
Umple as a Component-based Language for the Development of
Real-time and Embedded Applications

Mahmoud Husseini Orabi, Ahmed Husseini Orabi and Timothy Lethbridge
University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada

Keywords: Umple, Component Modelling, UML, Ports, Connectors, Composite Structure.

Abstract: Component-based development enforces separation of concern to improve reusability and maintainability.
In this paper, we show how we extended Umple (http://try.umple.org) to support component-based
development. The development of components, ports, and connectors is enabled using easy-to-comprehend
keywords. Development is supported in both textual and visual representations. The design pattern followed
in our implementation is the active object pattern. We show a comparison between Umple and other
modelling tools. We show that Umple has a set of component features comparable to commercial modelling
tools, but is the most complete, particularly with regard to code generation, among the open source tools.

1 INTRODUCTION

We describe in this paper how we have extended
Umple to support component-based development.

The main motivation behind our research is to
simplify component-based development, specifically
of real time systems. By component-based
development, we mean the implementation of
systems from concurrent components with well-
defined interfaces, such that components can
communicate together via ports and connectors.

Among common programming languages, a few
allow real-time development such as C and C++.
Languages such as Java require additional efforts to
support real-time development.

Model-driven approaches have for a long time
been used to develop real-time applications.
Compared with directly using a programming
language, model-driven approaches give advantages
such as enabling multiple target generation, fewer
lines of code, and a high level of abstraction.

However, the existing open-source modelling
tools have limitations such has having limited
capabilities for real-time development.

Umple is an open source model-oriented
programming language that allows developers to
write their models either visually or textually
(Badreddin et al., 2014).

Code generation in Umple has options for
different target languages such as Java, C++, PHP,

and Ruby. Users can insert their code bodies in
code-enabled elements such as methods, states,
transitions, and operations. Inserted code can be
language-specific, so users can add a code snippet
for each target language.

Major UML concepts are supported in Umple
such as classes, associations, attributes, and state
machines (Badreddin et al., 2014a; 2014b; 2014c).
An Umple developer does not need to be a UML
expert to write models.

In this paper, we will highlight two of our key
contributions. First, we will show how we extended
Umple to support component-based modelling with
new keywords and corresponding semantics. The
development of components will be available both
textually and visually similarly to other Umple
features. Second, we will show a comparison
between Umple and other modelling tools. In this
comparison, we will pinpoint the features that are
crucial for the support of component modelling. We
will show how we managed in our implementation
to cover the pinpointed features.

We follow the active object pattern for the
implementation of the component-based features
(Lavender and Schmidt, 1996). An active object is
an object that runs concurrently in a separate thread.

The focus in our discussion is to show how we
can use Umple to develop component-based models.
Thus, we will not talk in detail about the content of
the generated code.

282
Orabi, M., Orabi, A. and Lethbridge, T.
Umple as a Component-based Language for the Development of Real-time and Embedded Applications.
DOI: 10.5220/0005741502820291
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 282-291
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The Umple models that we will show in this
paper assume that the selected target language is
C++. These models can be generated and rendered
using UmpleOnline (http://try.umple.org).

The support of real-time code generation is also a
part of our research but we will not have it addressed
in this paper.

In a similar manner to languages such as Java
and C++, an Umple developer must define a main
function. The content of a main function must be
written in the syntax of the selected target language.
We will not necessarily show the main functions for
all of the Umple models that we will show in this
paper.

This paper is organized as follows. In Section 2,
we will discuss how component modelling is
supported in Umple. In Section 3, we will give an
extended example written in Umple. In Section 4,
we will show a comparison between Umple and
other component-based modelling tools.

2 COMPONENT MODELING
USING Umple

In this section, we will discuss the newly introduced
keywords to Umple used to support component
modelling.

2.1 Umple Components

A component is a structured class that encapsulates a
set of active methods and ports. An active method
executes within its thread of control, initiates an
activity concurrently, and ensures that data is sent
and received between ports immediately while
following some restrictions such as time constraints.

A class becomes a component if it has at least
one active method, port, or connector.

An active method is defined as a regular method
but a developer will additionally need to use the
keyword "active". In Figure 1, there are two active
methods defined in Lines 2 and 5.
SimpleComponent in Figure will be a component,
since it owns active methods

1
2
3
4
5
6
7
8

class SimpleComponent { Umple
 active method1 {
 cout << "Method1" << endl;
 }
 active methodWithParameters(int i){
 cout << "Method2" << i <<endl;
 }
}

Figure 1: An example of component definition.

2.1.1 Parts (Subcomponents)

A component can own multiple parts
(subcomponents), which are instances of this
component or other components. In such a case, a
component is referred to as a composite component.
Subcomponents can also be composite.

A subcomponent defines the hierarchical
composition and internal structure of its owning
components. For example, in Figure 2, part "a"
shows an instance of type "A", and part "b" shows
an instance of its type "B", while both instances exist
in the context of their owner instance "c" that is of
type "C". The Umple code of Figure 2 is in Figure 3.

Figure 2: Multiple instances of different components.

1
2
3
4
5
6
7
8
9
10
11

class A { // A component Umple
 active method1 {/* Empty */ }
}
class B {
 active method2 {/* Empty */ }
}

class C {
 A a;
 B b;
}

Figure 3: An example of subcomponents.

When a part is added to component, the class of
this component will have a composition relationship
with the owning class of this part.

Composite relationships between a container and
its parts can be defined by simply declaring an
attribute of the part’s type within the composite.
More complex cases may require relationships to be
specified explicitly using associations and
generalizations.

Concepts such as generalization and multiplicity
appear in both composite structure models and class
diagrams.

2.1.2 Method Invocation

The invocation of an active method is asynchronous
by default. Let us consider the simple example
shown in Figure 4, in which a component,
SimpleComponent has two active methods,
method1, and method2. In Line 3, there is invocation

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

283

to the active method method2. The content of
method2 will be executed asynchronously.

Invoking method2 will cause the text in Line 8 to
be printed indefinitely, and the client will not be
blocked.

1
2
3
4
5
6
7
8
9
10
11

class SimpleComponent { Umple
 active method1 {
 method2();
 }

 active method2 {
 while(true){
 cout << "Keep outputting" << endl;
 }
 }
}

Figure 4: An example of asynchronous execution of active
methods.

The keyword "synchronous" is used to allow a
developer to force synchronous behaviour on an
active method. The keyword "synchronous"
precedes the "active" keyword as shown in Figure 5.

1
2
3

synchronous active method1 { Umple
 //Some synchronous content
 }

Figure 5: An example of synchronous execution of active
methods.

If we used the keyword synchronous with
method2 defined in Figure 4, this would have caused
clients to be blocked indefinitely unless method2 is
interrupted. The process of interrupting an active
method will be discussed in the next section.

2.1.3 Atomic versus Interruptible Active
Methods

Simply, a reentrant active object can be interrupted,
while an atomic active object cannot.

In Umple, by default, an active method is
interruptible. For simplicity, we do not have a
keyword to define interruptible behaviour for an
active method. On the other hand, if a developer
wants make a method non-interruptible, they can use
the keyword "atomic".

Similarly to the keyword "synchronous", the
keyword "atomic" precedes the "active" keyword.
The declaration will be the same as shown in Figure
5, but the keyword "atomic" will be used instead, as
in Figure 6.

1 atomic active method2{/*Empty body */ } Umple

Figure 6: An example of atomic execution of active
methods.

A developer can still manually interrupt an active
method; this can be done at the level of the target
language. For that, we provide an API,
FutureObject. To limit the scope of this paper, we
will only give a very brief example of the use of
FutureObject in Figure 7.

In Figure 7 in Line 8, there is a main function. In
Line 9, an instance of a component named Test is
declared; a call to a method of this instance is made
in Line 10. When making a call to an active method,
we get a FutureObject variable, which gives us more
options to manage the execution process. In Line 11,
there is a call to an API named "stop"; this API is
used to interrupt the execution of an active method.

1
2
3
4
5
6
7
8
9
10
11
12
13

class Test { Umple
 active method2 {
 while(true){
 cout << "Keep outputting" << endl;
 }
 }

 public int main(int argc, _TCHAR* argv[]) {
 Test test1;
 FutureObject<void> proxy1 = test1.method1();
 proxy1.stop();
 }
}

Figure 7: An example of interrupting active methods.

There are other API methods in FutureObject
such as wait data, subscribe, and unsubscribe.

2.2 Ports

A port is a special attribute owned by a component;
it is used as an interface for communication among
components. A port is an interaction point used as
the origin and/or destination of data to be transferred
among components.

A port is defined as a regular attribute preceded
by any of the keywords "in", "out" or "port" (dual).
In Figure 8, three ports are defined in Lines 2-4.

1
2
3
4

class SimpleComponent { Umple
 public in Integer inputPort; // An in port
 public out Integer outputPort1; // An out port
 public port Integer dualPort1; // A dual port

Figure 8: An example of port definitions.

External and internal ports can be specified
through access modifiers such as "public" or
"private". Private ports can only access the parts of
their owning component

A port is considered a behaviour port if it is used
to trigger an event in a state machine.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

284

There are no restrictions on the port type. A port
for instance can even be a component.

A port value is transmitted to other ports or
components via connectors. When a port type is
complex, we apply an appropriate
serialization/deserialization technique. A port value
is serialized into an intermediary object that can be
transmitted in the form of messages. When messages
of a transmitted object are received, they are
deserialized back to the original object form.

In terms of data transmission and
communication, we support both messages and
signals, which both are received as ‘events’ by their
recipient.

A message-based event is synchronous and used
in point-to-point communication, while a signal-
based event is asynchronous. When invoking a
synchronous event, the sender will wait until
receiving a response.

For simplicity, we will refer to both messages
and signals as messages. For distinction, we will
describe a message as asynchronous when referring
to a signal.

Message transmission is handled by the
generated code; developers do not need to worry
about the underlying structure of data transmission
among components.

A port can have multiplicity, which refers to the
lower and upper number of subscribers or clients
initiating a communication. It also refers to the
process of replicating messages to multiple clients.

If a port has multiplicity of a value more than
one, port messages will be replicated to multiple
clients. When the upper bound of port multiplicity is
unbound, this means that there is no restriction on
the number of messages to be replicated.

A port with optional multiplicity means that it is
not mandatory to broadcast or replicate messages
from this port.

From the above, we can say that port multiplicity
is about connection configuration. For instance, it
can be used to manage the minimum and maximum
number of clients communicating

In Umple, multiplicity is defined within a port
declaration or through a port binding definition. In a
port definition, multiplicity value can be defined
within square brackets after a port attribute name.
An example is shown in Figure 9; the port defined in
Line 1 has fixed multiplicity of 4, while the port
defined in Line 2 is unbounded.

1
2

public in Integer somePort[4]; Umple
public out Integer anotherPort[*];

Figure 9: An example of defining port multiplicity.

For simplicity, we do not provide specific
keywords to define the type of a port such as service,
relay, or end ports. Instead, based on the semantic,
type, and connection between ports, a port type is
inferred.

For instance, if the modifier of a port attribute is
private, this port is considered a non-service port.
An "in" port can be either relay or end (Selic, 1998).
A relay port means that it propagates messages to
other ports as opposed to end ports. As in example,
the port "pn1" defined in Line 2 in Figure is a relay
port.

2.3 Connectors

A connector or binding is used to specify how a
communication channel is initiated, and how data is
transferred.

In other words, a connector is used to route
requests from a "provided" interface of a component
to a "required" interface of the same component or
another component. In this context, a connector is
used to specify the lower and upper multiplicity
bounds of subscribers and clients.

The operator "->" is used to define a connector.
This is the same notation used for UML associations
in Umple, since a connector acts like an association
between active objects. The port on the left hand
side is the source, and the port on the right hand side
is the target.

If a class interconnects between components via
a connector, it will be considered a component even
if does not own active methods or ports.

A connector can be defined between two ports in
the same component (Line 4 in Figure 10) or
different components (Lines 49 and 50 in Figure 14).

In the code generated, we create a method for
each port, and it has the same name of this port. This
method is used to send signals in the case of "out"
ports, or receive signals in the case of "in" ports.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

class Test { Umple
 public in Integer pIn1; // An in port
 public out Integer pOut1; // An out port
 0..1 pIn1 -> * pOut1; // A connector

 after constructor {
 // Send a value to the other port
 pOut1(1);
 }

after pIn1(int data) {
 cout << data << endl;
 }
}

Figure 10: An example of port binding.

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

285

In Figure 10, we use the "after" keyword in two
places, constructor (Line 6) and pIn11 (Line 11); the
"after" keyword is one of the existing Umple
features that enable aspect-orientation.

In Line 8, a signal will be sent via pOut1 upon
constructing the class. This signal will be received
by pIn1. The value received by pIn1 will be printed
out (Line 12).

2.4 Incoming and Outgoing Message
Handling

A watch constraint is, like any other Umple
constraint, a Boolean condition in square brackets.
In the simplest case, it is just the name of a port, and
essentially means ‘true when data is present on that
port’. Examples are shown in Lines 9, 15, 26, and 33
in Figure 14.

A watch constraint is defined before the
declaration of an active method. It specifies that the
method to handle a port message. An active method
can be alternatively considered an incoming or
outgoing method based on the port direction.

A watch constraint can encompass other logical
and time constraints, as well as multiple ports. The
active methods that use watch constraints are used to
monitor messages incoming from other ports, or to
propagate messages to other ports.

For example, the watch in Line 9 in Figure
14means that the active method "increment" listens
to the incoming signals of the port pIn1.

A watch constraint can also define a guard to
filter out unnecessary messages. For example, in
Line 26 in Figure 14, the active method "stop" will
continue as long as the value of a port attribute is
less than 10; otherwise, this active method will do
nothing.

Generated port attributes are thread-safe. The
assumption is that composite components interact in
a distributed environment. A port attribute can be
accessed from several places, or even accessed
externally. To enable this, we make sure that a port
value can be accessed in two forms, read-only and
read-write.

In read-only form, all clients can access a history
value of a port attribute. On the other hand, read-
write access is given to a single client at a time. This
will prevent concurrent update, which can lead to
other serious issues such as access violation or data
loss. If other clients try to have read-write access at
the same time, they will be put into a priority queue
if another read-write operation is still in progress.

A priority queue is a FIFO queue, in which
requests have priority values set to zero by default.

A request that has the highest priority is executed
first even if it has been received after other requests
in the queue.

2.4.1 Triggers

In the context of an active method, a trigger is
defined using the operator "/" appearing at the start
of a statement; it is used to invoke a code block or
method without blocking (i.e. asynchronously). A
code block used in this way is an anonymously
defined active block. An example is shown in Lines
8-12 in Figure 11.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

synchronous active method1 { Umple
 while(true){ /*some asynchronous content*/};
}
active method2 {
 method1();
}
active method3 {
 /{
 while(true){
 cout << "This is anonymous content" << endl;
 }
 }
 /method1();
 method2();
}

Figure 11: An example of different triggers and
invocation.

Figure 11 shows different types of execution.
The anonymous active block defined in Lines 8-12
is executed in an independent thread, since it is
preceded by the operator "/". The same is true for the
call to method 1. Both of these are immediately
dispatched when method3 starts. Without the
operator "/", the active block would keep the rest of
method3 waiting forever, since there is an infinite
loop defined within it.

There is a synchronous active method, method1
defined in Line 1; this method is invoked
asynchronously in Line 13. We refer to this kind of
behaviour as half-synchronous.

In Line 14 in Figure 11, a synchronous call to
asynchronous method, method2 is made. In
method2, there is a call to the synchronous method
method1; we refer to this type of execution as half-
asynchronous.

To wrap up, in Umple, there are four types of
execution, full-asynchronous, full-synchronous,
half-asynchronous, and half-synchronous.

Full-asynchronous means that active method
execution starts asynchronously and remains as such
until the end of execution. In a similar manner, full-
synchronous means that an active method execution

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

286

starts synchronously and remains synchronous until
the end of execution. On the other hand, half-
synchronous execution means that execution starts
synchronously but at some point, has some
asynchronous behaviour. Similarly, half-
asynchronous execution means that execution starts
asynchronously but some synchronous behaviour is
enforced during the execution.

2.4.2 Call/then/Resolve Invocation Pattern

Umple has an invocation pattern that we refer to as
the call/then/resolve pattern. This pattern provides a
flexible representation of the commonly known
try/catch/finally.

There is no specific keyword for the "call" part.
It is simply a trigger action or method invocation.

The patterns "then" and "resolve" have keywords
after their name. Both patterns are optional. We can
have different variations such as call/resolve,
call/then, and call/then/resolve. The part "then"
refers to a callback. Thus, once an active method is
done executing, this "then" part will be triggered.
The part "resolve" is invoked in case of failures or
errors; an example will be shown in Figure 13.

Figure 12 shows the different variations of the
call/resolvee/then pattern.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

/{ Umple
 //call
}.resolve ({
 //catch
}).then ({
 //finally
})

/{
 //call
}. then ({
 //finally
})

/{
 //call
}. resolve ({
 //catch
})

Figure 12: Examples of call/resolve/then invocation.

2.5 Time and Message Handling
Constructs

Time is key in real time development. A developer
must be given the ability to define soft or hard real
time behaviour. In Umple, we have a list of time-
based constructs that give options to developers to
define their time requirements. Table 1 is a summary
of the basic time constructs.

Some constructs are defined at the task level
such as poll and delay. A task level construct means
that a new trigger starts based on this time-construct.

Other constructs can be defined at the action
code level. Constructs at the action code level are
defined as watch constraints in square brackets,
which we referred to in Section 2.4.

A time construct expects a value in milliseconds.
It was important to follow the same metrics used in
known languages such as Java. Other constructs
expects a numeric value such as "priority".

Table 1: The time and message constructs in Umple.

Constructs Description
Poll Invokes active methods in a regular manner.
Delay Enforces some delay before method invocation.
Priority Give a priority to an item in a priority queue.

Timeout
Sets a timeout maximum value before a task
completion.

Period
Set a time interval to recheck if a condition is
satisfied.

Latency Sets the acceptable delay for a task.

Call/then/resolve and watch statements usually
use time and message constructs. Figure 13 shows
an example, in which a method, someMethod makes
an asynchronous trigger call in Lines 4-5. There is a
task time construct, "delay" used to enforce one-
second delay before the active block is called. In
Line 4, there are three watch constraints. The first is
a logical condition used to ensure the active block
only works as long as an attribute, "iteration" is less
than 2500. The second watch constraint sets a
priority of 1 on the defined active block. The third
watch statement is a timeout construct of 5 seconds.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

class Test { Umple
 Integer iteration= 0;
 void someMethod(){
 delay(1000)[iteration <2500, priority(1),
 timeout(5000)] / {
 while(true){
 cout << iteration << endl;
 iteration++;
 }
 }.then ({
 cout << " 2500 iterations reached within 5
 << "seconds"<< endl;
 }.resolve ({
 cout << " 2500 iterations not reached within 5
 << seconds"<< endl;
 })
 }
}

Figure 13: An example of time constructs.

During the execution of someMethod, the value
of "iteration" will be incremented by one for each
iteration step (Line 8). There are two possible

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

287

scenarios to happen. If "iteration" reaches 2500 in
less than 5 seconds (the time specified in the
"timeout" statement in Line 5), someMethod will
exit and then the body in Line 10 will be called. In
the second scenario, 5 seconds are exceeded but the
value of "iteration" is still less than 2500; in such a
case, the resolve body in Line 13 will be invoked.

In a well-designed Umple model, the interruption
of an active method should be handled at the model-
level using composite structure or timing constructs.

3 AN UMPLE COMPONENT-
MODELING EXAMPLE

In this section, we will discuss a simple ping-pong
example written in Figure 14 and visualized in
Figure 15. We already talked about different
segments of Figure 14 during our discussion in
Section 2.

In Figure 14, there are two peers denoted as
Component1 and Component2; they are contained in
PingPongComponent component (Line 40), which
will send the initial message (a valid integer value)
to port pIn1 of the instance of Component1 to get
the communication started (Line 47).

Upon receiving a message at port pIn1, the
receiver will increment the received integer value by
1 (Line 11), and reply back to the other component
with the new incremented value via port pOut1
(Line 15). The message propagation will continue
between the two peers until the value of the sending
integer becomes 10 (watch constraint on line 26), so
the receiver will have to terminate the
communication.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

class Component1 { // A component Umple
 public in Integer pIn1; // An in port
 public out Integer pOut1; // An out port
 pIn1 -> pOut1; // A connector

// A watch constraint defining the in port on which a
//signal triggers the following. An active method
invoked
//when a signal is received
 [pIn1]
 active pingIncrement {
 pOut1(pIn1 + 1);
 }
// A watch constraint; the following is triggered when a
//signal is sent through this out port
 [pOut1]
 active logOutPort1 {
 cout << "CMP 1 : Ping Out data = " << pOut1 <<
endl;
 }
 }

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

class Component2 {
 public in Integer pIn2;
 public out Integer pOut2;
 pIn2 -> pOut2;
 // A watch constraint, and a value constraint
 [pIn2, pIn2 < 10]
 active pongIncrementOrStop {
 // Get a read-only copy of the current cached
 //value at port Pin2
 pOut2(pIn2 + 1);
 }

 [pOut2]
 active logOutPort2 {
 cout << "CMP 2 : Pong Out data = " << pOut2 <<
endl;
 }
}

class PingPongComponent {
 Component1 cmp1;
 Component2 cmp2;
 Integer startValue;

 after constructor {
 // Initiates communication in the constructor
 cmp1-> pIn1(startValue);
 }
 cmp1.pOut1 -> cmp2.pIn2;
 cmp2.pOut2 -> cmp1.pIn1;
}

Figure 14: An Umple component-modelling example.

Each component in Figure 14 has its own
incoming and outgoing ports, which are "pIn1" and
"pOut1" defined in Lines 2 and 3 in Component1,
and "pIn2" and "pOut2" in Component2 defined in
Lines 22 and 23. As well, in each component, the
connection bindings between this component and the
other component are defined.

The port "pIn1" in Line 2 is a relay port, since it
propagates signals to other ports in Component2 via
"pOut1". In other words, the connector defined
between "pIn1" and "pOut1" in Line 4 implicitly
declares "pIn1" as a relay port.

The basic event methods in this example are
pingIncrement (Line 10), pongIncrementOrStop
(Line 27), logOutPort1 (Line 16) and logOutPort2
(Line 34).

Figure 15: A simple ping-pong example using Umple.

The increment and log methods are defined as
active methods designed to watch pIn1. Both
methods do not have explicit parameters, because
the port value is an implicit parameter. In addition,
the name of the port is an implicit method for

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

288

Table 2: Comparison of modelling tools for component development (+ = supported; * = partial, - = not supported).

Functional Features

S
im

ulation

Code
Generation Behaviour Structural

Tool

D
ecom

position

C
om

posite states

C
oncurrent states

S
tate class

D
ecom

position

C
oncept

D
ata S

haring

C
om

m
unication

T
ype D

efinition

Java

C
+

+

C

starUML + + + - * * * * * - - - -

eTrice + - - - + + (Actors) - X (Port/ protocol) + + + - +

ArgoUML + - - - - - - - - - * * -

RSA-RT + + + - +
+(Aggregation/

Composition)
+ X (Port/ protocol) + + + + +

IBM
Rhapsody + + + - +

+(Aggregation/
Composition)

+ X (Port/ protocol) + + + + +

PragmaDev + + + + + +(Agents) + X (Gate/Interface) + + - + +

Umple + + + - +
+(Aggregation/

Composition)
+ X (Port/ Active method) + + + + -

propagating the data.

Note that in an alternative model, the methods
could be defined as state machine events.

In method "pongIncrementOrStop", there is a
guard on the data parameter to check if a value
received is less than 10; otherwise, communication
will end. The guard will filter out other messages.

4 COMPARISON WITH OTHER
TOOLS

As stated earlier in this paper, the essence of our
research is to introduce composite structure
development into Umple, and hence enable
component modelling among those who wish to
model textually using an open source tool. We have
compared Umple to other modelling tools in order to
make sure that we fulfilled the core requirements of
component-based modelling; the comparison is
shown in Table 2.

The selected items in our comparison include
industrial and research tools. The tools that we
conducted our comparisons against are starUML,
eTrice, ArgoUML, Rational Software Architect
Real-Time (RSARTE), IBM Rhapsody, and
PragmaDev.

Our comparison focuses on the composite
structural features. The main such features that we
found most widely supported during our research
include decomposition, data sharing,

communication, and type management. These
features depend on the concepts of components,
protocols, ports, and connectors. A protocol is used
to define information flow between ports.

During our research, we found that other
modelling features could affect the development
process of component-based applications even if
they are not structural. The major feature categories
that we found to have a direct impact on structural
features include behaviour and simulation. For
instance, behavioural features (primarily state
machines) are required for behaviour ports.
Simulation features are required for many customers
that rely on component-based development. For
example, in automotive development, simulation is
crucial for a complete end-to-end testing process
among software and hardware components.

In Table 2, the symbol "+" is used to indicate a
moderate level of support; "*" is used to indicate a
weak level of support, and “-” means no support.

The structural and C++ code generation features
shown in Table 2 are our newly introduced features
to Umple; other features listed that Umple supports,
already existed before our research.

In our comparison, we do not go into deep detail.
For example, we mention whether a tool supports
code generation rather than mentioning the quality
of the generated code.

In terms of communication, tools can differ
based on the standards they support. For example,
tools that follow UML standards use ports and

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

289

protocols for communication; those tools include
eTrice, RSARTE, and IBM Rhapsody. On the other
hand, tools that support SDL (Olsen et al., 1994) use
gates and interfaces for communication; PragmaDev
is an example.

In Umple, we follow UML terminology, which
means that communication should rely on ports and
protocols. However, we found that asking users to
define protocols explicitly adds unnecessary
overhead. Thus, we provide protocol-free approach
in Umple, which means Umple uses inference to
extract the required protocols based on the semantics
of ports and connectors. Thus, in Table 2, we
mentioned that our communication depends on ports
and the pattern of active object.

For state machines, Umple support the major
features listed in Table 2 except for the "State
Class".

In terms of code generation, the most important
target languages supported include Java, C++, and
C. Umple supports real time code generation in C++
for all modelling features. Code generation for C and
possibly Java will be supported in the future (Umple
supports Java already for non-real-time features).

Most commercial tools support behavioural and
structural decompositions, while the only open-
source tool other than Umple that supports them is
eTrice, and it does so only partially. Two other
open-source tools (starUML and ArgoUML) have
little or no code generation support for component-
based modelling.

5 CONCLUSIONS

Umple is an open-source modelling tool. Prior to
this work, it supported modelling features such as
attributes, state machines, and associations. In this
paper, we described new capabilities for composite
structure and component-based development such as
components, ports, and connectors. As well, we
showed how simple time constructs can help users to
meet their real time requirements easily.

In component-based modelling, a port definition
depends on a protocol. Typically, a protocol defines
the flow of signals among ports. In our effort to
reduce complexity, we implemented a protocol-free
approach, in which protocol information is
automatically inferred based on the semantic
information of ports and connectors.

We showed a short ping-pong example written as
an Umple model; this example is available in the
UmpleOnline editor (try.umple.org). The model
looks simple, since it consists of only 50 lines of

Umple. However, the generated code in C++ as a
target language is far more complicated, and exceeds
2000 lines. Complex capabilities such as thread
management, mutual exclusion and access queues
are taken care of in the generated code. Trying to
handle such concepts directly at the programming
language level is not an easy task.

We showed how Umple supports both textual
and visual development for real-time component
modelling.

Part of our effort is that the generated code must
not rely on any third-party library, to ensure that it
can be deployed easily in real-time operating
systems. Library-free code will also relieve
developers of integration and configuration
management effort.

We showed a comparison between Umple, and
other industrial and open-source modelling tools,
highlighting the modelling features in each tool.
Umple supports most of the major features present
in the compared tools.

ACKNOWLEDGEMENTS

OGS, NSERC, and ORF supported this work.

REFERENCES

Badreddin, O., Forward, A., & Lethbridge, T. C. (2014).
Improving Code Generation for Associations:
Enforcing Multiplicity Constraints and Ensuring
Referential Integrity. SERA, vol 430.
doi:10.1007/978-3-642-30460-6

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014a).
A Novel Approach to Versioning and Merging Model
and Code Uniformly. In MODELSWARD 2014,
International Conference on Model-Driven
Engineering and Software Development, pp. 254-263.
SCITEPRESS. doi:10.5220/0004699802540263

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014b).
A Test-Driven Approach for Developing Software
Languages. In MODELSWARD 2014, International
Conference on Model-Driven Engineering and
Software Development, pp. 225-234. SCITEPRESS.
doi:10.5220/0004699502250234

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014c).
Investigation and Evaluation of UML Action
Languages. In MODELSWARD 2014, International
Conference on Model-Driven Engineering and
Software Development. 2014, pp. 264-273.
SCITEPRESS. doi:10.5220/0004699902640273

Lavender, R. G., & Schmidt, D. C. (1996). Active object:
an object behavioral pattern for concurrent
programming. In Pattern languages of program design

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

290

2, pp. 483–499. Addison-Wesley Longman. Boston,
MA, USA.

Olsen, A., Færgemand, O., Møller-Pedersen, B., Smith, J.
R. W., & Reed, R. (1994). Systems Engineering Using
SDL-92. North Holland.

Selic, B. (1998). Using UML for Modeling Complex Real-
Time Systems. ObjecTime Limited/Rational Software
Whitepaper, 250–260.

Umple as a Component-based Language for the Development of Real-time and Embedded Applications

291

