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Abstract: The issue of collaboration amongst agents in a multi-agent system (MAS) represents a challenging research
problem. In this paper we focus on a form of cooperation known as coalition formation. The problem we con-
sider is how to facilitate the formation of a coalition in a competitive marketplace, where self-interested agents
must cooperate by forming a coalition in order to complete a task. Agents must reach a consensus on both the
monetary amount to charge for completion of a task as well as the distribution of the required workload. The
problem is further complicated because different subtasks have various degrees of difficulty and each agent is
uncertain of the payment another agent requires for performing specific subtasks. These complexities, cou-
pled with the self-interested nature of agents, can inhibit or even prevent the formation of coalitions in such a
real-world setting. As a solution, an auction-based protocol calledACCORDis proposed.ACCORDmanages
real-world complexities by promoting the adoption of cooperative behaviour amongst agents. Through exten-
sive empirical analysis we analyse theACCORDprotocol and demonstrate that cooperative and fair behaviour
is dominant and any agents deviating from this behaviour perform less well over time.

1 INTRODUCTION

Coalition formation is one of the fundamental re-
search problems in multi-agent systems (Wooldridge,
2011). Coalition formation represents an important
means of MAS cooperation, which has associated
benefits such as enabling agents to take advantage of
their complementary capabilities, resources and ex-
pertise.

Multi-agent coalition formation represents a fun-
damental means of MAS cooperation. We consider
the problem of coalition formation in a dynamic real-
world context. The real-world problem domain that
we address consists of a marketplace populated by
self-interested agents, where each agent represents an
individual firm. In this marketplace, a task consisting
of multiple subtasks is proposed to all agents. We as-
sume that no agent is capable of individually perform-
ing an entire task. Therefore, in order to successfully
perform a task, agents must cooperate by forming a
coalition.

Successfully forming a coalition in such an envi-
ronment represents a significant research challenge.
Firstly, an agent must determine the optimal set of
agents with whom to enter into a coalition. Secondly,

if a coalition of agents is to successfully form, its
member agents must reach a consensus on the amount
to charge for completion of the task as well as the dis-
tribution of the required workload.

As we have done in previous work (Scully and
Madden, 2014), we incorporate a number of real-
world difficulties into our problem domain, to ensure
its practical applicability. We assume that agents do
not possess perfect information about one another;
rather, each agent is unsure of the value (monetary
or otherwise) that other agents place on specific sub-
tasks. An emergent difficulty is that agents may ar-
tificially inflate the financial reward they require for
performing a subtask within a coalition.

We incorporate an additional real-world complex-
ity into our problem domain with the assumption that
subtasks may have various levels of difficulty. It is re-
alistic to expect that agents performing the more diffi-
cult subtasks will expect to receive a higher financial
reward. This may lead to an increased level of com-
petition for the more difficult subtasks, which in turn
could lead to a scenario where agents are unable to
reach agreement on the distribution of tasks within a
coalition. We refer to the occurrence of such a sce-
nario as deadlock.
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We propose that the occurrence of deadlock and
the artificial inflation of financial rewards can be
avoided if the agents involved were to act in a fair and
cooperative manner. In the context of this work, an
agent exhibits fair behaviour if it honestly calculates
the financial reward for all member agents of a coali-
tion (including itself) on the basis of its personal be-
liefs. An agent is cooperative if it agrees to participate
in any coalition proposal irrespective of the subtask
it is asked to perform, assuming the financial reward
it receives for performing that subtask is adequate.
Cooperation allows us to avoid deadlock as an agent
will participate in a coalition, even though it may not
be optimal from that agent’s perspective. While the
adoption of cooperative and fair behaviour would al-
low agents to successfully form coalitions, the diffi-
culty remains that such agents are self-interested and
have to be motivated to adopt these behaviours.

We progress our previous research (Scully and
Madden, 2014) by considering two variations of the
ACCORDprotocol:

1. Public ACCORD, in which each agent is required
to reveal to all others how much it would charge
for each subtask; this is analogous to anopen cry
auction

2. Private ACCORD, in which agents do not have to
reveal monetary information; this is analogous to
asealed bidauction.

2 ACCORD

In this section, we describe theACCORD(An Auction
Integrated Coalition Formation Protocol For Dynamic
Multi-Agent Environments) protocol, which will en-
able agents to form coalitions while simultaneously
governing agent behaviour by promoting the adoption
of cooperative and fair behaviour. We consider two
variants,Public ACCORDandPrivate ACCORD.

2.1 Motivation for Two Versions of
ACCORD Protocol

At a fundamental level, theACCORDprotocols are
a type of auction, which are extended specifically for
the purpose of facilitating coalition formation. Before
presenting theACCORDprotocols in detail we con-
sider the issue of information privacy. Should agents
be allowed to retain as much private subtask infor-
mation as possible or should they be required to di-
vulge some of this information to the other agents in
the environment? It is interesting to note that an auc-
tion protocol can be categorised on the basis of its ap-

proach to the issue of information privacy. An auction
can be classified as either an open-cry auction, where
participants divulge private information to the public,
or a sealed-bid auction, where information remains
relatively private and is only shared with the auction-
eer. Consequently, from the perspective of providing
a coalition formation protocol, we propose that both
approaches (public and private) constitute valid solu-
tions depending on the prevailing view of information
privacy. Therefore, we provide two versions ofAC-
CORD. One version requires the public revelation of
private monetary information while the other allows
each agent to retain a significant amount of their pri-
vate information.

The first approach, which we refer to asPublic
ACCORD, requires each agent to reveal the mone-
tary amount it would charge for completion of each
subtask that it is interested in performing (see Section
2.3).

While in certain environments agents may be will-
ing to reveal private information, it is also reasonable
to assume that in some scenarios agents would pre-
fer not to divulge a full price list to competing agents.
Therefore, our second approach requires an interested
agent to propose a monetary amount to another agent
on the basis of its own private information. We refer
to this protocol asPrivate ACCORD, which is pre-
sented in more detail in Section 2.4.

2.2 Problem Description

The ACCORDenvironment contains a set of self-
interested service agentsA = {a1,a2, . . . ,am} and an
auctioneer agent. The setS= {s1,s2, . . . ,sh} consists
of all valid subtasks that can be performed in this mar-
ket. Any agentai ∈ A is capable of performing a cer-
tain set of subtasksSai , such thatSai ⊆ S. In addition,
ai maintains a set of private valuations for all possi-
ble subtasks. The functionmn() denotes the monetary
valuation thatai places on any subtask. For example,
ai ’s private valuation of subtasksg is mn(i,sg).

In order to perform a task,ai must cooperate with
one or more agents in the form of a coalition. A coali-
tion is represented by the tuple〈C,salloc, palloc〉.
The members of the proposed coalition are contained
in the setC, such thatC ⊆ A. In order for a coali-
tion to form successfully, the agents inC must reach
an agreement on the distribution of subtasks and fi-
nances within the coalition. The subtask distribution
is specified by the allocation functionsalloc(). For
any agentai ∈ C, salloc(ai) returns the subtask(s)
within the coalition thatai is to perform. The finan-
cial distribution is specified by the allocation func-
tion palloc(). Therefore, the monetary amount thatai
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would receive for performing its specified subtask(s)
within the coalition ispalloc(ai).

2.3 Protocol Description of Public
ACCORD

Public ACCORDcan be subdivided into the following
eight stages:

1. Task Submission. A customer submits a taskT
consisting of multiple subtasks to the auctioneer,
such thatT ⊆S. Subsequently, the auctioneer will
send notification ofT to each agentai .

2. Bidder Participation. Each agentai will inform
the auctioneer of whether or not it is willing to
participate in the protocol. It is logical thatai will
participate iff:

∃ sx : sx ∈ Sai ∧ sx ∈ T

In order forai to indicate its willingness to par-
ticipate in the protocol it must submit its offers
to the auctioneer. The subtask and monetary of-
fers from ai in relation toT are denoted by the
setBT

ai
= {ST

ai
,PT

ai
}. The setST

ai
= {s′1,s

′
2, . . . ,s

′
q}

contains the subtasks inT thatai is capable of per-
forming.
The setPT

ai
containsai ’s private monetary valua-

tion for each subtask specified inST
ai

. Therefore,
PT

ai
= {mn(i,s′1), . . . mn(i,s′q)}.

3. Auction Commencement.The auctioneer main-
tains a record,BT , of the subtask and monetary
capabilities of all agents willing to participate in
the protocol. When the auctioneer receives a re-
ply, BT

ai
, from ai it adds it to the recordBT .

Once all replies have been collected the auction-
eer will commence a first-price sealed bid auction
for T. Subsequently, the auctioneer sends notifi-
cation of the auction deadline coupled withBT to
each agentai that is willing to participate in the
protocol.

4. Coalition Proposal. Agents participating in the
protocol will propose coalitions to each other in
a peer-to-peer manner. Therefore, anai will ini-
tially perform coalition calculation in order to
determine the optimal coalition proposalCPai =
〈C,salloc, palloc〉. In order to construct such
a coalition proposal,ai must consider both the
monetary demands and subtask capabilities of all
agents. Fortunately, on receipt ofBT , ai is aware
of the subtasks inT that all other agents can per-
form as well as the monetary amount each agent
will charge for completion of these subtasks.

We also assume thatai maintains a private estima-
tion of the level of cooperation exhibited by other
agents. It is reasonable to expect thatai will incor-
porate these cooperation ratings into its coalition
calculation process. For example, it would be less
likely to include an agent that constantly refuses
all coalition proposals compared to an agent that
regularly demonstrates a high willingness to ac-
cept proposals.

Once ai has determined the optimal member
agentsC = {a′1,a

′
2, . . . ,a

′
n} it can construct and

sendCPai to each member agent inC.

5. Proposal Response.An agentav will assess any
coalition proposalCPai that it receives. It will is-
sue either an accept or reject notice to the propos-
ing agent.ACCORDdoes not control the means
by whichav evaluates a coalition proposal. How-
ever, it is reasonable to assume thatav will con-
sider both the subtask(s) and the monetary award
it is offered inCPai . It is also reasonable to expect
that av will assess the value of participating in a
coalition with the other member agents inC.

6. Coalition Proposal Result. After sending a pro-
posalai must await the replies from the potential
member agents of the coalition. The two possible
outcomes of this stage are:

• The failure to form the proposed coalitionCPai .
If ai receives one or more rejections from the
member agents inC the coalition cannot be
formed. It must subsequently inform all agents
in C of the unsuccessful completion of coalition
formation. If adequate time remains before the
auction deadline expiresai can recommence the
coalition proposal stage and attempt to form an-
other coalition.

• The successful formation of the proposed coali-
tion CPai . If ai receives an acceptance from
each of the potential member agents then the
coalition formation process has been success-
ful. It subsequently notifies each member agent
that the proposed coalition has been success-
fully formed.

7. Bid Submission.If ai successfully forms the pro-
posed coalitionCPai it will subsequently enter the
coalition as a bid in the auction. Each agent is lim-
ited to submitting a single bid. Therefore, afterai
has submitted a bid, it can only participate in the
proposal response stage. That is, it can only ac-
cept or reject coalitions proposed by other agents.

Once the auctioneer receivesCPai , it calculates the
total monetary reward required by the coalition to
performT as∑n

d=1 palloc(a′d). Subsequently, the
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auctioneer records this as a sealed-price bid in the
auction.

8. Winner Notification. Once the auction deadline
expires, the auctioneer calculates the lowest mon-
etary bid. The member agents of the correspond-
ing coalition are notified that they have been suc-
cessful in obtaining the contract to collectively
performT.

2.4 Protocol Description of Private
ACCORD

Private ACCORDfacilitates agent-based coalition
formation while also placing emphasis on the reten-
tion of private information.Private ACCORDcan be
subdivided into the same eight stages used to illus-
trate Public ACCORD. However, only two of these
stages differ from the formal description ofPublic
ACCORD. We confine our description ofPrivate AC-
CORDto these two stages.

(2) Bidder Participation. In order for an agentai to
indicate its willingness to participate in thePri-
vate ACCORDprotocol it must submit a list of its
subtask capabilities to the auctioneer. The agent
does not provide it’s private monetary valuation
to the auctioneer.
The subtask capabilities ofai for T are denoted by
BT

ai
= {ST

ai
}. As before, the set

ST
ai
= {s′1,s

′
2, . . . ,s

′
q}

denotes the subtasks thatai can perform.

(4) Coalition Proposal. Agents participating in the
protocol will propose coalitions to each other
in a peer-to-peer manner. Each agentai , must
first perform coalition calculation in order to de-
termine its optimal coalition proposalCPai =
〈C,salloc, palloc〉.
In order to construct such a coalition proposal,ai
will need to consider both the monetary demands
and subtask capabilities of other agents. On re-
ceipt ofBT , ai is aware of the subtasks inT that
all other agents can perform. However, because
perfect information is not available,ai is uncertain
of the monetary amount each agent will require as
payment for performing a given subtask.
Each agentai must maintain a matrix of expected
payments for each subtask for each agent. Ini-
tially ai may base the monetary price of a sub-task
to other agents as equal to its own cost for per-
forming that sub-task. However, we also assume
thatai has basic learning abilities that allow it to
improve the accuracy of its estimations through
repeated interaction with other agents.

It is also reasonable to assume thatai will main-
tain a private estimation of the level of cooper-
ation exhibited by other agents. Therefore, the
cooperation rating of all participating agents is
also considered when performing coalition calcu-
lation.
Once ai has determined the optimal member
agentsC = {a′1,a

′
2, . . . ,a

′
n} it can construct and

sendCPai to each member agent inC.

2.5 Motivating Cooperation and
Fairness in the ACCORD Protocols

Cooperation is not an intrinsic attribute of a self-
interested agent. Therefore, for successful coalition
formation to occur, it is necessary to motivate a self-
interested agent to cooperate. The proposed coalition
formation protocols impose the restriction that each
agent can only submit a single bid to the auction for
a task. However, throughout the duration of the auc-
tion, an agent may receive numerous coalition pro-
posals, originating from other agents, for the same
task. Upon receipt of such a proposal an agent has
the opportunity to participate in another coalition by
issuing an acceptance. If the coalition is successfully
formed, the agent increases the probability that it will
be a member of the winning coalition. Therefore, we
hypothesise that a higher probability of success pro-
vides the agents participating in theACCORDproto-
cols with the motivation to cooperate.

Self-interested agents attempt to maximise their
own profit. Therefore,ACCORDmust ensure that
agents are fair and will not artificially inflate their own
financial rewards. Agents are provided with two dis-
incentives against acting selfishly. Firstly, by acting
selfishly, an agent reduces its probability of winning
the auction, since the more an agent inflates its finan-
cial reward the less probable it is that its bid will win
the auction. Secondly, by acting selfishly, an agent
reduces its appeal to others as a potential coalition
partner. When performing coalition calculation it is
logical to assume that an agent will attempt to min-
imise the total price charged by the coalition. There-
fore, selfish agents with inflated monetary require-
ments are less probable to be chosen as coalition part-
ners. Therefore, we hypothesise that a lower proba-
bility of success provides agents participating in the
ACCORDprotocols with a disincentive against acting
selfishly.
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3 EMPIRICAL EVALUATION

The objective of this empirical evaluation is to un-
dertake a comparative analysis betweenPublic and
Private ACCORD. We have developed a simulation
testbed to evaluate the protocols. Each experiment
measures the performance of agents adopting differ-
ent behaviours in theACCORDsimulation environ-
ment. Section 3.2 presents a brief summary of the
results ofPublic ACCORD. A more comprehensive
analysis of the Public ACCORD results can be found
in (Scully and Madden, 2014). Section 3.3 and 3.4
assess the impact of adopting uncooperative and self-
ish behaviour inPrivate ACCORDand contrast this
with the results observed from thePublic ACCORD
protocol.

3.1 Experimental Methodology

Each experiment is run on 10 randomly generated
datasets. A dataset is comprised of 50 tasks, which are
auctioned in sequential order. Each task consists of 8
subtasks, chosen randomly from a set of 20 possible
subtasks. The duration of each auction is 4 minutes.
If two bids of equal value are submitted, a winner is
chosen randomly.

We referred to deadlock a situation where a subset
of agents, attempting to form a coalition, are unable
to reach agreement due to a high level of competition
for performing specific subtasks. There may be one or
more subtasks that multiple agents are capable of per-
forming and they are unable to find a resolution. We
simulate such an environment by ensuring that each
agent is capable of performing a large number of the
possible subtasks. For each new dataset a population
of 20 service agents is generated. Each agent is capa-
ble of performing 8 subtasks. By allowing each agent
to perform 8 out of the possible 20 subtasks, a high
level of competition and consequently deadlock regu-
larly occurs in our simulation environment.

The monetary amount each agent will charge for
subtask completion must also be generated. For each
subtasksz ∈ S (where S is the set of all possible
subtasks), we have randomly selected a mean cost,
Vsz, with a uniform distribution between 10 and 99.
To simulate uncertainty of information, each agent
chooses the monetary amount it will charge for com-
pletion of sz by using a Normal distribution with a
standard deviation of 2 and a mean equal toVsz.

For each of the 10 datasets generated, the perfor-
mance of 4 differing behaviour types (described later)
is contrasted. Within the simulated marketplace of 20
agents, each agent will exhibit 1 of the 4 behaviours
(5 agents for each behaviour). The subtask capabil-

ities are also represented equally amongst agents ex-
hibiting differing behaviours. This allows us to com-
pare the performance of different behaviour types in
an unbiased manner.

The result of a single experiment is arrived at
by combining the results obtained from 10 randomly
generated datasets. After each task in a dataset is auc-
tioned, the accummulated financial reward obtained
by each agent type is recorded. Therefore, the results
of a single experiment are derived by summing the
accumulated financial reward received by each agent
type across the 10 datasets.

We characterise each agent with a function accept-
ing two parameters,λ(α,β). The level of coopera-
tion exhibited by an agent is denoted byα, such that
0≤ α ≤ 1, α ∈ R. The level of selfishness displayed
by an agent is defined byβ, such that 0≤β≤ 4,β∈Z.

A fair coalition proposal offers an agent an ade-
quate financial reward for performing a specific sub-
task. An adequate financial reward is greater than or
equal to the true reward the agent would expect to
receive for performing the subtask. If an agent re-
ceives a fair coalition proposal, it must subsequently
decide whether it will cooperate and join the proposed
coalition. It bases this decision on its value ofα.
The parameterα represents the minimum fraction of
the most financially rewarding subtask that an agent
is willing to accept. For example, consider the task
Tr(A,D), which consists of the sub-tasksSr(A,B),
Sr(B,C) andSr(C,D). Assume that agentt1 with an
α value of 0.5 expects a monetary reward of 15 units
for performingSr(A,B) and 40 units for performing
Sr(C,D). Therefore, itsα value dictates that it will
not accept a coaliton proposal that offers less than 20
(0.5∗ 40). Higher values ofα imply lower coopera-
tion. If t1 in our above example had anα value of
0.8 then it would only accept a coalition proposal that
offered it greater than or equal to 32 (0.8∗40).

An agent can exhibit selfish behaviour by artifi-
cially inflating its own financial rewards. The value
of β signifies the amount by which an agent increases
its financial reward. For example, assume the agent
t1 with β = 0 expects a financial reward of 40 units
for performingSr(C,D). If the configuration oft1 is
changed so that it hasβ = 1 it would now expect a
financial reward of 41 units for performingSr(C,D).
Agents withβ = 0 exhibit fair behaviour because they
do not artificially inflate their own financial rewards.

3.2 Fair and Cooperative Behaviour in
Public ACCORD

We initially present the effect of different levels of
selfishness (β) in Public ACCORD. We perform 4
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Figure 1: Overview of Fair (β = 0) and Selfish (β > 0) Be-
haviour forPublic ACCORD.

experiments that contrast the performance of fair
(β = 0) and selfish (β > 0) agents. In Experiment 1
we contrast the performance of selfish agents where
β = 1 with fair agents (β = 0). The 4 agent types
that populate the marketplace are Cooperative Fair
(λ(0,0)), Cooperative Selfish (λ(0,1)), Uncoopera-
tive Fair (λ(1,0)) and Uncooperative Selfish (λ(1,1)).

The details for Experiments 2 — 4 are the same,
except that selfish agents useβ = 2 in Experiment 2,
β = 3 in Experiment 3 andβ = 4 in Experiment 4.

An overview of the results obtained by coopera-
tive agents in the Experiments 1 — 4 are presented
in Figure 1. The performance of the Cooperative
Fair λ(0,0) agent type over Experiments 1 — 4 is
normalised as 100%. Figure 1 measures the perfor-
mance of the Cooperative Selfish agent types (λ(0,1),
λ(0,2), λ(0,3), λ(0,4)) in the Experiments 1-4 as a
percentage of the performance of the Cooperative Fair
agent type. The Cooperative Fairλ(0,0) agent type
exhibits the best performance. It is evident that an in-
crease in the value ofβ corresponds to a decrease in
performance.

To investigate the effect of different levels of co-
operation (α), Experiments 5 — 8 are performed.
The objective of these experiments is to contrast the
performance of cooperative (α = 0) and uncoopera-
tive (0 < α ≤ 1) agents. In Experiment 5, we ex-
amine the performance of uncooperative agents that
useα = 0.25 with cooperative agents (α = 0). The
4 agent types that populate the marketplace for Ex-
periment 5 are Cooperative Fairλ(0,0), Cooperative
Selfishλ(0,2), Uncooperative Fairλ(0.25,0) and Un-
cooperative Selfishλ(0.25,2). The details for Exper-
iments 6 — 8 are the same, except that uncooperative
agents useα = 0.5 in Experiment 6,α = 0.75 in Ex-
periment 7 andα = 1 in Experiment 8.

Figure 2 contains an overview of the results ob-
tained by fair agents in the Experiments 5 — 8. As
a fair agent reduces its value ofα it experiences a
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Figure 2: Overview of Cooperative (α = 0) and Uncooper-
ative (0< α ≤ 1) Behaviour forPublic ACCORD.
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Figure 3: Comparing Performance of Fair (β = 0) and Self-
ish (β = 1) Behaviour forPrivate ACCORD.

corresponding degradation in performance. This re-
sult demonstrates the dominance‘of cooperative be-
haviour (α = 0) in Public ACCORD.

3.3 Fair/Selfish Behaviour in Private
ACCORD

The experiments undertaken in this section investi-
gate the effect of different levels of selfish behaviour
(β) amongst agents participating inPrivate ACCORD.
Experiments 9 — 12 are executed in thePrivate AC-
CORDenvironment. As in Section 3.2 these exper-
iments contrast the performance of fair (β = 0) and
selfish (β > 0) agents. The agent population setup for
Experiments 9 — 12 is the same as the setup used for
Experiments 1 — 4 respectively. For example, selfish
agents useβ = 1 in Experiment 9,β = 2 in Experi-
ment 10,β = 3 in Experiment 11 andβ = 4 in Exper-
iment 12.

The results obtained from Experiment 9 are de-
picted in Figure 3. The Cooperative Fair (λ(0,0))
agent type significantly outperforms all other agent
types. The cooperative fair agents outperforms all
other agent types in the Experiments 10-12. These ex-
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Figure 4: Overview of Fair (β = 0) and Selfish (1≤ β ≤ 4)
Behaviour forPrivate ACCORD.

periments also show a reduction in the performance of
the selfish agent types as the value ofβ is increased.

Figure 4 presents an overview of the results ob-
tained by cooperative agents in Experiments 9 — 12.
The results confirm that the performance of an agent
type decreases as it increases its value ofβ. It is also
interesting to compare the overview of selfish varia-
tion in Private ACCORD(Figure 4 ) with that of self-
ish variation inPublic ACCORD(Figure 1). The self-
ish agent types inPrivate ACCORDoutperform their
equivalent agents inPublic ACCORD, confirming that
selfish behaviour is more severely punished inPublic
ACCORDthan inPrivate ACCORD. It can also be ob-
served that the initial period of instability experienced
by agents in Figure 1 is also present in Figure 4. How-
ever, not only is the duration of the instability experi-
enced in Figure 4 longer than that experienced in Fig-
ure 1 but the degree of variance present is also more
severe. This period of instability is attributed to the
learning process that each agent must undergo. That
is, each agent must learn about the other agents with
whom they share the market-place. However, inPub-
lic ACCORDeach agent is already aware of the price
other agents require for performing specific subtasks.
Therefore, an agent need only learn about the level
of cooperation exhibited by other agents. However,
agents participating inPrivate ACCORDare unaware
of the financial demands of other agents and conse-
quently face a more complicated and time consuming
learning task. This is reflected in the increased insta-
bility present in Figure 4.

3.4 Cooperative/Uncooperative
Behaviour in Private ACCORD

In order to assess the impact of varying levels of un-
cooperative behaviour inPrivate ACCORD, 4 experi-
ments (numbered 13 — 16) are performed. The agent
population setup for these experiments is the same
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Figure 5: Comparing Performance of Cooperative (α = 0)
and Uncooperative (α = 0.25) Behaviour forPrivate AC-
CORD.

as for Experiments 5 — 8. The only difference is
that Experiments 13 — 16 are run on thePrivate AC-
CORDsimulation environment instead of thePublic
ACCORDenvironment. Uncooperative agents use,
α = 0.25 in Experiment 13,α = 0.5 in Experiment
14, α = 0.75 in Experiment 15 andα = 1 in Experi-
ment 16.

The results obtained from Experiment 13 are de-
picted in Figure 5. As with the previous experi-
ments the Cooperative Fair (λ(0,0)) agent type out-
performs all other agent types. It is interesting to con-
trast the results of this experiment with those obtained
from the equivalent experiment (Experiment 5) per-
formed on thePublic ACCORDsimulation environ-
ment. The uncooperative agent types (λ(0.25,0) and
λ(0.25,2)) perform better when participating inPri-
vate ACCORD(Experiment 13) than they do inPub-
lic ACCORD(Experiment 5). This indicates that un-
cooperative behaviour is less advantageous inPublic
ACCORDthan it is inPrivate ACCORD.

The results of experiments 14 — 16 reveal that the
cooperative fair agents remain dominant, while also
showing a gradual degradation in the performance of
the the uncooperative agents as they increase their
value of ofα.

An overview of the results obtained by fair agents
in the Experiments 13 — 16 are presented in Figure
6. On examination of Figure 6 it is apparent that a sig-
nificant period of instability occurs at the commence-
ment of each of the experiments. The Cooperative
Fair (λ(0,0)) agent type is outperformed briefly by the
Uncooperative Fair (λ(0.25,0)) agent type at the be-
ginning of Experiment 13. The performance of each
agent type stabilises over the duration of the experi-
ment. While the initial instability in Figure 6 is an
undesirable attribute ofPrivate ACCORD, it is still
necessary in order for each agent to learn about the
other agents in the market-place and identify potential
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Figure 6: Overview of Cooperative (α = 0) and Uncooper-
ative (0< α ≤ 1) Behaviour forPrivate ACCORD.

partners. Apart from initially being outperformed the
Cooperative Fair (λ(0,0)) agent type still proves to be
dominant. The instability present in Figure 6 is more
severe than that present in Figure 2, which presents an
overview of uncooperative behaviour inPublic AC-
CORD. This is consistent with our previous observa-
tion thatPrivate ACCORDexperiences greater initial
instability thanPublic ACCORD(Section 3.3).

It is also interesting to compare the instability that
occurs in Figure 6 and in Figure 4, which presents an
overview of selfish behaviour inPrivate ACCORD.
The instability present in Figure 4 is visibly less se-
vere than that encountered in Figure 6. This indicates
that learning to identify uncooperative agents repre-
sents a more difficult task than learning to identify
selfish agents. This is to be expected because of the
inherent inconsistency of uncooperative behaviour.
While a selfish agent behaves selfishly all the time,
uncooperative agents may only exhibit uncooperative
behaviour occasionally (an agent withα = 0.25 may
rarely adopt uncooperative behaviour).

As expected, Figure 6 demonstrates that as an
agent increases its level of uncooperative behaviour
its performance degrades. By comparing the results
of Figure 6 and Figure 2, which assesses the impact
of uncooperative behaviour inPublic ACCORD, we
can conclude that agents adopting uncooperative be-
haviour achieve a higher level of performance when
participating in Private ACCORDthan they do in
Public ACCORD. This confirms that uncooperative
behaviour is less severely punished inPrivate AC-
CORDthan inPublic ACCORD.

4 RELATED RESEARCH

A important research objective in multi-agent systems
is to enable self-interested agents to successfully form
coalitions. A coalition of agents can jointly perform

a complex task, which the individual member agents
would be unable to complete in isolation (Ye et al.,
2013). Coalition formation research in MAS’s can be
broadly classified into either macroscopic or micro-
scopic coalition formation(Vassileva et al., 2002).

The macroscopic approach examines the entire
agent population and research work in this area has
focused on the development of techniques to calcu-
late the optimal coalition structure, which is the di-
vision of all agents in the environment into exhaus-
tive and disjoint coalitions (Sen and Dutta, 2000),
(Bachrach et al., 2013), (Rahwan and Ramchurn,
2009), (Iwasaki et al., 2013), (Dan et al., 2012), (Xu
et al., 2013). This work typically assumes any given
coalition has a fixed determinable value, which is uni-
versally known by all agents (Sandholm and Lesser,
1997). This assumption conflicts with one of the real-
world difficulties we incorporated into our problem
domain, namely, that agents may maintain differing
values for any subtasks, which also means they may
have differing values for any coalition.

In the microscopic approach to coalition forma-
tion each agent will reason about the process of form-
ing a coalition based on its personal information and
its perspective of the system. The work in this area
can be divided into cooperative and self-interested
multi-agent environments. Significant research at-
tention has been focused on the development of dis-
tributed coalition formation protocols for cooperative
agent environments (Tošić and Ordonez, 2012), (Ye
et al., 2013), (Smirnov and Sheremetov, 2012).

Microscopic coalition formation has also been
studied in the context of hedonic games. In such an
environment self-interested agent achieve a specific
level of satisfaction based on the coalition they join.
A number of distributed protocols have been proposed
to facilitate coalition formation in such environments
(Ghaffarizadeh and Allan, 2013), (Aziz et al., 2011),
(Genin and Aknine, 2011). A solution to a hedonic
game is the exhaustive decomposition of all agents in
an environment into coalitions.

Research has been carried out on the topic of
coalition formation in self-interested buyers markets.
One such example is the development of coalition for-
mation protocols that enable buyers, interested in pur-
chasing the same or similar products, to form coali-
tions (Tsvetovat and Sycara, 2000) (Shehory, 2000).
These protocols facilitate coalition formation, how-
ever the market that they address differs significantly
from that considered in this paper as the agents are
not in direct competition with one another.
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5 CONCLUSIONS

This paper has introducedPublic and Private AC-
CORD to facilitate the process of coalition forma-
tion in dynamic real-world environments. In order
to evaluate these protocols we developed a simula-
tion testbed that was used to contrast the performance
of agents adopting different behaviours. The results
demonstrate that cooperative and fair behaviour is
dominant in our empiricial environment. This solves
the problem of artificial inflation of financial rewards
and provided a mechanism of forming coalitions that
would not suffer from deadlock.

It was also found that deviant behaviour (uncoop-
erative or selfish behaviour) was more severely pun-
ished inPublic ACCORD. It was also observed that an
initial period of instability was experienced in both
Public andPrivate ACCORD, which corresponds to
the duration of the agent learning process. Because
Public ACCORDrequires the revelation of private in-
formation, the initial instability it experienced was not
as severe as that experienced inPrivate ACCORD.

There is wide range of possible research avenues
for theACCORDprotocols. An undesirable property
of these protocols is the presence of an initial period
of instability. This has been attributed to the learning
process that each agent must undergo. Such instabil-
ity could potentially be exploited by uncooperative or
selfish agents. Sen & Dutta encounter a similar prob-
lem with their method of reciprocative-based cooper-
ation and effectively employed a reputation mecha-
nism as a solution. An interesting area of future work
would be to incorporate a similar reputation mecha-
nism into theACCORDprotocols. It would also be
worthwhile to observe the level of instability that oc-
curs inPublic andPrivate ACCORDfor large agent
populations. For example, is it possible that the pe-
riod of instability will increase inline with the size of
the agent population?
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