compared with expected values, allowing 
to detect escape scenarios or unexpected 
velocity distributions in general. 

 Flow density and velocity values are compared 
to a density-velocity graph by definition of an 
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integral in the surrounding of the graph, to 
assess flow characteristics. 

Due to the extent only density analysis and counter 
streams will be covered here. 

5 DENSITY STRUCTURE 
ANALYSIS 

In this section a comparison of two technical 
approaches will be described, which was performed 
in order to determine an appropriate algorithm for 
accurate identification of crowds and for analysis of 
intrinsic structures. The two approaches are data 
clustering and image contouring. The density 
structure is important to assess crowds with respect 
to criticalness. The capability to localise a crowd is 
important, however to detect threatening high-
density areas inside of low-average-density crowds, 
knowledge about the composition is needed. 

5.1 Clustering Algorithms 

The datasets that were constructed for comparing 
and applying clustering algorithms represent 
density-centric, arc-shaped and homogenous low-
density crowds. 

The first crowd type has a centric structure (Fig. 
2) and has been chosen, since crowds with high-
density values towards the center and lower density 
in the outer area tend to appear often in real life with 
significantly varying sizes, often with only small 
high-density regions, sometimes with larger regions 
in relation to the overall area size. To detect low-
density areas as separate clusters is an important 
requirement to make judgments. Pedestrians 
 

 
Figure 2: Centric formation. 

 
Figure 3: Arc-shaped formation. 

standing near to the crowd but not belonging to it 
also need to be recognised as such. Often crowds are 
formed around columns, obstacles or barred areas 
and appear in the pedestrian coordinate data as 
holes. 

The second crowd type is arc-shaped (Fig. 3) and 
contains a high-density region, opposed to the 
previous example, in the outer area. Hence the high-
density area is not fully surrounded by a lower 
density structure. This type of crowd also appears 
often in real life, such as in front of blocked exits, 
narrow pathways or doors with insufficient flow 
capacities. The difficulty here is to detect the low-
density area together with the high-density area as 
one single crowd. Moreover algorithms that look for 
certain distributions, such as Gaussian, now face the 
difficulty that the distribution is not continuous at 
one side. 

In the third formation three homogenous low-
density pedestrian groups of the same shape and 
geometry were chosen. These were defined, as here 
the density distribution is flat, which might be 
relevant for distribution-based algorithms. Also due 
to the flat density distribution neither dense areas 
nor any density transitions do exist, which might be 
of relevance for density-based algorithms. 

The types of clustering algorithms that were 
considered include partitioning methods, density-
based clustering, hierarchical density-based 
clustering and distribution models. Thus a broad 
range of conventional clustering algorithms as well 
as advanced algorithms are applied. For each 
clustering type a representative algorithm was 
chosen. The respective selections are KMeans 
(MacQueen, 1967), DBSCAN (Ester et al., 1996), 
Expectation-Maximization (Moon, 1996) and 
OPTICS (Ankerst, 1999), which will be described 
briefly in the following. KMeans is an conventional 
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partitioning algorithm, which calculates iteratively 
cluster means and associates data to the cluster with 
the closest mean. Data are assigned to Voronoi cells. 
The algorithm DBSCAN is based on the density of 
data points and is especially for density-based 
clustering problems appropriate. It requires for each 
point p a cluster  to have at least a minimum 
number MinPts of points q within its neighbourhood 
of radius . DBSCAN utilizes the concept of 
density-reachability. The algorithm Expectation-
Maximization determines maximum likelihood 
values for models involving latent variables. It is an 
iterative method which can be applied to different 
mathematical models, however is computationally 
expensive. In the context of this work it will be 
applied to a Gaussian mixture model. The fourth 
algorithm investigated is called OPTICS, which is a 
hierarchical density-based clustering algorithm that 
creates an ordering of the data and determines 
information about intrinsic cluster structures. 

In the following the results of the analysis will be 
described. 

1. Centric Crowd: For the first dataset, which 
involves a centric crowd structure, the following 
results were obtained: KMeans did not detect the 
two clusters correctly. This is due to the fact that it 
partitions the data into Voronoi cells based on the 
centroids, which however did not move to the 
location to represent a correct data assignment to the 
clusters. DBSCAN and Expectation-Maximization 
in contrast detected the clusters correctly. The 
missing data points in the center did not cause 
difficulties here. OPTICS recognised clusters and 
inner density structures however not with the 
required accurateness. The two main clusters here 
were not separated sufficiently. 

2. Arc-Shaped Formation: For the arc-shaped 
dataset KMeans did not identify the clusters in a 
sufficient way. DBSCAN and Expectation-
Maximization detected the clusters appropriately. As 
shown in the illustration for the EM-clustering the 
number of clusters k was set to 3, resulting in three 
clusters with different densities. If k is set to 2, EM 
returns the same clusters as DBSCAN. OPTICS 
created a cluster hierarchy however the results are 
not satisfying by means of density structures. In the 
figures 4-7 the results are illustrated for this 
scenario. 
 
 

 
Figure 4: KMeans. 

 
Figure 5: DBScan. 

 
Figure 6: Expectation-Maximization. 
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Figure 8: Recursive interval-based Marching-Squares. 

 
Figure 7: OPTICS. 

3. Low-Density Clusters: The results for the third 
scenario, which are not illustrated here, KMeans, 
DBSCAN and Expectation-Maximization detected 
and differentiated the three clusters correctly. The 
algorithm OPTICS however did not identify the 
clusters sufficiently for the chosen parameters. 

Once the data clusters have been formed, the hull 
of the cluster, the size and the average density are 
determined as this information is decisive for further 
event processing, decision making and alerting. To 
determine the hull an algorithm implementing 
DeLaunay-triangulation is applied, Afterwards the 
area size and the person density are calculated. 

Limitations: As the results demonstrated, 
clustering algorithms are appropriate to detect 
crowds in a given set of pedestrian coordinates. 
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However the analysis of intrinsic density structures 
causes some difficulties and the clustering results 
were not fully suffcient for this particular criterion. 

5.2 Image Contouring - Adapted 
Marching Squares 

Alternatively to data clustering also image 
contouring methods were investigated, in particular 
the Marching Squares algorithm. Initially the 
pedestrian coordinates are transformed to a 2-
dimensional density map, which is composed of 
cells representing the respective number of persons 
in it. On the basis of the original Marching Squares 
various modifications and extensions had to be 
made. This includes the capability to specify a 
specific person-density interval and a granularity 
parameter for the degree of accuracy of the density 
structure. Additionally the algorithm had to be 
changed to support recursion and to support its 
infinite application to detected crowds to identify 
dense areas inside of the crowds. The algorithm 
requires a different set of input parameters and 
returns a list of pattern-events which contain meta-
information about the identified crowd, including 
sub clusters with information about average-density, 
area size, location and number of persons.  

Opposed to the clustering algorithms this 
solution also permits inner structure analysis in a 
configurable and customisable way and to 
decompose crowds, revealing decisive information 
such as the location of dense areas. In addition the 
algorithm is robust and especially appropriate for 
application on low-power platforms with limited 
processing capabilities and resource constraints, as it 
is computationally inexpensive. 

Figure 8 shows the application of the algorithm 
to scenario 2 involving an arc-shaped formation. The 
algorithm begins with a low density interval and 
identifies corresponding paths. The result of the first 
call are the clusters c1 and c2 including 
corresponding meta-information. After the first call 
the density interval will be increased by the 
specified granularity level and now applied to all 
previously detected clusters, in this case c1 and c2, 
which were extracted and transformed to a separate 
matrix. Within c2 a sub-cluster c2.1 is detected, which 
is again analysed. The call-sequence ends with the 
identification of cluster c2.1.1 . 

6 COUNTER STREAMS AND 
FLOW DISTURBANCES 

Pedestrian counter streams within moving crowds, 
which can be caused by single persons or groups of 
people, moving into an opposite direction of the 
crowd, can decrease the movement velocity 
substantially and can cause severe congestions. In 
past crowd disasters such as the Loveparade 2010 in 
Duisburg (Krausz et al., 2010) or in Mecca 2006 
(Helbing et al., 2007) counter streams had occurred 
and had a negative impact on the situations.  

In the following a monitoring and analysis 
component will be described, which is part of the 
above described system and which is capable of 
revealing disturbances in person flows and to 
localise counter streams. The component interacts 
with the crowd-analysis component and is notified 
upon detection of critical events, involving low 
movement velocities or dense areas. Upon reception 
of a critical event the crowd data will be analysed by 
application of the clustering algorithm DBSCAN.  

The processed data contains three dimensions, 
which area the person coordinates x and y and the 
movement direction z. The information is pre-
processed and normalised in a next step, so that data 
can be clustered in a robust way and data involving 
opposite movement directions are separated 
accordingly (Fig. 9).  

 
Figure 9: Counter stream detection: 3D-DBScan 
clustering. 

After creation of clusters the hulls are computed 
using Delaunay hull detection and then area size and 
locations are analysed.  

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

60



 
Figure 10: Counter stream detection: Delaunay hull 
identification. 

In the next step rules with corresponding threshold 
values are applied, assessing severity by person 
quantity limits and velocity thresholds. Regarding 
the location it is differentiated between counter 
streams at the borders with only one disturbance side 
and streams with two disturbance sides, causing a 
stronger impact. In the final step the computed meta 
information is aggregated into an event and 
published on the respective message channel, to 
which other system components can listen. 

7 CONCLUSIONS AND 
OUTLOOK 

In this paper a comparison of different clustering 
algorithms was demonstrated for robust and 
performant detection of crowds and analysis of 
density structures. The clustering results were 
satisfying for the detection, but not for structure 
analysis. A recursive image-contouring algorithm 
was developed on the basis of the Marching Squares 
algorithm and 2D density grids, which has the 
capability to analyse intrinsic structures in a 
customisable way, making it possible to identify 
critical areas inside of crowds. Moreover a novel 
analysis component has been described for 
identification of flow disturbances, in particular 
counter streams, and emission of corresponding 
events, which can be received by listening 
components. It supports rapid deployability on 
smart-nodes and light-weight platforms and is 
capable of being integrated into distributed 
surveillance systems. 
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