
Direct Speech Generation for a Silent Speech Interface based on
Permanent Magnet Articulography

Jose A. Gonzalez1, Lam A. Cheah2, James M. Gilbert2, Jie Bai2, Stephen R. Ell3, Phil D. Green1

and Roger K. Moore1

1Department of Computer Science, University of Sheffield, Sheffield, U.K.
2School of Engineering, University of Hull, Kingston upon Hull, U.K.

3Hull and East Yorkshire Hospitals Trust, Castle Hill Hospital, Cottingham, U.K.

Keywords: Silent Speech Interfaces, Speech Rehabilitation, Speech Synthesis and Permanent Magnet Articulography.

Abstract: Patients with larynx cancer often lose their voice following total laryngectomy. Current methods for post-
laryngectomy voice restoration are all unsatisfactory due to different reasons: requires frequent replacement
due to biofilm growth (tracheo-oesoephageal valve), speech sounds gruff and masculine (oesophageal speech)
or robotic (electro-larynx) and, in general, are difficult to master (oesophageal speech and electro-larynx). In
this work we investigate an alternative approach for voice restoration in which speech articulator movement is
converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings
of articulatory and audio signals. To capture articulator movement, small magnets are attached to the speech
articulators and the magnetic field generated while the user ‘mouths’ words is captured by a set of sensors.
Parallel data comprising articulatory and acoustic signals recorded before laryngectomy are used to learn
the mapping between the articulatory and acoustic domains, which is represented in this work as a mixture
of factor analysers. After laryngectomy, the learned transformation is used to restore the patient’s voice by
transforming the captured articulator movement into an audible speech signal. Results reported for normal
speakers show that the proposed system is very promising.

1 INTRODUCTION

Every year thousands of people worldwide have their
larynx surgically removed because of throat cancer,
trauma or destructive throat infection (Fagan et al.,
2008; Wang et al., 2012). As speech is seen as a vital
part of human communication, post-laryngectomy pa-
tients who have lost their voices often find themselves
struggling with their daily communication, which can
lead to social isolation, feelings of loss of identity
and depression (Byrne et al., 1993; Braz et al., 2005;
Danker et al., 2010). Unfortunately, the quality of
voice generated by conventional post-laryngectomy
restoration methods, such as oesophageal speech,
tracheo-oesoephageal speech or the electro-larynx, is
poor and often these methods are difficult to master
(Fagan et al., 2008; Hueber et al., 2010). Augmen-
tative and alternative communication (AAC) devices,
on the other hand, are also limited by their slow man-
ual text input.

The use of silent speech interfaces (SSIs) (Denby
et al., 2010) provides an alternative solution to the

conventional methods by enabling oral communica-
tion in the absence of audible speech by exploiting
other non-audible signals generated during speech,
such as electrical activity in the brain (Herff et al.,
2015) or in the articulator muscles (Jou et al., 2006;
Schultz and Wand, 2010; Wand et al., 2014) or
the movement of the speech articulators themselves
(Petajan, 1984; Toda et al., 2008; Denby et al., 2010;
Hueber et al., 2010; Gilbert et al., 2010; Freitas et al.,
2011; Hofe et al., 2013). Because of this unique
feature, SSIs can be suitable for applications other
than post-laryngectomy voice rehabilitation, such as
communication in noisy environments or in situations
where privacy/confidentiality is important.

The present work makes use of permanent mag-
net articulography (PMA) (Fagan et al., 2008; Gilbert
et al., 2010), which is a sensing technique for artic-
ulator motion capture. In PMA a set of magnets are
attached to the intact articulators and the variations of
the resultant magnetic field generated while the user
‘mouths’ words are captured by a number of sensors
located around the mouth. In previous work (Fagan
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et al., 2008; Gilbert et al., 2010; Hofe et al., 2013;
Cheah et al., 2015) it has been shown that generation
of audible speech from PMA data can be achieved
by first decoding the acquired articulatory data us-
ing an automatic speech recognition (ASR) system
trained on PMA data and then synthesising the recog-
nised text using a text-to-speech (TTS) synthesiser.
This approach, however, has limitations that may af-
fect the user’s willingness to engage in social in-
teractions: speech articulation and its corresponding
auditory feedback are disconnected due to the vari-
able delay introduced by ASR and TTS and the sys-
tem is constrained to the language and vocabulary of
the ASR system being used. Furthermore, the non-
linguistic information embedded in the articulatory
signal, such as emotion or speaker identity, is nor-
mally lost after ASR.

To address the shortcomings of the recognise-
then-synthesise approach, an alternative approach is
investigated in this paper: direct conversion of the
PMA data stream into an audible speech signal with-
out an intermediate recognition step. In this approach,
which will be referred to as the direct speech synthe-
sis approach, a transformation is applied to the ac-
quired PMA data to obtain a sequence of speech pa-
rameter vectors from which an acoustic signal is syn-
thesised. To enable this method, we adopt a statistical
approach in which simultaneous recordings of PMA
and audio data are used to learn the mapping between
the articulatory and acoustic domains. These paral-
lel recordings are used during an initial training phase
to estimate the joint distribution of PMA and speech
parameter vectors. Then, in the conversion phase, the
speech-parameter posterior distribution given the sen-
sor data is computed so that an acoustic signal can be
recovered from the captured PMA data. Because the
PMA-to-acoustic transformation is learned using the
patient’s own voice, the proposed method has the po-
tential to synthesise speech that sounds as the original
voice. Furthermore, if the conversion can be done in
near real-time, the synthesised voice will also sound
spontaneous and natural and will allow the patient to
receive real-time auditory feedback of her/his articu-
latory gestures.

Although this is the first work reported which
implements a PMA-based SSI using the direct syn-
thesis approach, other authors have also addressed
in the past similar problems using different sensing
technologies. For example, Toda et al. proposed in
(Toda et al., 2008; Toda et al., 2007) a related tech-
nique to our proposal for both articulatory-to-acoustic
and acoustic-to-articulatory conversion using Gaus-
sian mixture models (GMMs), where the articulatory
data was captured using electromagnetic articulog-

raphy (EMA). More recently, Toda’s technique has
been also applied to other sensing technologies: non-
audible murmur (NAM) (Toda et al., 2012), video
and ultrasound (Hueber et al., 2011) and radar (Toth
et al., 2010). A different approach for generating
speech from articulatory data is that of (Zahner et al.,
2014), in which a concatenative, unit-selection ap-
proach is employed to generate speech from surface
electromiography (sEMG) data. Recently, deep neu-
ral networks (DNNs) have also been applied to both
acoustic-to-articulatory (Uria et al., 2011) and voice
conversion (Chen et al., 2014) problems with very
promising results.

The rest of this paper is organised as follows.
First, in Section 2, the PMA technique is briefly out-
lined. Then, in Section 3, the proposed technique
for speech generation from PMA data is described.
Section 4 discusses some practical implementation is-
sues. In Section 5, direct synthesis is evaluated on
parallel databases containing PMA and acoustic data.
Finally, we summarise this paper and outline future
work in Section 6.

2 PERMANENT MAGNET
ARTICULOGRAPHY

PMA is a technique for capturing speech articulator
motion by attaching a set of magnets to the artic-
ulators (typically the lips and tongue) and measur-
ing the resultant magnetic field changes with sensors
close to the articulators (see Fig. 1). The variations
of the magnetic field may then be used to determine
the speech which the user wishes to produce, either
by performing ASR on the PMA data (Gilbert et al.,
2010; Hofe et al., 2013) or by transforming the ar-
ticulatory data to an acoustic signal as we do in this
paper. It should be noted that contrary to other mech-
anisms for articulator motion capture, PMA does not
provide the exact position of the individual magnets
as the magnetic field detected by each sensor is a com-
posite of the fields generated by all the magnets.

As shown in Fig. 1, six magnets are used in the
current PMA device prototype for detecting the move-
ment of the articulators: four on the lips with dimen-
sions 1 mm (diameter) × 5 mm (height), one on the
tongue tip (2 mm × 4 mm), and one on the middle of
the tongue (5 mm × 1 mm). The magnetic field gen-
erated by the magnets when the user ‘speaks’ is then
recorded by four triaxial magnetic sensors mounted
on a rigid frame, each one providing three channels
of data for the (x,y,z) spatial components of the mag-
netic field at the sensor location. Only the three sen-
sors that are closest to the mouth are actually used for
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Figure 1: Upper-left and lower-left: magnet positioning
in the current PMA device. Right: components of the PMA
headset: microcontroller, battery and magnetic sensors used
to detect the variations of the magnetic field generated by
the magnets.

capturing articulatory data, while Sensor4 in Fig. 1
is used for cancelling the effects of Earth’s magnetic
field in the articulatory data.

3 SPEECH GENERATION FROM
PMA DATA

In this section we present the details of the PMA-
to-acoustic conversion technique. Let us denote by
xt and yt the PMA and speech parameter vectors at
frame t, respectively. In this work the source vectors
xt are derived from the signal captured by the PMA
device, whereas the target vectors yt correspond to
a parametric representation of the audio signal (e.g.
Mel-frequency cepstral coefficients). From these def-
initions, the aim of the proposed technique is to model
the mapping yt = f(xt). Here, we employ a statis-
tical approach in which the parameters of the map-
ping are learned from parallel recordings of PMA
and acoustic data. The parallel data is used during
an initial training phase to learn the joint distribu-
tion p(x,y), which is modelled as a mixture of fac-
tor analysers (MFA) (Ghahramani and Hinton, 1996).
Then, in the conversion phase, the learned transfor-
mation is used to convert PMA parameter vectors into
speech parameter ones. As we show below, this in-
volves finding the conditional distribution p(y|xt).
The training and conversion phases are described in
more detail below.

3.1 Training Phase

Instead of trying to directly model the mapping func-
tion yt = f(xt), we assume that xt and yt are the
outputs of a stochastic process whose state vt is not
directly observable. We also assume that the dimen-
sionality of vt is much less than that of xt and yt , such

that the latent space offers a more compact representa-
tion of the observable data. Under these assumptions,
we have the following model,

xt = fx(vt)+εx, (1)
yt = fy(vt)+εy, (2)

where εx and εy are Gaussian-distributed noise pro-
cesses with zero mean and diagonal covariances Ψx
and Ψx, respectively.

In general, fx and fy will be non-linear and,
hence, difficult to model. To represent them, a piece-
wise linear regression approach is adopted in which
the functions are approximated by a mixture of K lo-
cal factor analysis models, each of which has the fol-
lowing form,

xt =W
(k)
x vt +µ

(k)
x +ε

(k)
x , (3)

yt =W
(k)
y vt +µ

(k)
y +ε

(k)
y , (4)

where k = 1, . . . ,K is the model index, W (k)
x and

W
(k)
y are the factor loadings matrices, and µ(k)

x and
µ
(k)
y are bias vectors that allow the data to have a non-

zero mean. This model can be written in a compact
form as,

zt =W
(k)
z vt +µ

(k)
z +ε

(k)
z , (5)

where zt = [x>t ,y
>
t ]>, W (k)

z = [W
(k)>
x W

(k)>
y ]>,

µ
(k)
z = [µ

(k)>
x ,µ

(k)>
y ]>, and ε(k)z ∼ N (0,Ψ

(k)
z ), with

Ψ
(k)
z being the following diagonal covariance matrix,

Ψ
(k)
z =

[
Ψ

(k)
x 0

0 Ψ
(k)
y

]
. (6)

From (5) we see that the conditional distribution
of the observed variables given the latent ones is
p(z|v,k) = N (z;W (k)

z v+µ
(k)
z ,Ψ

(k)
z ). By assuming

that the latent variables are independent and Gaus-
sian with zero mean and unit variance (i.e. p(v|k) =
N (0,I)), the k-th component marginal distribution of
the observed variables, i.e.

p(z|k) =
∫

p(z|v,k)p(v|k)dv, (7)

also becomes normally distributed as p(z|k) =

N (z;µ(k)
z ,Σ

(k)
z ), where Σ

(k)
z =Ψ

(k)
z +W

(k)
z W

(k)>
z is

the reduced-rank covariance matrix.
The generative model is completed by adding

mixture weights π(k) for each mixture component k =
1, . . . ,K. Then, the joint distribution p(z) ≡ p(x,y)
finally becomes the following mixture model,

p(z) =
K

∑
k=1

π(k)p(z|k). (8)
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Finally, the expectation-maximization (EM) algo-
rithm proposed in (Ghahramani and Hinton, 1996) is
used in this paper to estimate the parameters of the
MFA model {〈π(k),µ

(k)
z ,W

(k)
z ,Ψ

(k)
z 〉,k = 1, . . . ,K}

from a training dataset consisting of pairs of source
and target vectors

{
zi = [x>i ,y

>
i ]
>, i = 1, . . . ,N

}
.

3.2 Conversion Phase

In the conversion phase the joint distribution p(x,y)
is used to estimate the sequence of speech parame-
ter vectors associated with the articulatory data cap-
tured by the PMA device. Then, the final time-
domain acoustic signal is synthesised from the esti-
mated speech parameters by using the corresponding
vocoder. Here, a frame-by-frame procedure based on
the well-known minimum mean square error (MMSE)
estimator is used to represent the mapping:

ŷt = E[y|xt ] =
∫
yp(y|xt)dy. (9)

From the expression of p(x,y) in (8), it can be de-
duced that the posterior distribution p(y|xt) is given
by,

p(y|xt) =
K

∑
k=1

P(k|xt)p(y|xt ,k), (10)

where

P(k|xt) =
π(k)N

(
xt ;µ

(k)
x ,Σ

(k)
xx

)

∑K
k′=1 π(k′)N

(
xt ;µ

(k′)
x ,Σ

(k′)
xx

) , (11)

p(y|xt ,k) = N
(
y;µ(k)

y|xt
,Σ

(k)
y|x

)
. (12)

The parameters of the k-th component conditional
distribution p(y|xt ,k) are derived from those of the
joint pdf p(x,y|k) in (7). As already mentioned, the
latter distribution is Gaussian with mean µ(k)

z and co-
variance matrix Σ

(k)
z . Then, using the standard prop-

erties of the joint Gaussian distribution, we can derive
the parameters of the conditional distribution as fol-
lows,

µ
(k)
y|xt

= µ
(k)
y +Σ

(k)
yx Σ

(k)−1

xx

(
xt −µ(k)

x

)
, (13)

Σ
(k)
y|x = Σ

(k)
yy +Σ

(k)
yx Σ

(k)−1

xx Σ
(k)
xy , (14)

where the marginal means µ(k)
x , µ(k)

y and covariance
matrices Σ

(k)
xx , Σ

(k)
yy , Σ

(k)
xy are obtained by partitioning

µ
(k)
z and Σ

(k)
z into their x and y components.

Finally, by substituting the expression of the con-
ditional distribution p(y|xt) in (10) into (9), we reach

the following expression for the MMSE estimation of
the speech parameter vectors,

ŷt =
K

∑
k=1

P(k|xt)
∫
yp(y|xt ,k)dy

=
K

∑
k=1

P(k|xt)
(
A(k)xt +b

(k)
)
, (15)

withA(k) = Σ
(k)
yx Σ

(k)−1

xx and b(k) =µ(k)
y −A(k)µ

(k)
x as

can be deduced from (13).

4 PRACTICAL
IMPLEMENTATION

The underlying principle of the proposed technique
for direct speech synthesis is that the patient should
attend a recording session soon after it has been
agreed that a laryngectomy will be performed. Dur-
ing the session, the patient’s voice and correspond-
ing PMA data will be recorded using adhesively at-
tached magnets. In addition, the information on the
location of the glued magnets during the session will
be documented, so that they can then be later surgi-
cally implanted accordingly. From the collected data
the PMA-to-acoustic mapping is then estimated, so it
can be readily available to be used by the patient soon
after the laryngectomy.

In certain conditions, however, the above training
procedure might fail. For example, it is highly un-
likely that the exact magnet positions can be repli-
cated during surgical implantation. Any misplace-
ment of the magnets will inevitably lead to mis-
matches with respect to the data used for training the
MFA model, thus leading to degradation in the qual-
ity of synthesised speech. Furthermore, variations of
the relative positions of the magnets with respect the
head-frame used to hold the magnetic sensors (see
Figure 1) will also lead to mismatches. Therefore,
in most of the practical cases it would be necessary
to re-calibrate the system in order to compensate for
any magnet misplacement with respect to their origi-
nal positions used for acquiring the training data. In
the following we propose a feature-space compensa-
tion approach to this end.

We will assume that the positions of the magnets
pre- (magnets glued) and post-operation (magnets im-
planted) only vary slightly, so that the mismatch be-
tween the articulatory data captured for the same ar-
ticulatory gesture pre- and post-operation can be mod-
elled as,

xt = h(x̃t), (16)
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where xt and x̃t denote the PMA data obtained using
the pre-operation and post-operation magnet arrange-
ment, respectively, and h is the mismatch function.

To estimate h, the following procedure is applied.
First, after magnet implantation, the patient has to
attend another recording session in which he or she
is asked to mouth along to some of the utterances
recorded during the first recording session. In this
case, however, only PMA data is acquired since the
patient has already lost their voice. Furthermore, only
a small fraction of the data recorded during the first
session needs to be recorded during the second ses-
sion, as the aim of it is not to estimate the full PMA-
to-acoustic mapping (as in the first recording session),
but to learn the mismatch produced by the magnet
misplacement. Next, the PMA data for both record-
ing sessions are aligned using dynamic time warping
(DTW) and used to estimate the mismatch function.
Two different alternative methods are proposed in this
paper for modelling this function. First, a simple lin-
ear mapping is used to model the mismatch, i.e.

xt =Ax̃t +b, (17)

withA and b being estimated by least squares regres-
sion from the aligned data.

Alternatively, a multilayer perceptron (MLP) is
used to model xt = h(x̃t). The input to the MLP are
the PMA vectors x̃t and it tries to predict the corre-
sponding PMA vectors xt used for training the MFA
model. More details about the MLP architecture and
its training are given in Section 5.6.

After h is estimated (either as a linear operator
or a neural network), it is used in a second round of
the adaptation procedure to improve the alignment of
the PMA data captured in both sessions. Thus, the
adaptation data is first compensated using the esti-
mated transformation and then DTW-aligned with the
original data. Next, the alignments obtained for the
compensated data are used to estimate a more accu-
rate transformation between the PMA data captured
in both sessions. This procedure is repeated several
times until convergence.

5 EXPERIMENTAL EVALUATION

The proposed direct synthesis technique is evaluated
here only for normal speakers. Despite the fact that
our ultimate goal is to use this technique for voice
restoration after laryngectomy, we believe that at this
initial stage of the development our priority is to as-
sess voice reconstruction accuracy for normal speak-
ers and then, once the system is robust, it can be

tested with those whose voice has been altered by dis-
ease. More details about the evaluation framework are
given in the following.

5.1 Vocabulary and Data Recording

To evaluate the proposed PMA-to-acoustic conver-
sion technique, two parallel databases with differ-
ent phonetic coverage were recorded. The first one
is based on the TIDigits speech database (Leonard,
1984) and consists of sequences of up to seven con-
nected English digits. The vocabulary is made up
of eleven words: the digits from ‘one’ to ‘nine’ plus
‘zero’ and ‘oh’. The second database consists of utter-
ances selected at random from the CMU Arctic cor-
pus of phonetically balanced sentences (Kominek and
Black, 2004). Parallel data was then recorded for the
two databases by adult speakers with normal speaking
ability. For the TIDigits database, four male speak-
ers (M1 to M4) and a female speaker (F1) recorded
308 sentences (385 sentences for M2) comprising 7.2,
10.5, 8.0, 9.7 and 8.5 minutes of data, respectively.
Speaker M1 also recorded a second dataset with 308
sentences (7.4 minutes of data) in a different record-
ing session (different day) with the aim of evaluat-
ing the recalibration procedure proposed in Section 4.
The magnet arrangement used during the first record-
ing session was documented and replicated in the sec-
ond session. Despite this, as will be discussed be-
low, small variations in the magnet positions and/or
orientations unintentionally occurred. For the Arc-
tic database, 420 utterances were recorded by speaker
M1 making a total of 22 minutes of data.

The audio and 9-channel PMA signals were
recorded simultaneously at sampling frequencies of
16 kHz and 100 Hz, respectively, using an AKG
C1000S condenser microphone and the PMA device
shown in Figure 1. Background cancellation was later
applied to the PMA signals in order to mitigate the
effect of the Earth’s magnetic field on the articula-
tory data. Finally, all data were endpointed in the au-
dio domain using an energy-based algorithm to pre-
vent modelling silence parts, as the speech articula-
tors may adopt any position during the silence parts.

5.2 Signal Processing

In the proposed technique source xt and target yt pa-
rameter vectors are computed as follows. For PMA,
the PMA signals are firstly segmented into overlap-
ping frames using a 20 ms analysis window with 10
ms overlap. Next, sequences of ω consecutive frames,
with a single-frame displacement, are concatenated
together in order to better capture contextual phonetic
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information. Due to the high dimensionality of the
resultant windows of frames, the partial least squares
(PLS) technique (De Jong, 1993) is applied to reduce
the dimensionality and obtaining the final PMA pa-
rameter vectors used by the proposed conversion tech-
nique. The audio signals are represented in this work
as 25 Mel-frequency cepstral coefficients (MFCCs)
(Fukada et al., 1992) obtained at the same frame rate
as that for PMA. Neither F0 nor voicing information
are extracted from the audio signals because of the
limited ability of PMA to model this aspect of speech
articulation (Gonzalez et al., 2014). Rather, the audio
signals are re-synthesised as whispered speech. Fi-
nally, the PMA and speech parameter vectors are con-
verted to z-scores with zero mean and unit variance to
improve statistical training.

5.3 Evaluation of the Conversion
Accuracy

To objectively evaluate the accuracy of speech recon-
struction we use the well-known Mel-cepstral distor-
tion (MCD) measure (Kubichek, 1993). The MCD
measure is computed between the MFCCs extracted
from the original audio signals, c, and the ones pre-
dicted from PMA data, ĉ, with smaller values indicat-
ing better results:

MCD[dB] =
10

ln10

√
2

D

∑
d=1

(cd− ĉd)
2. (18)

Subjective evaluation of resynthesised speech via
listening tests, although also useful, is not reported
here due to the preliminarily nature of this work. This
is left for future work.

For estimating the performance of direct synthe-
sis, a 10-fold cross-validation scheme is used. Hence,
the available data for each speaker is randomly di-
vided into ten sets and, in each round, 9 sets are used
for training and the remaining one for testing. The
MCD results reported in the following sections corre-
spond to the average MCD result for the 10 rounds.

5.4 TIDigits Results

Fig. 2 shows a contour plot with the average MCD
results obtained for all the speakers as a function of
the number of mixture components used in the MFA
model and the length of the sliding window used to
extract the PMA parameter vectors. As expected,
the more mixture components are used in the MFA
model, the more accurately the non-linear PMA-to-
acoustic mapping is represented and, hence, better
MCD results are obtained. Moreover, increasing the

1 2 4 8 16 32 64 128

Number of mixture components

 20

 80

 140

 200

 260

P
M

A
-f
ra

m
e 

w
in

d
o
w

 l
en

g
th

 [
m

s]

7.37.3

7.07.0

6.76.7
6.46.4 6.16.1 5.85.8

5.55.5

5.25.2

4.94.9

1 2 4 8 16 32 64 128

Number of mixture components

 20

 80

 140

 200

 260

P
M

A
-f
ra

m
e 

w
in

d
o
w

 l
en

g
th

 [
m

s]

Figure 2: Average MCD results obtained for all the speak-
ers in the TIDigits datasets as a function of the number of
mixture components used in the MFA model and the length
of the PMA-frame window.

length of the sliding-window used to extract the PMA
feature vectors also helps, as this reduces the uncer-
tainty of the mapping by taking into account more
contextual information. In terms of speech intelli-
gibility, informal listening of the resynthesised sam-
ples show that speech is intelligible and the speaker’s
voice is clearly identifiable1.

The performance of direct synthesis for each
speaker is shown in Fig. 3. A 64-component MFA
model, which is the model providing better overall
results in Fig. 2, is chosen now. It can be seen
that the results for all the speakers follow a similar
trend and by increasing the length of the PMA-frame
window better results are achieved. For example,
the relative improvements of using a window span-
ning 25 frames (260 ms) in comparison with just a
single frame (20 ms) are 10.88%, 17.49%, 10.49%,
12.64% and 14.76% for speakers speakers M1-M4
and F1, respectively. In terms of reconstruction accu-
racy, the better results are obtained for speakers M1
and M4, whereas M2 and F1 are the worst speakers
in this sense. We also see that the absolute difference
between the results for M4 and F1 (best and worst
speaker, respectively) is approximately 0.6 dB, which
more or less correspond to the performance difference
between using a window of 20 ms and a window of
260 ms for speaker M4. The differences in perfor-
mance among speakers can be mainly attributed to
two factors: the user’s experience in using the PMA
device and how well the device fits her/his anatomy.
In regard of the first reason, it must be pointed out
that M1, M3 and M4 were proficient in the use of the
PMA device, while for M2 and F1 the data record-
ing session was also the first time they used the PMA

1Several speech samples are available in the Demos sec-
tion of http://www.hull.ac.uk/speech/disarm
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Figure 3: Performance of direct synthesis (in terms of Mel-
Cepstral distortion) for different speakers in the TIDigits
database.
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Figure 4: Comparison between the proposed approach for
articulatory-to-acoustic conversion using MFAs and Toda’s
et al. approach using GMMs (Toda et al., 2008). For
our proposal, the conversion accuracy using different latent
space dimensions (i.e. 5, 10, 15, 20, and 25) for vt in (5) is
evaluated.

device. With respect to the latter reason, the current
PMA device prototype was specifically designed for
M1’s anatomy, so it is reasonable to think that artic-
ulatory data is more accurately captured for him than
for the other speakers.

We now compare the quality of the resynthesised
voices obtained by our technique with the voices ob-
tained by the well-known GMM-based conversion
technique proposed by Toda et al. in (Toda et al.,
2008; Toda et al., 2007). For a fairer comparison, both
methods are evaluated using the MMSE-based map-
ping algorithm. Furthermore, we evaluate our pro-
posal using different dimensions for the latent space
variable vt in (5). The dimensions are 5, 10, 15,
20, and 25, the latter being the dimensionality of
the MFCC parameter vectors. Results are shown in
Fig. 4. As can be seen, both methods perform al-
most equally except when the dimensionality of the
latent space in the MFA-based conversion system is
very small (i.e. 5 or 10). In this case, the quality of
synthetic speech is slightly degraded due to the in-
ability of properly capturing the correlations between
the acoustic and PMA spaces in such latent spaces.

Table 1: MCD results (in dB) obtained for the Arctic
database. Two conversion systems are compared: oracle
and non oracle (see the text for details).

PMA frame window length (ms)
20 50 80 110 140 170 200 230 260

Oracle 4.75 4.81 4.88 4.90 4.92 4.94 4.95 4.98 5.00
Non oracle 6.39 6.28 6.17 6.14 6.11 6.10 6.08 6.08 6.07

For dimensions greater than 15, we see that both ap-
proaches (GMM and MFA) report more or less the
same results, with the benefit that our proposed ap-
proach is more computationally efficient because of
the savings of carrying out the computations in the
reduced-dimension space.

5.5 Arctic Results

Table 1 presents the MCD results obtained for the
Arctic database when a 64-component MFA model
is employed (the dimensionality of the latent space
is 25). Two systems are compared. The non-oracle
system corresponds to the PMA-to-acoustic conver-
sion procedure described in Section 3. In the oracle
system, on the other hand, the posterior probabilities
P(k|xt) used by the MMSE estimator in (15) are com-
puted using both xt and yt , where yt are the speech
parameters extracted from the original audio signals
(i.e. we are cheating). The rationale behind the ora-
cle system is to evaluate the conversion performance
when less uncertainty is involved in the mapping by
simulating that we know in advance the dominant
mixture component in each frame. As can be seen,
there is a big drop between the results for the TIDigits
database in Figure 2 and those presented here for the
non-oracle system. The reason is the greater phonetic
variability of the Arctic sentences. Thus, the PMA-
to-acoustic mapping is more difficult to model for the
Arctic sentences due to the greater uncertainty of the
one-to-many conversion. Nevertheless, we see from
the results obtained by the oracle system that better
results can be obtained by reducing the uncertainty as-
sociated with the mapping. An example of the speech
spectrograms obtained by the oracle and non-oracle
conversion systems is shown in Figure 5. Perception
of re-synthesised Arctic sentences is highly variable:
some phrases are captured well, while others are in-
coherent.

Figure 6 shows a box plot with the detailed MCD
results obtained by the non-oracle conversion system
for different phone categories. When considering the
manner of articulation, we can see that the nasals and
plosives tend to be synthesised less accurately than
other sound classes. For nasals, this is due to the
current PMA prototype not modelling the velum area,
whereas for the plosives the problem is the difficulty
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Figure 5: Examples of spectrograms of natural speech
(top), oracle PMA-to-acoustic conversion (middle), and
non-oracle conversion (bottom) for the utterance “He will
follow us soon”.
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Figure 6: Detailed MCD results on the Arctic database for
different speech sounds considering their manner (top) and
place of articulation (bottom).
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Figure 7: Cross-session synthesis results: MCD results ob-
tained when synthesising PMA data from Session 2 in the
TIDigits database using a MFA model trained on the Ses-
sion 1 dataset.

in modelling their dynamics. When considering the
place of articulation, it is difficult to extract any mean-
ingful conclusions but we can see that many errors
are made for the sounds articulated in the back of the
mouth, which the current PMA prototype is not cap-
turing well.

5.6 Cross-session Synthesis Results

So far it has been assumed that there is no mismatch
between the data used for training and that used for
testing. However, as already discussed in Section 4,
this is not always true. Variations in the positions
of the magnets pre- and post- implantation as well
as variations in the relative position of magnets with
respect to the head-frame used to hold the magnetic
sensors (see Figure 1), will inevitably lead to mis-
matches that will degrade the quality of speech syn-
thesised from sensor data. In this section, we evaluate
the performance of the direct synthesis technique in
one scenario which introduces such mismatch: speech
is synthesised from PMA data recorded by the speaker
M1 in his second recording session (Session 2) using
a MFA model trained on parallel data from his first
session (Session 1).

Figure 7 shows the MCD results obtained for the
above experiment when a 64-component MFA model
and a PMA-frame window of 200 ms are used. In the
figure, Ideal refers to the ideal case in which there is
no mismatch between training and testing (i.e. paral-
lel data from Session 2 is used for training and test-
ing within the cross-validation scheme), the NoAdapt
system directly convert the sensor data from Session
2 using the model trained on data from Session 1 with
no compensation, and the remaining results are for the
compensation technique proposed in Section 4: LIN
models the mismatch function as a linear transforma-
tion, while MLP uses a multilayer perceptron with 10,
15, 20 and 25 sigmoid units in the hidden layer.

As can be seen, the best results are obtained in the
Ideal case where there is no mismatch between train-
ing and testing. Even though magnet placement was
documented to avoid misplacement between sessions,
we see from the NoAdapt results that even small
changes between sessions are catastrophic in terms of
the synthesised speech quality. This is greatly alle-
viated, however, by the proposed compensation tech-
nique. In this case, the results are only slightly worse
than the result obtained in the ideal case. Regarding
the different approaches for mismatch compensation,
it can be seen that the best results are obtained us-
ing a MLP with 25 hidden units due to the greater
modelling flexibility allowed by this model. Nev-
ertheless, a simple linear transformation (LIN) also
achieves very similar results to MLP-25 with the ben-
efit of LIN being more computationally efficient.

6 CONCLUSIONS

In this paper we have introduced a system for synthe-
sising audible speech from speech articulator move-
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ment captured from the lips and tongue using perma-
nent magnet articulography. Preliminary evaluation
of the system via objective metrics show that the pro-
posed system is able to generate speech of sufficient
quality for some vocabularies. However, problems
still remain to scale up the system to work consis-
tently for phonetically rich tasks. It has also been re-
ported that one of the current limitations of PMA, that
is, the differences between the articulatory data cap-
tured in different sessions, can be greatly reduced by
applying a pre-processing technique to the sensor data
before the conversion. This result brings us closer to
being able to apply the direct synthesis method in a
realistic treatment scenario. These results encourage
us in pursuing our goal of developing a SSI that will
ultimately allow laryngectomised patients to recover
their voice. In order to reach this point, a number
of questions will need to addressed in future research
such as making better use of temporal context, im-
proving the conversion accuracy for a large vocab-
ulary, ways of recovering the prosodic information
(i.e. voicing information and stress), and extending
the technique to speech impaired speakers.
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