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Abstract: Component-based development enforces separation of concern to improve reusability and maintainability. 
In this paper, we show how we extended Umple (http://try.umple.org) to support component-based 
development. The development of components, ports, and connectors is enabled using easy-to-comprehend 
keywords. Development is supported in both textual and visual representations. The design pattern followed 
in our implementation is the active object pattern. We show a comparison between Umple and other 
modelling tools. We show that Umple has a set of component features comparable to commercial modelling 
tools, but is the most complete, particularly with regard to code generation, among the open source tools. 

1 INTRODUCTION 

We describe in this paper how we have extended 
Umple to support component-based development. 

The main motivation behind our research is to 
simplify component-based development, specifically 
of real time systems. By component-based 
development, we mean the implementation of 
systems from concurrent components with well-
defined interfaces, such that components can 
communicate together via ports and connectors. 

Among common programming languages, a few 
allow real-time development such as C and C++. 
Languages such as Java require additional efforts to 
support real-time development.  

Model-driven approaches have for a long time 
been used to develop real-time applications. 
Compared with directly using a programming 
language, model-driven approaches give advantages 
such as enabling multiple target generation, fewer 
lines of code, and a high level of abstraction. 

However, the existing open-source modelling 
tools have limitations such has having limited 
capabilities for real-time development. 

Umple is an open source model-oriented 
programming language that allows developers to 
write their models either visually or textually 
(Badreddin et al., 2014). 

Code generation in Umple has options for 
different target languages such as Java, C++, PHP, 

and Ruby. Users can insert their code bodies in 
code-enabled elements such as methods, states, 
transitions, and operations. Inserted code can be 
language-specific, so users can add a code snippet 
for each target language.  

Major UML concepts are supported in Umple 
such as classes, associations, attributes, and state 
machines (Badreddin et al., 2014a; 2014b; 2014c). 
An Umple developer does not need to be a UML 
expert to write models. 

In this paper, we will highlight two of our key 
contributions. First, we will show how we extended 
Umple to support component-based modelling with 
new keywords and corresponding semantics. The 
development of components will be available both 
textually and visually similarly to other Umple 
features. Second, we will show a comparison 
between Umple and other modelling tools. In this 
comparison, we will pinpoint the features that are 
crucial for the support of component modelling. We 
will show how we managed in our implementation 
to cover the pinpointed features. 

We follow the active object pattern for the 
implementation of the component-based features 
(Lavender and Schmidt, 1996). An active object is 
an object that runs concurrently in a separate thread. 

The focus in our discussion is to show how we 
can use Umple to develop component-based models. 
Thus, we will not talk in detail about the content of 
the generated code. 
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The Umple models that we will show in this 
paper assume that the selected target language is 
C++. These models can be generated and rendered 
using UmpleOnline (http://try.umple.org). 

The support of real-time code generation is also a 
part of our research but we will not have it addressed 
in this paper. 

In a similar manner to languages such as Java 
and C++, an Umple developer must define a main 
function. The content of a main function must be 
written in the syntax of the selected target language. 
We will not necessarily show the main functions for 
all of the Umple models that we will show in this 
paper. 

This paper is organized as follows. In Section 2, 
we will discuss how component modelling is 
supported in Umple. In Section 3, we will give an 
extended example written in Umple. In Section 4, 
we will show a comparison between Umple and 
other component-based modelling tools. 

2 COMPONENT MODELING 
USING Umple 

In this section, we will discuss the newly introduced 
keywords to Umple used to support component 
modelling. 

2.1 Umple Components 

A component is a structured class that encapsulates a 
set of active methods and ports. An active method 
executes within its thread of control, initiates an 
activity concurrently, and ensures that data is sent 
and received between ports immediately while 
following some restrictions such as time constraints. 

A class becomes a component if it has at least 
one active method, port, or connector. 

An active method is defined as a regular method 
but a developer will additionally need to use the 
keyword "active". In Figure 1, there are two active 
methods defined in Lines 2 and 5. 
SimpleComponent in Figure will be a component, 
since it owns active methods 
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class SimpleComponent { Umple 
  active method1 { 
        cout << "Method1" << endl; 
  } 
  active methodWithParameters(int i){ 
       cout << "Method2" << i <<endl; 
  } 
} 

Figure 1: An example of component definition. 

2.1.1 Parts (Subcomponents) 

A component can own multiple parts 
(subcomponents), which are instances of this 
component or other components. In such a case, a 
component is referred to as a composite component. 
Subcomponents can also be composite. 

A subcomponent defines the hierarchical 
composition and internal structure of its owning 
components. For example, in Figure 2, part "a" 
shows an instance of type "A", and part "b" shows 
an instance of its type "B", while both instances exist 
in the context of their owner instance "c" that is of 
type "C". The Umple code of Figure 2 is in Figure 3. 

 

Figure 2: Multiple instances of different components. 
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class A { // A component Umple 
  active method1 {/* Empty */ } 
} 
class B { 
  active method2 {/* Empty */ } 
} 
 
class C { 
  A a; 
  B b; 
} 

Figure 3: An example of subcomponents. 

When a part is added to component, the class of 
this component will have a composition relationship 
with the owning class of this part.  

Composite relationships between a container and 
its parts can be defined by simply declaring an 
attribute of the part’s type within the composite. 
More complex cases may require relationships to be 
specified explicitly using associations and 
generalizations. 

Concepts such as generalization and multiplicity 
appear in both composite structure models and class 
diagrams. 

2.1.2 Method Invocation 

The invocation of an active method is asynchronous 
by default. Let us consider the simple example 
shown in Figure 4, in which a component, 
SimpleComponent has two active methods, 
method1, and method2. In Line 3, there is invocation 
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to the active method method2. The content of 
method2 will be executed asynchronously. 

Invoking method2 will cause the text in Line 8 to 
be printed indefinitely, and the client will not be 
blocked. 
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class SimpleComponent { Umple 
  active method1 { 
     method2(); 
  } 
 
  active method2 { 
     while(true){ 
        cout << "Keep outputting" << endl; 
     } 
  } 
} 

Figure 4: An example of asynchronous execution of active 
methods. 

The keyword "synchronous" is used to allow a 
developer to force synchronous behaviour on an 
active method. The keyword "synchronous" 
precedes the "active" keyword as shown in Figure 5. 

1 
2 
3 

synchronous active method1 { Umple 
      //Some synchronous content 
  } 

Figure 5: An example of synchronous execution of active 
methods. 

If we used the keyword synchronous with 
method2 defined in Figure 4, this would have caused 
clients to be blocked indefinitely unless method2 is 
interrupted. The process of interrupting an active 
method will be discussed in the next section. 

2.1.3 Atomic versus Interruptible Active 
Methods 

Simply, a reentrant active object can be interrupted, 
while an atomic active object cannot. 

In Umple, by default, an active method is 
interruptible. For simplicity, we do not have a 
keyword to define interruptible behaviour for an 
active method. On the other hand, if a developer 
wants make a method non-interruptible, they can use 
the keyword "atomic".  

Similarly to the keyword "synchronous", the 
keyword "atomic" precedes the "active" keyword. 
The declaration will be the same as shown in Figure 
5, but the keyword "atomic" will be used instead, as 
in Figure 6. 

 
1 atomic active  method2{/*Empty body */ } Umple 

Figure 6: An example of atomic execution of active 
methods. 

A developer can still manually interrupt an active 
method; this can be done at the level of the target 
language. For that, we provide an API, 
FutureObject. To limit the scope of this paper, we 
will only give a very brief example of the use of 
FutureObject in Figure 7. 

In Figure 7 in Line 8, there is a main function. In 
Line 9, an instance of a component named Test is 
declared; a call to a method of this instance is made 
in Line 10. When making a call to an active method, 
we get a FutureObject variable, which gives us more 
options to manage the execution process. In Line 11, 
there is a call to an API named "stop"; this API is 
used to interrupt the execution of an active method. 
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class Test { Umple 
     active method2 { 
          while(true){ 
                cout << "Keep outputting" << endl; 
          } 
     } 
        
     public int main(int argc, _TCHAR* argv[]) { 
          Test test1; 
          FutureObject<void> proxy1 = test1.method1(); 
          proxy1.stop(); 
     } 
} 

Figure 7: An example of interrupting active methods. 

There are other API methods in FutureObject 
such as wait data, subscribe, and unsubscribe. 

2.2 Ports 

A port is a special attribute owned by a component; 
it is used as an interface for communication among 
components. A port is an interaction point used as 
the origin and/or destination of data to be transferred 
among components. 

A port is defined as a regular attribute preceded 
by any of the keywords "in", "out" or "port" (dual). 
In Figure 8, three ports are defined in Lines 2-4. 

1 
2 
3 
4 

class SimpleComponent { Umple 
  public in Integer inputPort;  // An in port 
  public out Integer outputPort1;  // An out port 
  public port Integer dualPort1;  // A dual port 

Figure 8: An example of port definitions. 

External and internal ports can be specified 
through access modifiers such as "public" or 
"private". Private ports can only access the parts of 
their owning component 

A port is considered a behaviour port if it is used 
to trigger an event in a state machine.  
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There are no restrictions on the port type. A port 
for instance can even be a component. 

A port value is transmitted to other ports or 
components via connectors. When a port type is 
complex, we apply an appropriate 
serialization/deserialization technique. A port value 
is serialized into an intermediary object that can be 
transmitted in the form of messages. When messages 
of a transmitted object are received, they are 
deserialized back to the original object form. 

In terms of data transmission and 
communication, we support both messages and 
signals, which both are received as ‘events’ by their 
recipient.  

A message-based event is synchronous and used 
in point-to-point communication, while a signal-
based event is asynchronous. When invoking a 
synchronous event, the sender will wait until 
receiving a response.    

For simplicity, we will refer to both messages 
and signals as messages. For distinction, we will 
describe a message as asynchronous when referring 
to a signal. 

Message transmission is handled by the 
generated code; developers do not need to worry 
about the underlying structure of data transmission 
among components. 

A port can have multiplicity, which refers to the 
lower and upper number of subscribers or clients 
initiating a communication. It also refers to the 
process of replicating messages to multiple clients.  

If a port has multiplicity of a value more than 
one, port messages will be replicated to multiple 
clients. When the upper bound of port multiplicity is 
unbound, this means that there is no restriction on 
the number of messages to be replicated. 

A port with optional multiplicity means that it is 
not mandatory to broadcast or replicate messages 
from this port. 

From the above, we can say that port multiplicity 
is about connection configuration. For instance, it 
can be used to manage the minimum and maximum 
number of clients communicating 

In Umple, multiplicity is defined within a port 
declaration or through a port binding definition. In a 
port definition, multiplicity value can be defined 
within square brackets after a port attribute name. 
An example is shown in Figure 9; the port defined in 
Line 1 has fixed multiplicity of 4, while the port 
defined in Line 2 is unbounded.  

 

1 
2 

public in Integer somePort[4]; Umple 
public out Integer anotherPort[*]; 

Figure 9: An example of defining port multiplicity. 

For simplicity, we do not provide specific 
keywords to define the type of a port such as service, 
relay, or end ports. Instead, based on the semantic, 
type, and connection between ports, a port type is 
inferred. 

For instance, if the modifier of a port attribute is 
private, this port is considered a non-service port. 
An "in" port can be either relay or end (Selic, 1998). 
A relay port means that it propagates messages to 
other ports as opposed to end ports. As in example, 
the port "pn1" defined in Line 2 in Figure is a relay 
port. 

2.3 Connectors 

A connector or binding is used to specify how a 
communication channel is initiated, and how data is 
transferred. 

In other words, a connector is used to route 
requests from a "provided" interface of a component 
to a "required" interface of the same component or 
another component. In this context, a connector is 
used to specify the lower and upper multiplicity 
bounds of subscribers and clients. 

The operator "->" is used to define a connector. 
This is the same notation used for UML associations 
in Umple, since a connector acts like an association 
between active objects. The port on the left hand 
side is the source, and the port on the right hand side 
is the target. 

If a class interconnects between components via 
a connector, it will be considered a component even 
if does not own active methods or ports. 

A connector can be defined between two ports in 
the same component (Line 4 in Figure 10) or 
different components (Lines 49 and 50 in Figure 14). 

In the code generated, we create a method for 
each port, and it has the same name of this port. This 
method is used to send signals in the case of "out" 
ports, or receive signals in the case of "in" ports.  
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class Test { Umple 
 public in Integer pIn1;  // An in port 
  public out Integer pOut1;  // An out port  
  0..1 pIn1 -> * pOut1;  // A connector 
 
  after constructor { 
    // Send a value to the other port 
     pOut1(1);      
  } 
 
after pIn1(int data) { 
     cout << data << endl;      
  } 
} 

Figure 10: An example of port binding. 
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In Figure 10, we use the "after" keyword in two 
places, constructor (Line 6) and pIn11 (Line 11); the 
"after" keyword is one of the existing Umple 
features that enable aspect-orientation. 

In Line 8, a signal will be sent via pOut1 upon 
constructing the class. This signal will be received 
by pIn1. The value received by pIn1 will be printed 
out (Line 12). 

2.4 Incoming and Outgoing Message 
Handling 

A watch constraint is, like any other Umple 
constraint, a Boolean condition in square brackets. 
In the simplest case, it is just the name of a port, and 
essentially means ‘true when data is present on that 
port’. Examples are shown in Lines 9, 15, 26, and 33 
in Figure 14. 

A watch constraint is defined before the 
declaration of an active method. It specifies that the 
method to handle a port message. An active method 
can be alternatively considered an incoming or 
outgoing method based on the port direction.  

A watch constraint can encompass other logical 
and time constraints, as well as multiple ports. The 
active methods that use watch constraints are used to 
monitor messages incoming from other ports, or to 
propagate messages to other ports. 

For example, the watch in Line 9 in Figure 
14means that the active method "increment" listens 
to the incoming signals of the port pIn1. 

A watch constraint can also define a guard to 
filter out unnecessary messages. For example, in 
Line 26 in Figure 14, the active method "stop" will 
continue as long as the value of a port attribute is 
less than 10; otherwise, this active method will do 
nothing. 

Generated port attributes are thread-safe. The 
assumption is that composite components interact in 
a distributed environment. A port attribute can be 
accessed from several places, or even accessed 
externally. To enable this, we make sure that a port 
value can be accessed in two forms, read-only and 
read-write. 

In read-only form, all clients can access a history 
value of a port attribute. On the other hand, read-
write access is given to a single client at a time. This 
will prevent concurrent update, which can lead to 
other serious issues such as access violation or data 
loss. If other clients try to have read-write access at 
the same time, they will be put into a priority queue 
if another read-write operation is still in progress.  

A priority queue is a FIFO queue, in which 
requests have priority values set to zero by default. 

A request that has the highest priority is executed 
first even if it has been received after other requests 
in the queue. 

2.4.1 Triggers 

In the context of an active method, a trigger is 
defined using the operator "/" appearing at the start 
of a statement; it is used to invoke a code block or 
method without blocking (i.e. asynchronously). A 
code block used in this way is an anonymously 
defined active block. An example is shown in Lines 
8-12 in Figure 11. 
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synchronous active method1 { Umple 
     while(true){ /*some asynchronous content*/}; 
} 
active method2 { 
     method1(); 
} 
active method3 {      
     /{ 
         while(true){ 
                cout << "This is anonymous content" << endl; 
          } 
     } 
     /method1(); 
     method2(); 
} 

Figure 11: An example of different triggers and 
invocation. 

Figure 11 shows different types of execution. 
The anonymous active block defined in Lines 8-12 
is executed in an independent thread, since it is 
preceded by the operator "/". The same is true for the 
call to method 1. Both of these are immediately 
dispatched when method3 starts.  Without the 
operator "/", the active block would keep the rest of 
method3 waiting forever, since there is an infinite 
loop defined within it. 

There is a synchronous active method, method1 
defined in Line 1; this method is invoked 
asynchronously in Line 13. We refer to this kind of 
behaviour as half-synchronous. 

In Line 14 in Figure 11, a synchronous call to 
asynchronous method, method2 is made. In 
method2, there is a call to the synchronous method 
method1; we refer to this type of execution as half-
asynchronous. 

To wrap up, in Umple, there are four types of 
execution, full-asynchronous, full-synchronous, 
half-asynchronous, and half-synchronous.  

Full-asynchronous means that active method 
execution starts asynchronously and remains as such 
until the end of execution. In a similar manner, full-
synchronous means that an active method execution 
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starts synchronously and remains synchronous until 
the end of execution. On the other hand, half-
synchronous execution means that execution starts 
synchronously but at some point, has some 
asynchronous behaviour. Similarly, half-
asynchronous execution means that execution starts 
asynchronously but some synchronous behaviour is 
enforced during the execution. 

2.4.2 Call/then/Resolve Invocation Pattern 

Umple has an invocation pattern that we refer to as 
the call/then/resolve pattern. This pattern provides a 
flexible representation of the commonly known 
try/catch/finally. 

There is no specific keyword for the "call" part. 
It is simply a trigger action or method invocation. 

The patterns "then" and "resolve" have keywords 
after their name. Both patterns are optional. We can 
have different variations such as call/resolve, 
call/then, and call/then/resolve. The part "then" 
refers to a callback. Thus, once an active method is 
done executing, this "then" part will be triggered. 
The part "resolve" is invoked in case of failures or 
errors; an example will be shown in Figure 13.  

Figure 12 shows the different variations of the 
call/resolvee/then pattern. 
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/{ Umple 
     //call 
}.resolve ({ 
     //catch 
}).then ({ 
     //finally 
}) 
 
/{ 
     //call 
}. then ({ 
     //finally 
}) 
 
/{ 
     //call 
}. resolve ({ 
     //catch 
}) 

Figure 12: Examples of call/resolve/then invocation. 

2.5 Time and Message Handling 
Constructs 

Time is key in real time development. A developer 
must be given the ability to define soft or hard real 
time behaviour. In Umple, we have a list of time-
based constructs that give options to developers to 
define their time requirements. Table 1 is a summary 
of the basic time constructs. 

Some constructs are defined at the task level 
such as poll and delay. A task level construct means 
that a new trigger starts based on this time-construct.  

Other constructs can be defined at the action 
code level. Constructs at the action code level are 
defined as watch constraints in square brackets, 
which we referred to in Section 2.4. 

A time construct expects a value in milliseconds. 
It was important to follow the same metrics used in 
known languages such as Java. Other constructs 
expects a numeric value such as "priority". 

Table 1: The time and message constructs in Umple. 

Constructs Description 
Poll Invokes active methods in a regular manner.
Delay Enforces some delay before method invocation.
Priority Give a priority to an item in a priority queue. 

Timeout 
Sets a timeout maximum value before a task 
completion. 

Period 
Set a time interval to recheck if a condition is 
satisfied. 

Latency Sets the acceptable delay for a task. 
 

Call/then/resolve and watch statements usually 
use time and message constructs. Figure 13 shows 
an example, in which a method, someMethod makes 
an asynchronous trigger call in Lines 4-5. There is a 
task time construct, "delay" used to enforce one-
second delay before the active block is called. In 
Line 4, there are three watch constraints. The first is 
a logical condition used to ensure the active block 
only works as long as an attribute, "iteration" is less 
than 2500. The second watch constraint sets a 
priority of 1 on the defined active block. The third 
watch statement is a timeout construct of 5 seconds. 
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class Test { Umple 
   Integer iteration= 0;  
    void someMethod(){ 
      delay(1000)[ iteration <2500, priority(1),  
 timeout(5000)] / { 
             while(true){ 
                  cout << iteration << endl; 
                  iteration++; 
             } 
       }.then ({ 
         cout << " 2500 iterations reached within 5  
 << "seconds"<< endl; 
       }.resolve ({ 
         cout << " 2500 iterations not reached within 5  
 << seconds"<< endl; 
      }) 
   } 
} 

Figure 13: An example of time constructs. 

During the execution of someMethod, the value 
of "iteration" will be incremented by one for each 
iteration step (Line 8). There are two possible 
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scenarios to happen. If "iteration" reaches 2500 in 
less than 5 seconds (the time specified in the 
"timeout" statement in Line 5), someMethod will 
exit and then the body in Line 10 will be called. In 
the second scenario, 5 seconds are exceeded but the 
value of "iteration" is still less than 2500; in such a 
case, the resolve body in Line 13 will be invoked. 

In a well-designed Umple model, the interruption 
of an active method should be handled at the model-
level using composite structure or timing constructs. 

3 AN UMPLE COMPONENT-
MODELING EXAMPLE 

In this section, we will discuss a simple ping-pong 
example written in Figure 14 and visualized in 
Figure 15. We already talked about different 
segments of Figure 14 during our discussion in 
Section 2. 

In Figure 14, there are two peers denoted as 
Component1 and Component2; they are contained in 
PingPongComponent component (Line 40), which 
will send the initial message (a valid integer value) 
to port pIn1 of the instance of Component1 to get 
the communication started (Line 47). 

Upon receiving a message at port pIn1, the 
receiver will increment the received integer value by 
1 (Line 11), and reply back to the other component 
with the new incremented value via port pOut1 
(Line 15). The message propagation will continue 
between the two peers until the value of the sending 
integer becomes 10 (watch constraint on line 26), so 
the receiver will have to terminate the 
communication. 
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21 
22 

class Component1 { // A component Umple 
  public in Integer pIn1;  // An in port 
  public out Integer pOut1;  // An out port 
  pIn1 -> pOut1;  // A connector 
 
// A watch constraint defining the in port on which a  
//signal triggers the following.  An active method 
invoked  
//when a signal is received 
  [pIn1]  
  active pingIncrement  {  
     pOut1(pIn1 + 1); 
  } 
// A watch constraint; the following is triggered when a 
//signal is sent through this out port 
  [pOut1]  
  active logOutPort1 { 
     cout << "CMP 1 : Ping Out data = " << pOut1 << 
endl; 
  } 
 } 
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class Component2 { 
  public in Integer pIn2; 
  public out Integer pOut2; 
  pIn2 -> pOut2; 
  // A watch constraint, and a value constraint 
  [pIn2, pIn2 < 10]   
  active pongIncrementOrStop { 
       // Get a read-only copy of the current cached  
       //value at port Pin2 
       pOut2(pIn2 + 1);  
  } 
 
  [pOut2] 
  active logOutPort2 { 
     cout << "CMP 2 : Pong Out data = " << pOut2 << 
endl; 
  } 
} 
 
class PingPongComponent { 
  Component1 cmp1; 
  Component2 cmp2; 
  Integer startValue; 
 
  after constructor { 
    // Initiates communication in the constructor 
     cmp1-> pIn1(startValue);      
  } 
  cmp1.pOut1 -> cmp2.pIn2; 
  cmp2.pOut2 -> cmp1.pIn1; 
} 

Figure 14: An Umple component-modelling example. 

Each component in Figure 14 has its own 
incoming and outgoing ports, which are "pIn1" and 
"pOut1" defined in Lines 2 and 3 in Component1, 
and "pIn2" and "pOut2" in Component2 defined in 
Lines 22 and 23. As well, in each component, the 
connection bindings between this component and the 
other component are defined. 

The port "pIn1" in Line 2 is a relay port, since it 
propagates signals to other ports in Component2 via 
"pOut1". In other words, the connector defined 
between "pIn1" and "pOut1" in Line 4 implicitly 
declares "pIn1" as a relay port. 

The basic event methods in this example are 
pingIncrement (Line 10), pongIncrementOrStop 
(Line 27), logOutPort1 (Line 16) and logOutPort2 
(Line 34). 

 

Figure 15: A simple ping-pong example using Umple. 

The increment and log methods are defined as 
active methods designed to watch pIn1. Both 
methods do not have explicit parameters, because 
the port value is an implicit parameter. In addition, 
the name of the port is an implicit method for
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Table 2: Comparison of modelling tools for component development (+ = supported; * = partial, - = not supported). 

 
Functional Features 
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efinition 

Java 

C
+

+
 

C
 

starUML + + + - * * * * * - - - - 

eTrice + - - - + + (Actors) - X (Port/ protocol) + + + - + 

ArgoUML + - - - - - - - - - * * - 

RSA-RT + + + - + 
+( Aggregation/ 

Composition) 
+ X (Port/ protocol) + + + + + 

IBM 
Rhapsody + + + - + 

+( Aggregation/ 
Composition) 

+ X (Port/ protocol) + + + + + 

PragmaDev + + + + + +(Agents) + X (Gate/Interface) + + - + + 

Umple + + + - + 
+( Aggregation/ 

Composition) 
+ X (Port/ Active method) + + + + - 

 
propagating the data. 

Note that in an alternative model, the methods 
could be defined as state machine events.  

In method "pongIncrementOrStop", there is a 
guard on the data parameter to check if a value 
received is less than 10; otherwise, communication 
will end. The guard will filter out other messages. 

4 COMPARISON WITH OTHER 
TOOLS 

As stated earlier in this paper, the essence of our 
research is to introduce composite structure 
development into Umple, and hence enable 
component modelling among those who wish to 
model textually using an open source tool. We have 
compared Umple to other modelling tools in order to 
make sure that we fulfilled the core requirements of 
component-based modelling; the comparison is 
shown in Table 2.  

The selected items in our comparison include 
industrial and research tools. The tools that we 
conducted our comparisons against are starUML, 
eTrice, ArgoUML, Rational Software Architect 
Real-Time (RSARTE), IBM Rhapsody, and 
PragmaDev. 

Our comparison focuses on the composite 
structural features. The main such features that we 
found most widely supported during our research 
include decomposition, data sharing, 

communication, and type management. These 
features depend on the concepts of components, 
protocols, ports, and connectors. A protocol is used 
to define information flow between ports. 

During our research, we found that other 
modelling features could affect the development 
process of component-based applications even if 
they are not structural. The major feature categories 
that we found to have a direct impact on structural 
features include behaviour and simulation. For 
instance, behavioural features (primarily state 
machines) are required for behaviour ports. 
Simulation features are required for many customers 
that rely on component-based development. For 
example, in automotive development, simulation is 
crucial for a complete end-to-end testing process 
among software and hardware components. 

In Table 2, the symbol "+" is used to indicate a 
moderate level of support; "*" is used to indicate a 
weak level of support, and “-” means no support. 

The structural and C++ code generation features 
shown in Table 2 are our newly introduced features 
to Umple; other features listed that Umple supports, 
already existed before our research. 

In our comparison, we do not go into deep detail. 
For example, we mention whether a tool supports 
code generation rather than mentioning the quality 
of the generated code. 

In terms of communication, tools can differ 
based on the standards they support. For example, 
tools that follow UML standards use ports and 
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protocols for communication; those tools include 
eTrice, RSARTE, and IBM Rhapsody. On the other 
hand, tools that support SDL (Olsen et al., 1994) use 
gates and interfaces for communication; PragmaDev 
is an example.  

In Umple, we follow UML terminology, which 
means that communication should rely on ports and 
protocols. However, we found that asking users to 
define protocols explicitly adds unnecessary 
overhead. Thus, we provide protocol-free approach 
in Umple, which means Umple uses inference to 
extract the required protocols based on the semantics 
of ports and connectors. Thus, in Table 2, we 
mentioned that our communication depends on ports 
and the pattern of active object.  

For state machines, Umple support the major 
features listed in Table 2 except for the "State 
Class". 

In terms of code generation, the most important 
target languages supported include Java, C++, and 
C. Umple supports real time code generation in C++ 
for all modelling features. Code generation for C and 
possibly Java will be supported in the future (Umple 
supports Java already for non-real-time features).  

Most commercial tools support behavioural and 
structural decompositions, while the only open-
source tool other than Umple that supports them is 
eTrice, and it does so only partially. Two other 
open-source tools (starUML and ArgoUML) have 
little or no code generation support for component-
based modelling. 

5 CONCLUSIONS 

Umple is an open-source modelling tool. Prior to 
this work, it supported modelling features such as 
attributes, state machines, and associations. In this 
paper, we described new capabilities for composite 
structure and component-based development such as 
components, ports, and connectors. As well, we 
showed how simple time constructs can help users to 
meet their real time requirements easily. 

In component-based modelling, a port definition 
depends on a protocol. Typically, a protocol defines 
the flow of signals among ports. In our effort to 
reduce complexity, we implemented a protocol-free 
approach, in which protocol information is 
automatically inferred based on the semantic 
information of ports and connectors.  

We showed a short ping-pong example written as 
an Umple model; this example is available in the 
UmpleOnline editor (try.umple.org). The model 
looks simple, since it consists of only 50 lines of 

Umple. However, the generated code in C++ as a 
target language is far more complicated, and exceeds 
2000 lines. Complex capabilities such as thread 
management, mutual exclusion and access queues 
are taken care of in the generated code. Trying to 
handle such concepts directly at the programming 
language level is not an easy task.  

We showed how Umple supports both textual 
and visual development for real-time component 
modelling. 

Part of our effort is that the generated code must 
not rely on any third-party library, to ensure that it 
can be deployed easily in real-time operating 
systems. Library-free code will also relieve 
developers of integration and configuration 
management effort.  

We showed a comparison between Umple, and 
other industrial and open-source modelling tools, 
highlighting the modelling features in each tool. 
Umple supports most of the major features present 
in the compared tools. 

ACKNOWLEDGEMENTS 

OGS, NSERC, and ORF supported this work. 

REFERENCES 

Badreddin, O., Forward, A., & Lethbridge, T. C. (2014). 
Improving Code Generation for Associations: 
Enforcing Multiplicity Constraints and Ensuring 
Referential Integrity. SERA, vol 430. 
doi:10.1007/978-3-642-30460-6 

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014a). 
A Novel Approach to Versioning and Merging Model 
and Code Uniformly. In MODELSWARD 2014, 
International Conference on Model-Driven 
Engineering and Software Development, pp. 254-263. 
SCITEPRESS. doi:10.5220/0004699802540263 

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014b). 
A Test-Driven Approach for Developing Software 
Languages. In MODELSWARD 2014, International 
Conference on Model-Driven Engineering and 
Software Development, pp. 225-234. SCITEPRESS. 
doi:10.5220/0004699502250234 

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014c). 
Investigation and Evaluation of UML Action 
Languages. In MODELSWARD 2014, International 
Conference on Model-Driven Engineering and 
Software Development. 2014, pp. 264-273. 
SCITEPRESS. doi:10.5220/0004699902640273 

Lavender, R. G., & Schmidt, D. C. (1996). Active object: 
an object behavioral pattern for concurrent 
programming. In Pattern languages of program design 

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

290



 

2, pp. 483–499. Addison-Wesley Longman. Boston, 
MA, USA. 

Olsen, A., Færgemand, O., Møller-Pedersen, B., Smith, J. 
R. W., & Reed, R. (1994). Systems Engineering Using 
SDL-92. North Holland. 

Selic, B. (1998). Using UML for Modeling Complex Real-
Time Systems. ObjecTime Limited/Rational Software 
Whitepaper, 250–260. 

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

291


