
Unified Compliance Modeling and Management using Compliance
Descriptors

Falko Koetter1, Maximilien Kintz1, Monika Kochanowski1, Christoph Fehling2, Philipp Gildein2,
Frank Leymann2 and Anette Weisbecker1

1University of Stuttgart IAT and Fraunhofer IAO, Germany, Stuttgart, Germany
2University of Stuttgart, IAAS, Stuttgart, Germany

Keywords: Business Process Management, Compliance Modeling, Model-Driven Architecture, Business Process
Compliance.

Abstract: Due to innovations in the field of cloud computing business processes become distributed, encompassing a
combination of services spanning multiple IT systems. Due to a growing number of regulations, managing
business process compliance in this cloud environment is a necessary task for companies, leading to a growth
in compliance management and compliance checking approaches. Compliance stems from laws and is im-
plemented in all parts of enterprise IT. Thus, both a connection between business and IT as well as a broad
coverage of compliance scenarios is necessary. To solve both challenges, we use an integrating compliance
descriptor for conceptual compliance modeling. This descriptor is used to configure a compliance manage-
ment architecture, integrating different types of compliance checking. For creating compliance descriptors, it
proved necessary to introduce a formalism and a graphical notation, which is introduced and evaluated in a
prototype and expert interviews.

1 INTRODUCTION

Cloud computing is both a chance and a challenge for
many companies (Wei and Blake, 2010), especially in
the field of security, privacy, (Takabi et al., 2010) and
- consequently - compliance. The possibility to ac-
quire services over the cloud in order to better perform
their business processes gives companies new possi-
bilities to manage their business. However, this adds
to the complexity of the involved IT systems as well
as poses new challenges in managing these. Due to
growing regulatory requirements stemming from new
laws like the Sarbanes-Oxley Act there is an increas-
ing demand for business process compliance solutions
in the industry (Sadiq et al., 2007).

However, there is a gap between compliance man-
agement and business process management, as one is
driven by legal requirements and the other by busi-
ness needs as well as the new cloud technologies.
Additionally, compliance management spans not only
business processes but also the process environment
consisting of software systems, physical hardware
and personnel, as described in (Kochanowski et al.,
2014). Here, also compliance applications and their
needs are mentioned. This requires communication

between legal specialists, business users and IT per-
sonnel. All this makes keeping processes compliant a
cumbersome task.

As business process models and their implementa-
tion increase in complexity (Bobrik et al., 2007), man-
ual compliance checking is not feasible for large or-
ganizations. Existing IT-supported compliance man-
agement solutions focus on specific process execu-
tion environments (e.g. process engines) and only
support specific kinds of compliance rules (Kharbili
et al., 2008). As far as processes are executed within
such an environment, they can support compliance
enforcement with strict process models, transition
rules, double-checks, etc. However, not all parts of
a business process are usually contained within such
solutions, and not all of the compliance requirements
can be enforced in such a way. We found the factor
preventing effective compliance management is not a
lack of tools, but rather a lack of integration, between
different kinds of compliance checking as well as be-
tween business and IT.

To alleviate this problem, in previous work we
proposed an integrating compliance descriptor (Koet-
ter et al., 2013), which bridges legal, business and IT
levels by separating laws, compliance requirements

Koetter, F., Kintz, M., Kochanowski, M., Fehling, C., Gildein, P., Leymann, F. and Weisbecker, A.
Unified Compliance Modeling and Management using Compliance Descriptors.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 159-170
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

159

that stem from them and compliance rules implement-
ing these requirements. As the approach encapsu-
lates compliance rules, multiple rule languages can be
used, providing integration and coverage of all kinds
of compliance requirements. We described how to
use this compliance descriptor for compliance check-
ing, gathering results from different rules and aggre-
gating them to determine requirement fulfillment and
law compliance (Koetter et al., 2014).

In this work, we will build on this approach by
developing a conceptual modeling language for com-
pliance descriptors and integrating it with other mod-
eling languages for processes and compliance rules.
This is the main contribution of this paper, as it
proved necessary to develop a formalism and graph-
ical modeling notation in order to facilitate creating
compliance descriptors. Using a model-driven ap-
proach, we show how a conceptual model of compli-
ance can be transformed to different artifacts neces-
sary for compliance management in a reference archi-
tecture, which is extended from previous work. Eval-
uating the work using a prototype and real-life exam-
ple, we show our approach is a feasible solution for
bridging business and IT views of process compliance
in a rule-language-independent and extensible fash-
ion. Compared to our previous work, we evaluated
the approach not only in a prototype but also with a
real-life system and real users.

The remainder of this work is structured as fol-
lows. In Section 2 an overview of work in compliance
modeling and compliance integration is given. In Sec-
tion 3 we describe conceptual compliance modeling
using the compliance descriptor. In Section 4 we de-
scribe the extensible architecture for compliance man-
agement as well as the model transformation. Sec-
tion 5 describes the prototype and evaluation. Finally,
Section 6 gives a conclusion and outlines future work.

2 RELATED WORK

Achieving Business Process Compliance is not a one-
time task, but a continuous activity. Different com-
pliance checks are performed at different phases in
the business process lifecycle. (Kharbili et al., 2008)
gives an overview of compliance checking methods
and distinguishes design-time, run-time and ex-post
compliance checking. In particular, (Kharbili et al.,
2008) notes a lack of an universal approach, support-
ing all phases of the lifecycle as well as continuous
change. To address this, we introduced an integrating
compliance descriptor in (Koetter et al., 2013). Rather
than designing yet another compliance rule modeling
language, this compliance descriptor connects laws,

compliance requirements and rules in different com-
pliance rule languages. Thus, a link between the busi-
ness and IT view of compliance requirements is pre-
served. Using this link, the impact of changes in
laws, requirements or implementation to overall com-
pliance can be assessed at any time, enabling main-
tenance of compliance in the face of change (Koetter
et al., 2014).

Similarly to the structure of the compliance de-
scriptor, in (El Kharbili et al., 2008a) three levels of
regulatory compliance are defined. Regulations de-
fine measures and directives which are implemented
by policies, internal controls, and procedures. Fur-
thermore, eight requirements for a compliance man-
agement framework are defined, among others en-
forcement, change management, traceability, and im-
pact analysis. As in other previous work, differ-
ent types of compliance checking are identified. To
tackle these challenges, an architecture for a compli-
ance checking framework based on semantic business
process models is proposed. In this architecture, reg-
ulations are modeled as semantic policies which are
monitored by a policy monitoring component. From
these, semantic business rules are generated to be en-
forced at design-time and run-time by an inference
engine (El Kharbili et al., 2008b).

The SeaFlows Toolset (Ly et al., 2011) is a frame-
work for compliance verification of business pro-
cesses. Using compliance rule graphs, rules can be
modeled by imposing patterns of process activities
and/or conditions on process data at specific points
in process execution. Patterns are then checked at de-
sign time, while data conditions are checked at run-
time in a BPM suite. In further work, the resource
perspective, i.e. who performs tasks, has been added
in an extended rule graph (Semmelrodt et al., 2014).
This approach is interesting both in combining run-
time and design-time rules in the same rule graph as
well as combining multiple rules in a single graph and
separating it from the process model. However, due to
the implementation techniques used, it is dependent
of specific modeling and execution environments and
doesn’t explicitly offer extensibility for other types of
compliance rules.

(Reichert and Weber, 2012, Chapter 10) inves-
tigates design-time, run-time and ex-post compli-
ance rules based on process traces, on which Lin-
ear Temporal Logic (LTL) expression or compliance
rule graphs are tested. Also the impact of process
change on compliance in models and running pro-
cess instances is tackled by investigating the changes
in compliance rules and their effects. However, only
process models and instances in a workflow engine
are in the scope of compliance checking.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

160

(Schleicher et al., 2011) defines a graphical mod-
eling language for LTL rules which can be used for
design-time compliance checking. A compliance do-
main can be used to attach an LTL rule to a process
or a part of a process. In (Awad et al., 2008) BPMN-
Q, a graphical query language for business process
models is used for design time compliance check-
ing. Using compliance patterns and anti-patterns of
violations, this approach is used to visualize reasons
for compliance violations in the process model (Awad
and Weske, 2010).

Compliance of business processes reaches beyond
the scope of process models and execution, encom-
passing aspects like hosting, maintenance, encryption
and physical access control. Business process man-
agement builds on these aspects, which need to be
covered in order to guarantee overall compliance. The
Topology and Orchestration Specification for Cloud
Applications (TOSCA1) is an OASIS standard which
allows modeling the topology of an application, in-
cluding the implementation and physical deployment
of components like web services and databases. In
(Waizenegger et al., 2013), Policy4TOSCA is de-
scribed, extending TOSCA models by so-called poli-
cies to describe non-functional requirements, which
may stem from compliance rules. These can be
checked during process deployment in order to guar-
antee a compliant hardware and software stack (Koet-
ter et al., 2014).

While checking compliance rules for a business
process can be looked at in a single-system fashion,
i.e. the process is executed in a single, homoge-
nous environment, in which compliance is checked,
in practice process compliance needs to be managed
in a multi-system fashion. One reason for this are het-
erogeneous, grown IT infrastructures found in prac-
tice (Patig et al., 2010), another reason are the differ-
ent scopes compliance rules may encompass (Khar-
bili et al., 2008).

(Knuplesch et al., 2013) describes an approach
for integrating compliance checking across multi-
ple companies in cross-organizational business pro-
cesses. Challenges arise because parts of an organiza-
tional process model may not be globally known and
because local compliance requirements may contra-
dict global compliance requirements. Thus, a notion
of compliability is defined, meaning the interaction
between process partners conforms to global com-
pliance rules, even though private processes are not
known. While this approach allows integrated design-
time compliance across multiple public and private
process models, it does not address the challenge of

1www.oasis-open.org/committees/tosca/ (accessed
12.3.2015)

heterogeneous process environments and other kinds
of compliance checking, though this shall be ad-
dressed in future work.

(Ramezani et al., 2012) advocates a separation
of compliance management and process manage-
ment by introducing a separate compliance engine,
which checks an implementation system for compli-
ance and interrupts it in case of risks. Compliance
rules are defined on a business vocabulary from a
conceptual model of processes. By separating pro-
cess and compliance, any information system may be
checked, similar to the model-driven solution for pro-
cess monitoring used in our approach (Koetter and
Kochanowski, 2013). Similarly, any compliance rule
language may be used. This in general solves the in-
tegration problem, but requires a high degree of man-
ual implementation in the compliance engine and in
the integrated information system. To lessen the re-
quired effort, (Ramezani et al., 2014) lists methods of
assisting domain experts in the selection of applicable
existing rules from a rule repository, e.g. by question
trees.

In (Comuzzi, 2014) the problem of aligning com-
pliance rules and their implementation across part-
ners in a business network is investigated. Compli-
ance rules are defined on a conceptual level and then
concretized to a specific scenario and process mod-
eling environment, which in turn are concretized in
a specific implementing technology. This resembles
a compliance descriptors separation of requirements
and rules. However, even after concretization, man-
ual implementation and integration needs to be per-
formed to achieve compliance monitoring.

(Karagiannis et al., 2012) describes a generic
compliance evaluation method extending existing en-
terprise modeling frameworks to encompass compli-
ance evaluation. Similar to this work, partial compli-
ance can be evaluated and is visualized in a heatmap.
Compliance is evaluated for individual architecture
artifacts aggregated through architecture levels. For
example, the compliance of a business process is cal-
culated form the compliance of its activities. In com-
parison, our approach has a specific process focus and
allows definition of emergent compliance rules en-
compassing multiple activities. Additionally, (Kara-
giannis et al., 2012) gives no techniques how to auto-
matically determine compliance at the bottom level,
while our approach integrates different compliance
rule languages.

(Weigand and Elsas, 2012) proposes a model-
driven method for auditing using an ontology, deter-
mining accountability and authorization and in turn
defining controls to address identified risks. While an
approach like this provides the possibility to discover

Unified Compliance Modeling and Management using Compliance Descriptors

161

requirements and necessary controls, it does not cover
the actual compliance checking. A gap between defi-
nition and implementation remains.

A framework for defining and managing compli-
ance requirements is presented in (Papazoglou, 2011).
Requirements are defined using a declarative lan-
guage and LTL. Design-time compliance checking
is supported while run-time compliance checking is
only conceptually described. Similarly to the reusable
compliance rules in this approach, patterns are used
for easier implementation of common requirement
types. Compared to this approach, extensibility of
checks, e.g. for software deployments, is not covered.

Overall, the related work shows first steps for
solving the problem of heterogeneous environments
and the need for compliance checking to cover the
whole business process lifecycle and associated arti-
facts. However, approaches try to fit all compliance
checking rules in homogenous modeling languages or
require manual rule implementation. In contrast, this
work contributes an integrating compliance manage-
ment approach, which separates business and IT view
of process compliance and encapsulates compliance
rules in any rule modeling language.

3 CONCEPTUAL COMPLIANCE
MODELING

As business process compliance needs to cover many
aspects of the enterprise, multiple artifacts need to be
modeled for compliance management. On the busi-
ness level, laws impose compliance requirements on
a business process. On the IT level, requirements are
implemented in rules which are checked throughout
the process lifecycle, e.g. at design-time, run-time
and during deployment.

Figure 1 gives an overview of compliance-related
models. A process model describes the process on
a conceptual level. This process model may be pre-
scriptive or descriptive, i.e. it may be executed or
describe the execution by other IT systems. On an
implementation level, different types of compliance
rules can be used for compliance checking. LTL
rules (Schleicher et al., 2011) are used for model
checking at design-time, e.g. for verifying the or-
der of activities. ProGoalmML rules (Koetter and
Kochanowski, 2013) are used for compliance moni-
toring at run-time, e.g. to check if timing restrictions
are kept. TOSCA policies (Waizenegger et al., 2013)
are used to verify the physical deployment of process
infrastructure, e.g. to satisfy data protection require-
ments.

For connecting the business and IT levels the com-

pliance descriptor is used. It contains all laws (and
other regulatory documents) applicable to the process.
Compliance requirements from these laws are con-
tained as well, described in natural speech as well
as in an expression referencing implementing com-
pliance rules. As the compliance descriptor serves
to integrate the business and IT levels of compliance
management, a modeling language needs to be un-
derstood both by business and IT experts. In previ-
ous work we defined the structure of the compliance
descriptor on an implementation level using XML
schema (Fehling et al., 2014). While this proved suf-
ficient for implementing compliance checking, creat-
ing compliance descriptors proved to be difficult. To
close this gap, we will define a graphical modeling
language for compliance descriptors.

3.1 Laws

In the compliance descriptor, a law represents a reg-
ulatory document from which compliance require-
ments stem. A law l ∈ L is defined as a tuple:

l ∈ L := (nl ,Pl ,vl)
where nl is the name of the law, vl identifies the

version of the law and Pl is a set of paragraphs the law
consists of. On a technical level the law is stored as an
XHTML document, providing both human readabil-
ity due to html formatting as well as a well-defined
structure for automatic processing due to xml valid-
ity. Laws need to be structured in order to make ref-
erences to paragraphs of the law possible.

Paragraphs p ∈ Pl are defined as a tuple:
p ∈ Pl := (np,cp)
where np is the number or name of the paragraph

and cp is its content. Paragraph numbers have to be
unique within the law, but may be repeated among dif-
ferent laws. Thus, to uniquely reference a paragraph
p ∈ Pl , a combination of its number np and the law’s
name nl can be used.

We define this reference as a law url u ∈U as fol-
lows:

u ∈U := (nlu ,npu)
with nlu as the name of a law l ∈ L and npu as

the name of a paragraph p ∈ Pl within that law. Note
that if a law url refers to a law, it may only refer to a
paragraph within that same law:

(nlu ,npu) ∈U → p ∈ Pl

3.2 Entity

Entities within the process context (e.g. a process ac-
tivity or a server) are modeled as entities, so they can
be referenced by the compliance descriptor. An entity
e ∈ E is defined as follows:

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

162

Rule Models

Compliance Model

ProGoalML
rules

Process Model

Laws

Requirements

LTL
rules

etc. TOSCA
rules

Figure 1: Compliance-related models.

e ∈ E := (ne,re fe)
where ne is the name of the referenced entity and

re fe a unique reference to the entity (e.g. a reference
to an activity in a process model).

3.3 Compliance Rules

A compliance rule is an implementation level artifact
used to enforce or monitor a fact, e.g. if a variable has
a certain value, if an activity is always followed by an-
other activity or if a database is encrypted. Thus, the
concrete implementation of a rule is not stipulated by
the compliance descriptor. To provide a wide support
in regards to compliance rule languages, a rule is de-
scribed with generic attributes, allowing handling it
during compliance management without knowledge
of implementation semantics. Only during model
transformation is the concrete implementation used.

A compliance rule is described as follows:
r ∈ R := (nr,dr, ilr, phr,rexr,V Dr,Br)
where nr is the name of the compliance rule, dr its

description in natural language. These are written by
IT personnel to give business users an understanding
of the semantics of the rule. ilr is a unique identi-
fier for the implementation language of the rule, e.g.
LTL. phr identifies the phase of the process lifecycle
in which the rule is applied, e.g. design-time or run-
time.

The concrete implementation is called a rule ex-
pression and stored in rexr. Depending on the type
of rule this may either be a formal description of the
rule (e.g. an XML file) or a reference to the full imple-
mentation (e.g. a reference to a graphical rule model).
In any case, a compliance rule must provide a suit-
able result for evaluation. Depending on the lifecycle
phase, a compliance rule may either be fulfilled (true),
not fulfilled (false) or not yet evaluated (unknown).
Each rule must provide these results.

To facilitate reuse of compliance rules among dif-
ferent process models and requirements, rules are

variable. This means certain parts of the rule can
be modified in order to adjust the rule to its concrete
use case. For example the name and location of a
database can be chosen. For this purpose, a so-called
variability descriptor is used (Mietzner et al., 2009),
an XML format which allows variability in arbitrary
documents by referencing variability points and pos-
sible values. The variability descriptor of a rule is
stored or referenced in V Dr and is a set of variability
points vpr:

V Dr := {vpr}
A set of bindings Br describes which concrete val-

ues are chosen for each variability point. A binding
b ∈ Br is defined as follows:

b ∈ Br := (vpb,valb, typeb)
where vpb identifies the variability point that is

bound, valb is the value the variability point is bound
to, which depends on the type of the binding typeb.

There are three types type ∈ BTY PE of bind-
ings (Mietzner et al., 2009). A constant value valb
is bound to the variability point. Depending on the
variability point, this may for example be an integer
or string value. An entity e in the compliance descrip-
tor is bound to the variability point. valb identifies the
entity by its name ne. A parameter indicates the vari-
ability point is not yet bound in the rule, but will be
bound later. valb indicates the number vpb shall have
in the order of parameters.

The bindings Br are called a complete binding, if:
complete(Br) := ∀vp∈V Dr : ∃b∈Br : vpb = vp∧

typeb 6= parameter
A complete binding thus provides a concrete value

for each variability point. No further information is
necessary to create a concrete rule.

On the other hand the bindings Br are called a par-
tial binding, if:

partial(Br) := (∀vp∈V Dr : ∃b∈Br : vpb = vp)∧
(∃b ∈ Br : typeb = parameter)

Note that even a partial binding must provide a
binding for each variability point. Bindings which fail

Unified Compliance Modeling and Management using Compliance Descriptors

163

both criteria are invalid.

3.4 Compliance Requirements

A compliance requirement is a single compliance-
related requirement to the business process or the pro-
cess environment stemming from a law. It is used to
link laws and implementation. A requirement q ∈ Q
is defined as follows:

q ∈ Q := (nq,dq,uq,cexr)
where nq is the unique name of the requirement,

dq is a description of the requirement in natural lan-
guage, provided by business users. uq ∈ U is a law
url referencing the paragraph the requirement stems
from. Note multiple requirements may stem from the
same law or even paragraph.

Aside from a description dq in natural language, it
contains a formal compliance expression cexr, which
describes the requirement by referencing compliance
rules. The compliance expression cex ∈ CEX is de-
fined as follows:

cex ∈CEX := (fcex,Rcex,Bcex)
A compliance expression links multiple rules r ∈

Rcex in a formula fcex. This formula uses Boolean op-
erators to relate rules to each other. As rules may
be variable, additional binding information may be
necessary to create the rule. This is the case if
partial(Br) is true. Then, additional bindings Bradd
need to be specified for each binding b ∈ Br, where
typeb = parameter. These additional bindings are
stored in Bcex and are defined as follows:

Bradd ∈ Bcex := {(vpb,valb, typeb)|typeb 6=
parameter∧ (∃br ∈ Br : typebr = parameter∧vpbr =
vpb)}

The bindings are then combined to create are so-
called final binding:

Br f inal := Bradd ∪{b ∈ Br|typeb 6= parameter}
For the final binding complete(Br f inal) must be

true, as otherwise no concrete rule may be created.
Then no deployment of rules can take place. Note
that there may be multiple final bindings if a rule is
used multiple times within compliance expressions.

The formula fx defines a Boolean expression link-
ing the rules Rcex. The additional bindings Bcex
are specified using parentheses and parameter order.
Quotation marks are used to bind constants, names
without quotation marks are used to bind entities. The
formula language provides the operators AND and
OR, as well as defining precedence using parenthe-
ses. Note the absence of a negation. The reason for
this is twofold. First, the negation of a rule may be
counterintuitive. For example, the negation of a rule
imposing activity A is always followed by activity B
is not that B never follows A, but rather that in at least

one possible case B does not follow A. We found that
safely using these negations requires proficiency in
predicate logic as well as in the implementation lan-
guage which average business users do not process.
Second, as rules may evaluate to unknown, ternary
Kleene logic (Kleene, 1952) is used to evaluate com-
pliance expressions rather than binary Boolean logic.
Thus, negations are not used to approximate the be-
havior of the rule language to the intuitive understand-
ing.

3.5 Graphical Model

Based on the formal description of the compliance de-
scriptor, a graphical modeling language is designed.
The modeling elements are shown in Figure 2, corre-
sponding to the elements defined above.

A law is modeled as a rounded square with a sec-
tion sign indicating it contains multiple paragraphs.
An entity is modeled as an oval. All entities ref-
erenced in bindings must be explicitly added to the
compliance descriptor. Modeled entities may refer-
ence their counterparts in other models, e.g. an activ-
ity in a process model.

Rules are modeled as rounded squares without any
further decoration. For each entity bound in Br, a
reference to the entity has to be modeled. This ex-
plicit modeling of entities serves to visualize the im-
pact of compliance rules and requirements on the pro-
cess, which would otherwise be hidden in an attribute.

A requirement is modeled as a double rounded
square, indicating it may consist of multiple rules.
Like the rule it has to reference each entity bound
in Bcex. Additionally, requirements have to reference
all rules Rcex used in the compliance expression. Re-
quirements reference the law they stem from using
their law url uq. In comparison to the other refer-
ences, a law url contains an XPATH expression in-
dicating the law lu and the paragraph pu. A law url
is decorated with a section sign to distinguish it from
the other edges.

3.6 Example

Figure 3 shows a simplified example process from
our work with insurance companies (for more detail
see (Koetter et al., 2014)). This claim management is
used to automatically process damage claims from a
customer, e.g. in case of car damages. A claim is re-
ceived either digitally or in paper and stored in a cus-
tomer database. The claim is then processed to find
additional information, e.g. if the claim is covered by
the insurance policy. Based on this data, the claim
is decided to be either accepted in full, partially ac-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

164

Requirement

§
Law

Entity

Rule

§
LawURL

1..n1..n

0..n

0..n 0..n

0..n

1..n 1

Br

Rcex

Bcex

uq

Figure 2: Modeling elements of the compliance descriptor with cardinalities and formal equivalents for all relationships.

Receivebclaim Processbclaim Decidebclaim

Sendbclaim
andbdata
privacy

notification

CustomerbDB

R2:bDobnot
storeboutside
ofbGermany

R1a:
Followbthisbby
sendingbabdata
privacy
notification

R1b:
Sendbatbmost
14bdaysbafter
claimbisbreceived

§
GDVbCodebofbConduct

§
BDSGbdatabprotection

R1bNotification R2bdbblocation

hostingRegionfollowedBy maxTimeBetweenActivities CustomerbDB

Receivebclaim

Sendbclaimbandbprivacybnotification §
B

D
S

G
:§

§

§
G

D
V

bC
O

C
:5

-8

Figure 3: Example claim management process (top) and compliance descriptor (bottom).

cepted or rejected. Finally, a notification of the result
is sent to the customer as a letter.

Two laws relevant for this process are the
Code of Conduct of the German Insurance Associa-
tion (GDV) (German Insurance Association (GDV),
2012) and the German Federal Data Protection Act
(BDSG) (Bundesdatenschutzgesetz (BDSG), 1990).
From these laws two requirements are derived as an
example. The GDV Code of Conduct states a cus-
tomer who provides personal data has to be asked in
a timely fashion if this data can be used for marketing
purposes. Requirement R1 is thus that such a noti-
fication takes place after data is received. This re-
quirement is realized using two rules, followedBy, an
LTL rule checking during design-time if an activity
is always followed by another activity, and maxTime-

BetweenActivities, a ProGoalML rule which checks at
run-time that at most fourteen days pass between re-
ceipt and notification. The BDSG regulates storage,
processing, and exposure of data. To comply with it,
a suitable hosting provider within Germany has to be
found. Requirement R2 thus states that the customer
database is hosted within Germany. To check this, the
rule hostingRegion is used, which is a TOSCA policy
applied during deployment.

The graphical compliance descriptor for these pro-
cesses is shown in Figure 3. It references activities of
the process model and external rules (for a full speci-
fication see (Fehling et al., 2014)).

Unified Compliance Modeling and Management using Compliance Descriptors

165

4 COMPLIANCE MANAGEMENT
ARCHITECTURE

Figure 4 gives an overview of the compliance man-
agement reference architecture. An editor in the fron-
tend allows the user to graphically model a compli-
ance descriptor. Additionally, existing capabilities for
process and rule modeling can be used within the ed-
itor. All models are stored in a model repository in
the backend. From this repository, a compliance de-
scriptor in XML can be exported. To use a compli-
ance descriptor for compliance management, it needs
to be transformed into implementation specific arti-
facts. For this, the XML compliance descriptor is
read by the model transformation, which creates rule
expressions as well as a so-called VisML file (Kintz,
2012), a dashboard description language which de-
scribes how rule checking results are to be visualized.

The created rule expressions are deployed to their
specific rule checking implementations by a rule de-
ployment component. For each deployed rule a de-
ployment descriptor is created. The details of the de-
ployment descriptor depend on the type of rule, but
contain a unique identifier of the rule as well as all
details necessary to undeploy it. During results gath-
ering the deployment descriptor is used to get all re-
sults from the rule checking implementations. These
results are then aggregated to determine requirement
fulfillment and law compliance, thus translating com-
pliance checking results from an IT level to a busi-
ness level. All kinds of results are provided in an
implementation-independent way to reporting and to
a dashboard (via a value provider). Encapsulating
rule implementations makes the architecture extensi-
ble, as only interfaces for rule deployment and result
gathering need to be added for each rule language.
The deployment descriptor handles implementation
specific data in a generic fashion throughout the pro-
cess lifecycle.

After giving an overview of the architecture, we
will describe model transformation used to create
concrete rule expressions and a visualization schema.

To create deployable concrete rule expressions,
rules R f inal are created for each final binding Br f inal
resulting from a compliance expression cex.

R f inal = {(nr,dr, ilr, phr,rexr,V Dr,Br f inal)|Br f inal ∈⋃
cex∈CEX {Br f inal ∈ Bcex}}

Using V Dr and Br f inal , a concrete rule expression
rexr f inal is created from rexr. This rule expression can
then be deployed to its implementation as indicated
by ilr. The rule creation and deployment process is
described in detail in (Koetter et al., 2014).

Automatically creating process monitoring dash-
boards using VisML has been described in previous

work (Kintz, 2012). Using a ProGoalML file as in-
put, for each KPI or goal the appropriate visualiza-
tion is selected using a visualization mapping file, and
configured with the necessary data source and param-
eters. For the visualization of compliance require-
ments, a new visualization for the monitoring of com-
pliance requirements was designed and documented
in VisML, and the mapping file was extended. On the
back-end, a new data value provider type was imple-
mented to provide the data structure required by the
new visualization.

The new visualization for compliance (see exam-
ple in Figure 5) was conceived as follows: The dash-
board presents a box for each law. The box is labelled
with the laws’ name and colored in green if all un-
derlying requirements are met, in red if one or more
requirement is broken, and in yellow if the status is
unknown.

A dashboard user has the possibility to click on a
law box. The box is then replaced by a box for each
underlying requirement, colored as mentioned above.
Thus, the user can immediately see which require-
ments are fulfilled. The user can go one step further
and click on a requirement box, to show the underly-
ing rules in the compliance expression.

Tooltips provide additional information at every
stage of the drill-down process from law to require-
ment to rules. The visualization mapping file was
extended to indicate that a law mentioned in a com-
pliance descriptor should be rendered as a ”law box”
compliance visualization. The VisML generation al-
gorithm was extended as follows:

Lgen := /0
f o r each q ∈ Q

i f luq /∈ Lgen

Lgen := Lgen ∪{luq}
end i f

end f o r
i f Lgen 6= /0

add c o m p l i a n c e v a l u e p r o v i d e r
t o d a t a s o u r c e s

f o r each l ∈ Lgen
add law box v i s u a l i z a t i o n f o r l

t o d a s h b o a r d
add law d a t a s e t f o r l

t o d a t a s e t s
end f o r

end i f

In this algorithm q ∈ Q are the compliance re-
quirements, Lgen the laws on the top level of visual-
ization, which are found by following the law urls uq
of the requirements.

The visualized data is obtained querying a data

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

166

information flow

Frontend (Editor)

Backend

Graphical modeling

Process modeling

Rule
deployment

Compliance
descriptor

XML
Stencilset

Validation

Compliance expression editor

Model
repository

Rule checking implementations

Frontend (Dashboard)

VisML Result
gathering Dashboard Value

provider Reporting

Rule modeling

Model
transformation

Deployment
descriptor

Rule
expressions

LTL
checker

aPro
monitoring

etc.

LTL ProGoalML etc.

component document legend storage

Figure 4: Compliance management architecture.

source with the appropriate parameters to obtain a
data set. For compliance visualizations, a new data
source ComplianceValueProvider was designed. It
supports data sets using a parameter law, indicating
the law for which the data is requested. It supports
one or more parameters for each requirement, indi-
cating the level of drill down.

5 PROTOTYPE AND
EVALUATION

The architecture has been implemented in a proto-
type based on the Oryx editor2, a web-based mod-
eling tool. The prototype contains modeling capabil-
ities for processes, compliance descriptors, and rules
(ProGoalML and LTL).

When modeling a compliance descriptor, rules
and entities may reference other models, which can
be edited in another editor window. The compliance
descriptor is automatically converted to XML, which
is then used as a basis for model transformation. Dur-
ing model transformation, rules expressions are au-
tomatically created and deployed to their respective
rule implementations. A VisML file is generated au-
tomatically and used with the configurable dashboard
to visualize compliance checking results.

Figure 5 shows the modeling as well as the con-
figured dashboard.

2http://bpt.hpi.uni-potsdam.de/Oryx (accessed
18.3.2015)

We evaluated the prototype with the example
(see 3.6) and synthetic execution data for run-time
rules. The process was modeled together with domain
experts of the example process. We found the compli-
ance, process, and rules monitoring to work as an in-
tegrated workflow. However, cross-model validation
and other usability features like a graphical compli-
ance expression editor may further increase usability
for business users. We found the concept of encap-
sulating implementing rules feasible. However, some
checks require additional information of the process
implementation, e.g. run-time data to check timings.
Currently, these need to be supplied manually to the
rule checking implementations. This could be par-
tially automated by allowing IT users to give global
configuration files for each type of rule. The cre-
ated dashboard shows compliance on the rule, re-
quirement, and law levels. Using drilldown, the cause
for a lack of law compliance or legal fulfillment can
easily be found. Further implementation details can
be found in a technical report (Fehling et al., 2014).

Using these preliminary results, we further evalu-
ated the prototype in a real-life process in the German
insurance industry and in interviews with compliance
experts. Implementing compliance checking with the
real process encompassed design-time and real-time.
For design-time checking, rules for a claim manage-
ment process were created from laws and industry
guidelines and validated within the process model,
proving it to be compliant. For real-time checking,
compliance goals on process KPIs and timing restric-
tions were modeled as compliance rules, which were

Unified Compliance Modeling and Management using Compliance Descriptors

167

Figure 5: Prototype compliance descriptor modeling (left) and dashboard (right).

deployed to a model-driven process monitoring solu-
tion (Koetter and Kochanowski, 2013). Monitoring
data was acquired from the live system using exist-
ing business monitoring information, which was man-
ually integrated with the new monitoring solution.
Run-time compliance checking was performed on a
test system with real instance data. By modifying the
running system, timing rules and business rules could
be broken, resulting in a compliance violation, shown
on the dashboard and as an alert. Deployment rules in
TOSCA were not evaluated, as access to the deploy-
ment of real-life live systems was not possible. We
discussed this solution with IT personnel as well as
compliance specialists.

While IT personnel and specialists were generally
interested in the approach, it was judged as only fea-
sible with new or overhauled process. Efforts for in-
tegration were seen as high, even though partial au-
tomation is available, especially in existing infrastruc-
tures which cannot easily be changed and don’t pro-
vide access to data in real-time. Additionally, even if
rules are established, it is not possible to check past
instances, as monitoring data is gathered only at run-
time and not from existing sources (e.g. historical
data). Especially for audits compliance checking of
past process instances is necessary.

Another challenge in practice is the lack of pro-
cess automation. Knowledge-intensive processes nei-
ther fully automated nor fully structured. Employees
have a degree of freedom not captured in the pro-
cess model. Compliance rules, even if communicated
clearly to employees, are not always fulfilled. Ex-
amples named by interviewees are the omission of
checks to serve customers faster and the use of non-
approved or homegrown IT tools like Excel Sheets
and cloud services. This suggests the need for fur-
ther compliance rule types outside of the business
process lifecycle not covered in this work yet. Ex-
amples could be process mining tools to compare the

actual process to the prescribed process and infras-
tructure assessment tools to find unauthorized appli-
cations, files, and communications.

Compliance experts also noted that being noti-
fied about each compliance violation can be over-
whelming in large processes. Compliance as a cross-
sectional task depends on cooperation of all depart-
ments. Thus, investigating each violation indepen-
dently will not be feasible, because it will require too
many resources from other departments. Rather, com-
pliance analytics should be able to find the root cause
of a violation beyond the violated rule.

Considering this feedback, we find the general ap-
proach of using a compliance descriptor and different
rule languages to be feasible for automated, new or
overhauled business processes. To achieve compli-
ance in real-life, large, partially automated business
processes, the current range of functionality is not suf-
ficient yet and needs to be extended considering the
deficits outlined above.

6 CONCLUSION AND OUTLOOK

In this work described an integrating approach for
compliance management. A compliance descriptor
allows conceptual modeling of laws, requirements,
and implementing rules. During model transforma-
tion the conceptual model is used to configure a ref-
erence architecture for compliance management, inte-
grating different rule checking implementations. Us-
ing a prototype and real-life example, we have shown
the practical application of these concepts, includ-
ing compliance modeling, rule modeling, compliance
checking, and result visualization.

In future work we will address the results of the
practical evaluation, increasing usability of the pro-
totype and adding further rule types, encompassing
checks for partially automated processes and histori-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

168

cal data.

ACKNOWLEDGEMENTS

The work published in this article was funded by
the Co.M.B. project of the Deutsche Forschungsge-
meinschaft (DFG) under the promotional reference
SP 448/27-1.

REFERENCES

Awad, A., Decker, G., and Weske, M. (2008). Effi-
cient compliance checking using bpmn-q and tempo-
ral logic. In BPM ’08, pages 326–341. Springer.

Awad, A. and Weske, M. (2010). Visualization of compli-
ance violation in business process models. In Busi-
ness process management workshops, pages 182–193.
Springer.

Bobrik, R., Reichert, M., and Bauer, T. (2007). View-based
process visualization. In Business Process Manage-
ment, pages 88–95. Springer.

Bundesdatenschutzgesetz (BDSG) (1990). Gesetze im
Internet - Bundesdatenschutzgesetz (BDSG). http://
www.gesetze-im-internet.de/bundesrecht/bdsg 1990/
gesamt.pdf last accessed 19.01.2016.

Comuzzi, M. (2014). Aligning monitoring and compliance
requirements in evolving business networks. In On
the Move to Meaningful Internet Systems: OTM 2014
Conferences, pages 166–183. Springer.

El Kharbili, M., Stein, S., Markovic, I., and Pulvermüller, E.
(2008a). Towards a framework for semantic business
process compliance management. In Processings of
the 1st GRCIS, pages 1–15.

El Kharbili, M., Stein, S., and Pulvermüller, E. (2008b).
Policy-based semantic compliance checking for busi-
ness process management. In MobIS Workshops, vol-
ume 420, pages 178–192. Citeseer.

Fehling, C., Koetter, F., and Leymann, F. (2014). Compli-
ance Modeling - Formal Descriptors and Tools.

German Insurance Association (GDV) (2012). Verhal-
tensregeln fuer den Umgang mit personenbezogenen
Daten durch die deutsche Versicherungswirt-
schaft. http://www.gdv.de/wp-content/uploads/2013/
03/GDV Code-of-Conduct Datenschutz 2012.pdf
last accessed 19.01.2016.

Karagiannis, D., Moser, C., and Mostashari, A. (2012).
Compliance evaluation featuring heat maps (ce-hm):
A meta-modeling-based approach. In Ralyt, J.,
Franch, X., Brinkkemper, S., and Wrycza, S., editors,
Advanced Information Systems Engineering, volume
7328 of Lecture Notes in Computer Science, pages
414–428. Springer Berlin Heidelberg.

Kharbili, M. E., de Medeiros, A. K. A., Stein, S., and
van der Aalst, W. M. P. (2008). Business process com-
pliance checking: Current state and future challenges.
In MobIS, volume 141 of LNI, pages 107–113. GI.

Kintz, M. (2012). A semantic dashboard description
language for a process-oriented dashboard design
methodology. In Proceedings of 2nd MODIQUITOUS
2012, Copenhagen, Denmark.

Kleene, S. C. (1952). Introduction to metamathematics.
Knuplesch, D., Reichert, M., Pryss, R., Fdhila, W., and

Rinderle-Ma, S. (2013). Ensuring compliance of dis-
tributed and collaborative workflows. In 9th Collabo-
ratecom, pages 133–142. IEEE.

Kochanowski, M., Fehling, C., Koetter, F., Leymann, F.,
and Weisbecker, A. (2014). Compliance in bpm to-
day - an insight into experts’ views and industry chal-
lenges. In Proceedings of INFORMATIK 2014. GI.

Koetter, F. and Kochanowski, M. (2013). A model-driven
approach for event-based business process monitor-
ing. In Business Process Management Workshops SE -
41, volume 132, pages 378–389. Springer Berlin Hei-
delberg.

Koetter, F., Kochanowski, M., Renner, T., Fehling, C., and
Leymann, F. (2013). Unifying compliance manage-
ment in adaptive environments through variability de-
scriptors (short paper). In IEEE SOCA 2013, pages
214–219. IEEE.

Koetter, F., Kochanowski, M., Weisbecker, A., Fehling, C.,
and Leymann, F. (2014). Integrating compliance re-
quirements across business and it. In 18th EDOC,
pages 218–225. IEEE.

Ly, L. T., Knuplesch, D., Rinderle-Ma, S., Göser, K.,
Pfeifer, H., Reichert, M., and Dadam, P. (2011).
Seaflows toolset–compliance verification made easy
for process-aware information systems. In Informa-
tion Systems Evolution, pages 76–91. Springer.

Mietzner, R., Metzger, A., Leymann, F., and Pohl, K.
(2009). Variability modeling to support customization
and deployment of multi-tenant-aware software as a
service applications. In Proceedings of PESOS ’09,
pages 18–25, Washington, DC, USA. IEEE Computer
Society.

Papazoglou, M. (2011). Making business processes com-
pliant to standards and regulations. In Enterprise Dis-
tributed Object Computing Conference (EDOC), 2011
15th IEEE International, pages 3–13.

Patig, S., Casanova-Brito, V., and Vögeli, B. (2010). IT Re-
quirements of Business Process Management in Prac-
tice - An Empirical Study. In Proceedings of the 8th
BPM, pages 13–28, Heidelberg. Springer.

Ramezani, E., Fahland, D., and van der Aalst, W. M. (2014).
Supporting domain experts to select and configure
precise compliance rules. In Business Process Man-
agement Workshops, pages 498–512. Springer.

Ramezani, E., Fahland, D., van der Werf, J. M., and
Mattheis, P. (2012). Separating compliance manage-
ment and business process management. In Busi-
ness Process Management Workshops, pages 459–
464. Springer.

Reichert, M. and Weber, B. (2012). Enabling flexibil-
ity in process-aware information systems: challenges,
methods, technologies. Springer Science & Business
Media.

Unified Compliance Modeling and Management using Compliance Descriptors

169

Sadiq, S., Governatori, G., and Namiri, K. (2007). Mod-
eling control objectives for business process compli-
ance. In Business process management, pages 149–
164. Springer.

Schleicher, D., Fehling, C., Grohe, S., Leymann, F., Nowak,
A., Schneider, P., and Schumm, D. (2011). Compli-
ance domains: A means to model data-restrictions in
cloud environments. In 15th EDOC, pages 257–266.
IEEE.

Semmelrodt, F., Knuplesch, D., and Reichert, M. (2014).
Modeling the resource perspective of business process
compliance rules with the extended compliance rule
graph. In Proceedings of the 15th BPMDS, pages 48–
63. Springer.

Takabi, H., Joshi, J. B., and Ahn, G.-J. (2010). Security and
privacy challenges in cloud computing environments.
IEEE Security and Privacy, 8(6):24–31.

Waizenegger, T., Wieland, M., Binz, T., Breitenbücher, U.,
Haupt, F., Kopp, O., Leymann, F., Mitschang, B.,
Nowak, A., and Wagner, S. (2013). Policy4tosca: A
policy-aware cloud service provisioning approach to
enable secure cloud computing. In OTM 2013, pages
360–376. Springer.

Wei, Y. and Blake, M. B. (2010). Service-oriented comput-
ing and cloud computing: Challenges and opportuni-
ties. IEEE Internet Computing, 14(6):72–75.

Weigand, H. and Elsas, P. (2012). Model-based auditing
using {REA}. International Journal of Accounting
Information Systems, 13(3):287 – 310. 2011 Research
Symposium on Information Integrity & Information
Systems Assurance.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

170

