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Nowadays supply chains have to face an increasing number of risks related to the globalisation, especially
impacting the procurement processes. Even though tools are available to help companies in addressing those
risks, most companies, even larger ones, still have problems to adequately quantify the risks and assess to
what extend an alternative could address them. The aim of our work is to provide companies with a software
supported methodology to quantify such risks and elaborate adequate risk mitigation strategies at an optimal
cost. Based on a survey conducted about the risk management practices and needs within companies, we
developed a tool that enables a constant focus on risks by enabling the easy expression of key risks together
with the process model and hence help to focus the granularity of the model at the right level. A model-based
simulator can then efficiently evaluate these risks thanks to well-known Monte-Carlo simulation techniques.
Our main technical contribution lies in the development of an efficient discrete event simulation (DES) engine
together with a query language which can be used to measure business risks based on simulation results.
We demonstrate the expressiveness and performance of our approach by benchmarking it on a set of cases

originating from the industry and covering a large set of risk categories.

1 INTRODUCTION

Companies are faced with increasing procurement
risks in the context of globalisation. Those risks can
be related to many different factors such as the geo-
graphic location, the political and economic situation.
Assessing those risks alone is also a difficult task as
the risks can reveal themselves at the end of the pro-
duction chain and it requires also to consider to some
extend the impact of internal risks such as the com-
plexity of the manufacturing process (which could de-
crease the capacity to adapt to a supplier failure) or
the level of optimisation in place (which would rise
the impact in case of disruption).

Helping company managers to take the right deci-
sions in the presence of such risks is not an easy task.
Analytic reasoning is quickly impractical and model-
based simulation has proved a very relevant approach
(Deleris and Erhun, 2005). Procurement risks put ex-
tra challenges as they occur at one end of the process
but can sometimes only be measured at the other end,
so they require to embrace the whole manufacturing
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process. Addressing this challenge is precisely the
scope of our work, with a focus on small and medium
enterprises in the field of mechanical engineering.
Our ultimate goal is to produce a user-friendly
tooled methodology that will guide the user through
the whole process of risk assessment. In order to
reach this goal, our work is structured as follows:

e First, a taxonomy of supplier and internal risks
has been identified, starting from the simplest risk
of shortage of raw material, which can eventually
drain the whole process chain to more elaborated
risks related to the kind of order policy used.

e Second, a survey was conducted on the state of
practice of risk evaluation in industrial context
(Printz et al., 2015b). The results of this survey
showed that nearly 66% of the companies perform
risk evaluation, although only 10% rely on dedi-
cated software tooling. This means that in practice
risks are evaluated by an individual estimation of
the cost factor and the probability of occurrence.
In general, estimation quality increases by includ-
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ing historical data in the estimation. However, re-
lying on historical data and estimating the impact,
like delivery timings, quality of the materials is
not possible either in the case of changing sup-
pliers or adding parallel processes in the chain.
Based on the requirements identified in the con-
ducted survey a software based risk management
framework has been defined.

e Third, we developed a modelling and simulation
toolset to identify risks, quantify them and decide
on design alternatives that can help to mitigate
them. The main technical scope of the present pa-
per is to detail our framework and show how it
helps focusing the modelling on the risks to stay
efficient in the modelling time, simulation time
and result analysis time.

e Fourth, we are also validating our work with a
group of companies that are already trying our
tool through an easy to use web interface. Al-
though this validation is not yet complete, we
could already benchmark our approach on a num-
ber of industry cases and assess the expressiveness
and performance of our approach.

Our modelling framework includes concepts such
as storages where items can be stored or retrieved
with a maximum capacity, as well as several types of
production processes with different timing and failure
behaviours. In addition, we defined a query frame-
work on models that is fully declarative and includes
arithmetic, temporal and logic operators as well as ba-
sic probes on the elements of our factory model (con-
tents of a storage, whether a process is running or
not, etc). Based on this query language, the toolset
is able to calculate the probabilities of different sce-
narios (e.g. delay in deliveries, defective parts or poor
quality) and their impact, based on a timed model of
the considered factory processes.

The approach of monetary risk quantification is
based on an approach developed in the Q-Risk project
(von Cube et al., 2014). The simulation toolkit relies
on the discrete event simulation module of the OscaR
framework for its base simulation layer, and adds ded-
icated abstractions, dedicated to the timed modelling
of factories, and the modelling of risk-related queries
(OscaR, 2012).

Our main contribution lies risk-driven dimension
of our framework but also to the attention to usability.
Its design is based on a number of trade-offs between
expressiveness and simplicity of the modelling lan-
guage, as well as efficiency of the simulation engine.

The paper is structured as follows: section 2
presents the context of our work; section 3 presents
our modelling language for representing factories;
section 4 presents our query language that can serve
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to evaluate risks; section 5 illustrates how complex
risks can be included in our query language; section 6
shows the benchmarking of our simulation tool both
on the expressiveness and performance dimensions;
section 7 discusses some related work; section 8 con-
cludes the paper.

2 BACKGROUND

In order to assess and quantify different kind of risks
in manufacturing processes, we model the manufac-
turing process as a flow graph. This models captures
both the key procurement step but also the production
process itself. In particular, the resource storage place
(like warehouses or stockrooms) and the raw mate-
rials flow through basic processes will be explained
in section 3.1. The main graphical notations imple-
mented by the graphical part of framework are shown
in Figure 1 which is a model used later in our bench-
marking. Notations are quite self explanatory: a sup-
plier is a little truck, storage types are represented by
different variant of cylinder (the one with vertical bars
can overflow) and processes are depicted with the in-
dustry icon (also with some variants: multiple hori-
zontal lines means parallel batches, the cross means
possible failure, the rounded, the rounded box depict
a conveyor belt).
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Figure 1: Beer game model.

The operation of the whole manufacturing process
can be described as a sequence of timed events. For
instance, in a simulation of a single factory, the first
events are fetching some materials of a storage that
will be worked by a process. This fetch can trigger
a new order to a supplier if the storage level reached
some threshold, according to a supply chain policy.

In the rest of this section, we will first remind the
reader about the nature of risks and the goal of risk
management, then we will give some details about
Discrete Event Simulation and why it is an adequate
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framework to model the operations of manufacturing
processes and gather relevant data to quantify risks
(Romeike, 2004).

2.1 Risks and Risk Management

In order to develop a Discrete Event Simulation ap-
proach to quantify the impact of risks in manufactur-
ing enterprises, the nature of risk and the underlying
process of risk management needs to be understood in
detail.

2.1.1 Risk

Risks strongly affect enterprises business success di-
rectly being related to costs, effort and yield (Zsi-
disin and Ritchie, 2009). Thereby, risk is under-
stood as an event likely to occur with an undesired
consequence. The most common and for the ap-
proach most convenient categories of risks are the
cause and impact-oriented definition. The root-cause-
oriented approach considers uncertainty of informa-
tion validity as risk (Siepermann, 2008). Consider-
ing the chance not meeting a planned target is un-
derstood as impact-oriented risk definition. However,
only combining both categories of risk lead to the nec-
essary scope of information needed to properly man-
age risks. Hence, risk needs to be understood as cer-
tain likelihood to miss a defined target. Hence, the
concept of risk is defined through three components:
the hazards, or potential dangers, the consequences of
those hazards, and their predicted frequency, or like-
lihood (Sutton, 2015). A natural” quantification of
the hazard associated to a risk is the product of all the
quantified consequences by the likelihood. A cyber-
netic model of procurement based hazards and their
management is presented in (Printz et al., 2015a).

Risk likelihoods can be modeled with probability
distributions (Artikis and Artikis, 2015), as the oc-
currence of a risk hazard in a process or system is
naturally uncertain. In (Zio, 2013), a theory of prob-
abilistic risk analysis is developed, associated to the
concept of system reliability. As risk is defined as the
deviation from a planned value, statistical measures
can thus be applied to operationalise and compare
the possible magnitude of such deviations (GleiB3ner,
2012). Evaluation of the risk analysis and the reliabil-
ity of a system can be done with Monte-Carlo meth-
ods (Deleris and Erhun, 2005).

2.1.2 Risk Management

The main objective of risk management lies in the as-
surance of major corporate goals under consideration
of risk policy strategies. Hence, risks affecting long

lasting business success need to be controlled. How-
ever, enterprises will never be able to totally eliminate
risks and will always have to consider a certain degree
of residual risk (Finke et al., 2010). One key task of
risk management is to identify and analyze risks as
early as possible to take cost optimal risk treating ac-
tions (Zsidisin and Ritchie, 2009).

The basic process of risk management (Figure 2)
is described in the standards ISO 31000 and ONR
49000 ff. IEC 31010 provides an overview of cor-
responding risk management methods and techniques
along the process.

Risk assessment

Risk identification
Risk analysis

Risk evaluation

Risk monitoring

Risk treatment
Figure 2: Risk management process.

2.2 Discrete Event Simulation

There are two main approaches for representing the
time if we want to simulate the behaviour of a sys-
tem: the first approach is to use a continuous time, in
which the events affecting the system occurs in time
“ticks” which are proportional to the actual expected
time of operation for the system. The other approach
is to have a discrete time, and concentrate the simula-
tion only in the operational events instead of the time
events. This is the basis of Discrete Event Systems
(DES).

In the literature (Brailsford et al., 2014; Byong-
Kyu and Donghun, 2013), the main components of
a DES model are described as: entities, which are
the items that are flowing and transformed through
the simulation, gueues, representing storage devices
or other areas in which entities wait to be used, activ-
ities, that actually perform some work on the entities,
and resources, a special kind of entities that are re-
quired to operate activities.

DES models define events as discrete points of
time in which the system state changes. The simu-
lation of the model becomes the checking of a queue
of the different events triggered, the “next-in-time” at
the first place. Checking an event can trigger other
events in the queue. For instance, checking the event
of starting an activity will trigger the events of fetch-
ing the corresponding entities needed to perform the
activity, and ending the activity. The event of activity
failure can also be triggered with a given probability.
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Several software solutions exist to support DES
based modelling for a variety of applications. Among
the commercial software, we can cite AnyLogic
(AnyLogic, 2015), Arena (Rockwell Automation,
2015) and Plant Simulation (Siemens, 2015).

3 A SIMULATION META-MODEL
FOR FACTORIES

All the main elements of manufacturing processes are
represented in our simulation meta-model, which al-
lows us to define concrete models that are simulated
in a Discrete Event Simulation engine. In addition
to this, we designed a query language over concrete
simulations in order to collect and analyse data.

3.1 Modeling Factory Processes

This section introduces the basic blocks for represent-
ing factories. In our approach, factories are modeled
as flows of items through processes and stocks.

Storages represent any kind of stock device or
room place for raw materials, like a warehouse, a
barrel, a silo or a dumpster. They have a maximum
capacity. When this capacity is reached, they either
overflow, or block the upfront processes, depending
on the setting of the storage. If a full stock can over-
flow, any unloading material on that stock is lost.

Batch processes are factory processes that work
in a batch fashion; supplies are collected from vari-
ous stocks, then the process runs for some time, and
finally the produced outputs are dispatched to their re-
spective stocks before this whole cycle starts again.

Continuous processes are factory processes that
typically run on a conveyor belt. Items are continu-
ously picked from input stocks and undergo the pro-
cess immediately on a physical end of some machine,
pass through the machine in a queue, and when they
reach the other end of the machine, the resulting items
are dispatched to their respective stocks. A simple ex-
ample is a conveyor belt that passes through a bakery
oven; raw pastries are set on one end of the conveyor
belt; they go through the oven and are cooked when
they reach the other end of conveyor belt where then
are dispatched to their output storage.

Splitting processes are similar to batch processes,
except that they have several sets of outputs and when
it completes, one set of output is selected and the pro-
duced items are dispatched to the stocks associated
to the selected output. This represents a quality as-
surance process whose items flow is split into two (or
more) separated flows, based on the result of the qual-
ity assurance analysis.
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Parallel processes are variant of the above pro-
cesses where several lines of the same process are run-
ning in parallel. Basically, all processes introduced
here above have a parameter specifying the number
of process lines running in parallel.

Items flowing in processes and stocks are indistin-
guishable at a given point of the factory, since they all
share the same part number. Yet, they have some in-
trinsic features: some items might come from a given
process, others might be made out of poor quality
supplies, etc. These intrinsic features can influence
on the behavior of some processes, such as the split-
ting process representing a quality assurance process.
This notion of intrinsic features lead us to distinguish-
ing between two different types of storage, namely:
First In-First Out (FIFO) storage and Last In-First Out
(LIFO) storage.

Input

Sersck 4

Process
noLines:int

| LIFQ Storage I | Continuous Process |

FIFO Storage Splitting Process

Batch Process

Figure 3: Concepts of our process modelling languages.

3.2 Process Activation and Supply
Chain Policies

Supply chain policies are also integrated in our model
of the factory, together with activation policies that
are able to turn a process on or off, depending on the
demand for the output stock. To model these two con-
cepts, we introduce the notion of activable and acti-
vation. An activable is something that can be enabled
through an activation. We also associate a magnitude
with the activation, that is, an integer. An activable
can be a process, or a supply order. In the case of a
process, the activation represent the number of batch
that the process is allowed to execute. In the case of
an order, the magnitude represent the number of or-
dered items.

In our model, an order is a stationary activable ob-
ject that represents a class of order that can be passed.
The order is passed when the modeled order object is
activated.

Activables can be activated based on various rules
that are also part of our modelling framework. There
are three types of activation rules, namely: regular ac-
tivations that perform the activation on a regular basis,
based on a period of time; order-based activations that
perform the activation when an order is received; and
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Activates

Activable Activation Rule

A
| 1
to IConstant Order TopUp
At Threshold at threshold
With Tick With Tick

Constant Order TopUp
At Threshold at threshold

Figure 4: Concept for modelling activation rules.

stock monitoring activation that perform the activa-
tion when the stock level gets below some threshold.

3.3 Modelling Intrinsic Item Features

To represent these intrinsic features, we introduce the
notion of item class, representing the set of intrinsi-
cally identical items. Item classes are characterized
by a set of boolean attributes. A global set of at-
tribute is defined for the whole simulation model, and
each piece has its own combination of attribute val-
ues, defining the item class to which it belongs.

When an item flows through a process, the pro-
cess can update the attribute of the item, to reflect that
the process was applied to this item. Similarly, when
an item flows through a splitting process, the selected
output can be specified according to the attributes of
the item. At this point, we had to set a trade-off be-
tween expressiveness of the modelling language, its
simplicity, and the efficiency of the simulation. Our
trade-off is to consider that processes can update the
class of items through three basic operations: setting
an attribute, clearing an attribute, or loading a con-
stant set of attribute. At the level of the simulation
engine, any combination of these operations can be
aggregated into two efficient bit-wise operations per-
formed using bit masks representing attributes.

Another restriction that we have implemented is to
consider how the class of items produced by a process
are linked to the classes of potentially several inputs
of this process. Our choice is to consider the union
of all attributes of all inputs performed for starting a
batch of the process, and set this union as the start
class of the whole batch. The class transformation
function of the process is then applied on this class,
and every item output by the process from this batch
share the same output class computed by this class
transform function.

4 PERFORMING QUERIES OVER
SIMULATIONS

The goal of our approach is to perform risk-related
queries on factory simulations. These queries are
meant to be performed on single runs of simulation
occurring inside the Monte-Carlo engine which ag-
gregates the queries results over the runs. It can then
be queried afterwards e.g. for mean, median, ex-
tremes, variance of these queries over the runs.

Our query language can roughly be split into
six sets of operators, namely: probes on processes,
probes on storages, logic operators, temporal logic
operators, arithmetic operators, and temporal arith-
metic operators. Arithmetic and logic operators differ
by their their return types; they return numeric and
boolean values, respectively.

Since this query language runs over simulated
time, we take the convention that the value of the
queries are computed at the end of the trace on which
they are evaluated. We define the operator of our lan-
guage together with their semantics by using the =
notation: ¢ |= P is the value of expression P when
evaluated at position ¢ of the current trace.

Some fragments of the queries are evaluated
throughout the simulation. We take the convention
that they are evaluated at the end of each discrete sim-
ulation step, after all events happening at this point in
time are performed.

Some temporal operators refer to the previous po-
sition in time, denoted as prev(¢), notably to compute
deltas or assess changes. These should be used with
care since we are in an event-based model of time, so
adding such operators in the query will add extra time
events in the simulation.

4.1 Probes for Processes

The probes on processes are atomic operators that ex-
tract basic metrics from processes of the simulation
model. Suppose that p is such a process, the follow-
ing probes are supported:

e ¢ = running(p) true if the process is running at
time ¢, false otherwise.

e ¢ = completedBatchCount(p) the total number of
batches performed by the process between the be-
ginning of the trace, and time ¢.

e ¢ |= startedBatchCount(p) the number of batches
started by the process between the beginning of
the trace, and time ¢. For a process with multiple
lines, it sums up the started batches of each line.

e 1 = totalWaitDuration(p) the total duration where
the process was not running between the start of
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the trace, and time ¢. for a process with multiple
lines, it sums up the waiting time of each line.

e ¢ |= anyBatchStarted(p) true if a batch as started
by the process at time ¢

4.2 Probes for Storages

The probes on storages are atomic operators that ex-
tract basic metrics from storages of the simulation
model. Suppose that s is such a storage:

e 1 = empty(s) true if the storage s is empty at time
t, false otherwise.

e 7 |= content(s) the number of items in the storage
s at time ¢.

e 1 |= capacity(s) the maximal capacity of s. This is
invariant in time.

e ¢ |= relativeCapacity(s) the relative content of
storage s at time ¢, that is: the content of the stock
divided by the capacity of the storage.

e 1 = totalPut(s) the number of items that have been
put into s between the beginning of the simulation
and time ¢, not counting the initial ones.

e ¢ |= totalFetch(s) the number of items that have
been fetched from s between the beginning of the
simulation and time ¢.

e ¢ = totalLostByOverflow(s) the number of items
that have been lost by overflow from s between
the beginning of the trace, and time f. If s is a
blocking storage, this number will always be zero.

4.3 Operators

Logical Operators
e 1 |= true the constant true.

e ¢ |= false the constant false.

t =11 the negation operator.

t E L op I, where op is one of {&,||} repre-
sent conjunction, and disjunction operators, re-
spectively, returning their conventional results.

t = ay comp ap where comp is one of {<, >, <, >
,=,7} represent comparison operators over nu-
merical values, returning their standard results.

Temporal Logic Operators
e ¢ = hasAlwaysBeen !/ true if for each ¢’ in [0;7],
i/ El
e ¢ |=hasBeen [ true if there is a t’ in [0;¢] such that

i El
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e 1 =1 since I, true if there is a position #’ in [0;7]
such that ¢’ = I, and for each position ¢ in [£,1] ,
t ': I8

e 1 = @] true if both t =1 and prev(t) =!1.

e ¢ = changed(e) e might be a logic or arithmetic
expression; this evaluate to true when ¢ = e and
prev(t) = e have different values.

Arithmetic Operators

e 7 |=n where n is a numerical literal represents a
literal constant value

e 1 = aj op a; where op is one of {+, —, *, /} repre-
sent the classical arithmetic operators over numer-
ical values, returning their conventional results.

e 1 |= —a represents the unary negation.

Temporal Arithmetic Operators
e 1 =delta(al) is a shorthand for ¢ |=a prev(t) Ea

e t | cumulatedDuration(b) let be T =
(l‘] ,tz)Hl‘] = prev(tz)&n ): b&ty ': b the ac-
cumulated duration of b is the sum over the
couples (t1,#) in T of 111

t |= time evaluates to 7.

¢t = min(a) the minimum over all the values of
' = a with ¢ in in [0;7]

t = max(a) the maximum over all the values of
t' = a with ¢ in in [0;¢]

t = avg(a) the average of all the values of ' = a
with ¢ in in [0;7]

t = integral(a) the integral of ¢’ = a di’ with ¢’ in
[0;¢]. The integral is computed through the trape-
zoidal rule taking the events as discretisation base.

5 EXPRESSING RISKS AS
QUERIES

Using our query language, we can estimate quantities
that can be related to risk on the “normal” operation
of a factory. Before, we need to identify the risks we
want to quantify. Some of those risks are dependent
on one specific factory or stock, whereas some other
risks are more general and influences a subset or the
whole model.

Risks Specific to Stocks. In overflowing stocks,
we are interested in measuring the risk of los-
ing pieces, that are measured by the probe
totalLostByOver flow(stock).  This allow us to
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see if it is needed to adapt the capacity of the
stock service. It is also possible that a stock is
over-sized, that is, the maximum contents of the
stock along the simulation are too low with re-
spect to its capacity. This can be measured with
the probe max(relativeCapacity(stock)) and verify
whether that value is higher than an acceptable per-
centage of the stock capacity.

Risks Specific to Processes. In complex mod-
els, we are interested in processes that do not
work enough in the simulation, or even processes
that do not work at all. The percentage of idle
time for a process p is measured by the probe
mult(div(totalWait Duration(p), current Time), 100).
To detect whether the process p did not operate
at all in the simulation, we can use the probe
hasAlwaysBeen(lanyBatchStarted(p)).

Factory-specific Risks. We can check on failing
processes the relative percentages of material that
were successfully produced or had to be wasted. For
example, if a failing process p with a probability of
success of 80% is supposed to produce 5 units of raw
material in stock a or waste 10 units to stock b at
failure, checking that the materials put on each stock
after the simulation, correspond to the expected per-
centage can be expressed with the complex probes
div(totalPut(a),5 * completedBatchCount(p)) and
div(total Put(b), 10« completedBatchCount (p)).

6 BENCHMARKING

In order to assess the approach, we took a benchmark-
ing approach based on a set of representative models.
This section first describes our implementation, then
the set of models before detailing the benchmarking
results on our two main contributions:

1. Expressiveness: show that all the risks identified
in the cases can easily be captured by the mod-
eling primitives and measurement probe, either
based on the set of generic probes identified so
far or by writing case specific probes.

2. Performance: show that running probes does not
degrade significantly the performance of the sim-
ulation engine.

6.1 Implementation
Our simulator is implemented using the OscaR DES

module (OscaR, 2012) and is written in Scala.
A modelling web front-end was developed with

JavaScript technology, mainly Bootstrap, JQuery and
JointJS. The lightweight Scalatra web framework was
used to wrap up the simulator as a set of web services.

All the elements of the factory feature optimal
O(1) complexity for their update operations, with an
additional cost factor for the attribute manipulations,
although these are collapsed into a constant number of
bitwise operations. Queries are evaluated incremen-
tally during the simulation, by performing timely in-
spection of the internal state of the simulation model,
so that the trace is actually not generated. Complex
queries are split into sub-expressions that must be up-
dated at each step of the simulation, such as integrals,
and sub-expressions that only require a single evalua-
tion at the end of the trace, such as a constant weight-
ing factor on the integral. This keeps the overhead of
our query language under control.

6.2 Benchmark Models

We selected four representative models out of a set of
about 20 examples inspired by classic academic cases
(with specific complex aspects) to anonymous cases
collected in the industry. The cases also vary in the
level of use of random variables. We describe relevant
modelling aspects of each supply chain together with
specific risk issues associated with each model.

First Case: A Simple Assembler Factory. This
case, illustrated in Figure 5, models a simple fac-
tory that builds an industrial produce using two kinds
of parts, A and B. Each part has its supplier which
feeds the stocks when they become lower than a given
threshold. For part A, the supplier policy is to refill
the stock to its maximum capacity. For part B, the
policy is the delivery of a fixed amount of material.
Part B must be preprocessed before assembly. The
factory combines two units of part A and with one unit
of preprocessed part B with 80% of products passing
the quality tests. so the assembly process can be rep-
resented by a failing single batch process. The goal is
to assess if the input stocks are kept within safe limits
to cope with production demand.
-~

T N . Y/ \.@.

Figure 5: Model 1: a simple assembler factory.

Second Case: A Beer Game Model. Our second
case model is a classical problem called ’beer game”
(Klimov and Merkuyev, 2006). It is long linear sup-
ply chain going from the beer factory to the final re-
tailer, passing by distributors and wholesalers. The
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beer factory is considered here as a supplier and single
batch processes are used to represent external sources
of delay in the transport. Intermediary stocks also
add extra delays. The continuity of retailing, distribu-
tion and wholesaler processes is modeled by conveyor
belts. The resulting model is shown in figure 1. The
goal is to assess where potential bottleneck can occur.

Third Case: Multiple Suppliers. This case is in-
spired by a real industrial case, where the manufactur-
ing involves three different materials having their own
supplier and refill policy, with random delays belong-
ing to a gaussian probability distribution. 90% of pro-
duces built by a batch in the factory fulfill the quality
requirements. We want to evaluate the effects of dif-
ferent supplying policies in order to ensure the supply
chains operates at optimal capacity while minimising
the frequency of orders.

| @, PoLicY1 —» @ [ J
1

[l T
L Pt

Figure 6: Model 3: multiple suppliers.

Fourth Case: A Complex Assembly Process. Our
last case is inspired also in an industrial case of a fac-
tory where complex parts are assembled from 3 dif-
ferent materials following a complex process. Two of
the parts are preprocessed on factory units that can fail
(10% of failures for the first one, 40% for the second
one). The process is shown in figure 7.

I I(—).f HOUSING POLICY ——»@ °

b\
VW/V;',S_,. — \ /@‘
]\ 1/ ’,'/1

Rt

Figure 7: Model 4: complex assembly process.

6.3 Expressiveness Analysis

We identified a number of basic probes relating to
risks directly related to model element. Such probes
are automatically generated. SO, for each stock, we
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generate three different probes for measuring the av-
erage and maximum contents of the stock and verify
whether the stock is full or overflowing. For each pro-
cess, we generate a probe for measuring the amount
of time in which the process was idle or blocked in
the simulation.

Table 1: Benchmarking table for expressiveness.

Name | Size
Ml 9 (2/2/5)

Risk Type #probes | Comments
Full stock 20

Simple manu-

Process failure facturing
M2 17 Blocked process 36 Beer game
(1/7/9) Process failure
M3 8 (3/1/5) Full stock, Pro- 20 Multiple
cess failure suppliers

Supplier failure
M4 14 Stock losses 31 Complex part
(3/3/8) assembly

In addition, the user can specify extra probes
to express business specific risks that are typically
more complex queries on the model. Table 1 sum-
marises some model characteristics like size (suppli-
ers/processes/storages), risks and number of probes.
To assess expressiveness, we considered a single
probe which actually proved enough to cover the tar-
geted risks when used with basic probes. In the two
last models, we could also explore risk mitigation
strategies.

e In the first case, assessing the stocks of raw
materials were full could be achieved the probe
cumulatedDuration(relativeContent (stockA) =
1). For most time in the simulation, the stocks
were full while the assembler process worked
was at full capacity.

e In the second case, we looked at the relative idle
times in the process chain. We noticed that the
distribution process, just after the fabrication, is
the only one that blocks waiting for goods.

e In the third case, we both looked at process idle
time (basic probe) and the average contents of
stocks using the probe avg(content(st)). This
helped us discovering the best threshold to trigger
order while minimising idle time.

e In the fourth case, a full stock was blocking the
production. We mitigate the problem by experi-
menting with overflowing storage to estimate the
right size to avoid the overflowing, using the
probe rotalLostByOver flow(lipStorage).

6.4 Performance Analysis

We performed a Monte Carlo simulation on each case,
using a time limit of 10000 units and 2000 iterations
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to have a good precision. The results in table 2 are the
computed average. We performed the benchmarks on
an Intel Core 17-4600U CPU at 2.10GHz with 8§ GB
of RAM. Only a single core is currently used. The
simulation was triggered from the web interface on
the same machine as the server.

Table 2: Benchmarking table for performance.

Name | No probes Std probes All probes Overhead
M1 7,3 ms 11,9 ms 12,5 ms 71.2%
M2 11,3 ms 17,6 ms 17,8 ms 57.5%
M3 25,8 ms 29,2 ms 34,2 ms 32,6%
M4 6,8 ms 13,3 ms 13,4 ms 97,1%

The overhead in the simulation with probes varies
from 32,6% in Model 3 to 97,1% in Model 4. Model
3 has the longest run time, because of the randomness
in the delays of supplying induced by the probability
distributions associated to suppliers. Model 4 has the
shortest run time because the simulation stops at an
early time, due to a full intermediary stock. In this
case the relative overhead is bigger because the load
is totally only probes evaluation while the model is
stuck given the efficiency of the DES engine.

Globally, overhead are quite acceptable. Some
improvements have still possible in the context of in-
tegration with a web application, especially to op-
timise the network requests between the web inter-
face and the simulator and make that interface more
responsive. The total simulation time allows to run
thousands of simulations in a few minutes and to ex-
plore risk mitigation alternatives within an hour.

7 RELATED WORK

A typical risk assessment conducted on a given fac-
tory plan is reported in (Schmitt and Singh, 2009)
base on the Arena simulation tool, featuring DES and
Monte Carlo methods as in our work. It stresses the
importance of conducting stress-tests using such sim-
ulation platforms. Its focus is mainly on the disrup-
tion risk while our work can cope with other class of
risks like quality. Our framework provides an added
abstraction layer that can cut down the cost of per-
forming these important stress tests, and make them
achievable by smaller industries.

A similar analysis has been performed on a beer
supply chain in (Klimov and Merkuyev, 2006), whose
model was presented in section 6.2. This analysis
leads to an evaluation of inventory excessive accumu-
lation, a back ordering. Again, no dedicated tooling
was used for representing factories at a higher level,
leading to high costs for conducting such evaluation

in an industrial setting while our tooling could cope
with using the available primitives.

Another simulation-based risk assessment is re-
ported in (Finke et al., 2010). It features an aerospace
company with very low production volumes, and
leads to the elaboration of a dedicated simulation en-
gine. The engine was first developed with a purely
deterministic behavior, and then enriched with fail-
ure models and stochastic aspects. It showed of great
value to the company even though mainly focusing on
disruption risks, it helped the company to develop a
risk mitigation procedure. Our framework has a sim-
ilar purpose and try to propose a good compromise
between genericity and efficiency.

(Almeder et al., 2009) presents a general frame-
work that combines optimisation and DES for sup-
porting operational decisions for supply chain net-
works. Their idea is to iterate between a simulation
phase in which some parameters are estimated, and an
optimisation phase, that adapts the decision rules for
the simulation. Our current work does not cover the
minimization of the risk. The tool is rather designed
to ease the identification of risk controls by the risk
manager. We plan to address optimisation in a later
phase, based on the optimisation engines also present
in the OscaR framework (OscaR, 2012).

8 CONCLUSIONS

This paper presented a Discrete Event Simulation Ap-
proach, supported by a toolset that helps to build a
model of a supply chain with the goal to express and
assess risks on them with a specific focus on procure-
ment risks. The assessment is conducted using an
Monte-Carlo based simulation engine that can also be
used to further explore risk mitigation strategies.

Our strength is to support a declarative and easy
to use graphical modeling language for representing
factory processes and stocks, together with a declar-
ative query language for defining metrics to be mea-
sured while simulating the behaviour of the modeled
system. We could successfully benchmark our ap-
proach both from the expressiveness and performance
perspectives on several typical examples of factories,
together with their supply chain policies.

Of course, further work is required to fully align it
with industrial needs. Our current step is the internal
validation with a number of companies by putting the
tool in the hands of the risk managers on a pilot case.
We already identified a number of requests about:

e extension to the modeling language, e.g. to sup-
port the notion of shared resource among pro-
cesses and have a statistic model of process fail-
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ures and breakdowns. More specialised processes
allowing controlled fork/join are also required.

e identification of model parameters easing the
manual (and later optimised) exploration of risk
mitigation strategies.

e availability of a company library of specific risks
and related probes

e produce specific reporting (e.g. business continu-
ity plans). We have already explored some work
in this direction (Arenas et al., 2015).

e possibly support model refinements and granular-
ity of simulation. However our aim is not to cap-
ture the full reality but what will help assessing
identified risks.

e parallelisation in case of need of faster simulation
times. This is easy to implement.

Our framework combining usability, expressive-
ness and efficiency is an important milestone in our
work to raise the awareness of companies, especially
of smaller size, w.r.t. the need to evaluate their pro-
curement risks and elaborate their supplying policies
in the most optimal way. We believe it can be used to
manage more general risks. Our design ideas can also
be used to improve other risk management tools. Our
framework is available online (SimQRi, 2015) and is
planned for Open Source release.
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