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Abstract: In the context of combinatorial optimization, recently some efforts have been made by extending classical
optimization problems under the two-stage stochastic programming framework. In this paper, we introduce
the two-stage stochastic traveling salesman problem (STSPR £glv, Ep UEs) be a non directed complete
graph with set of node¥ and set of weighted edgé&s U Es whereEp NEs = 0. The edges ifEp andEg
have deterministic and uncertain weights, respectively. K.et {1,2,---,|K|} be a given set of scenarios
referred to the uncertain weights of the edge&dn The STSP consists in determining Hamiltonian cycles
of G, one for each scenari®e K, sharing the same deterministic edges while minimizing the sum of the
deterministic weights plus the expected weight over all scenarios associated with the uncertain edges. We
propose two compact models and a formulation with an exponential number of constraints which are adapted
from the classic TSP. One of the compact models allows to solve instances with up to 40 nodes and 5 scenarios
to optimality. Finally, we propose an iterative procedure that allows to compute optimal solutions and tight
lower bounds within very small CPU time.

1 INTRODUCTION tic programming framework. In this paper, we in-
troduce the two-stage stochastic traveling salesman
Stochastic programming is an optimization frame- problem (STSP) which can be described as follows.
work which allows to deal with the uncertainty of the LetG= (V,EpUEs) be a non directed complete graph
input parameters of a mathematical program (Shapirowith a set of node¥ and a set of weighted edges
et al.,, 2009). Thus, it is commonly assumed that Ep UEs whereEp NEs = 0. The edges irEp and
probability distributions take values within a discrete Es have deterministic and uncertain weights, respec-
and finite space which allows to consider sets of sce-tively. LetK = {1,2,---,|K|} be a given set of sce-
narios for the input parameters. A well known sce- narios referred to the uncertain weights of the edges
nario based approach is theetourse modébr “ two- in Es. The STSP problem consists in determining
stage stochastic programming approa¢®aivoron- Hamiltonian cycles o6, one for each scenarge K,
ski et al., 2011; Shapiro et al., 2009). In the con- sharing the same deterministic edges while minimiz-
text of combinatorial optimization, recently some ef- ing the sum of the deterministic weights plus the ex-
forts have been made by extending classical combi- pected weight over all scenarios associated with the
natorial optimization problems (e.g., Knapsack prob- uncertain edges. FdK| = 1, the problem reduces
lems (Gaivoronski et al., 2011), the maximum weight to the classic traveling salesman problem. We pro-
matching problem (Escoffier et al., 2010), maximal pose two compact polynomial models and a formula-
and minimal spanning tree problems (Flaxman et al., tion with an exponential number of constraints. These
2006; Escoffier et al., 2010), the stochastic maxi- models are based on the classic TSP (Miller et al.,
mum weight forest problem (Adasme et al., 2013; 1960; Gavish and Graves, 1978; Letchford et al.,
Adasme et al., 2015)) under the two-stage stochas-2013). Stochastic programming variants of the travel-
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ing salesman problem have been previously studied,
see for instance (Maggioni et al., 2014; Bertazzi and
Maggioni, 2014). In particular, the two-stage stochas-

tic problem we present in this paper can be seen as a

particular case of the stochastic capacitated traveling
salesmen location problem with recourse (Bertazzi
and Maggioni, 2014). As far as we know, this spe-
cial case has never been studied before in the liter-
ature. Notice that all the applications of the classic
traveling salesman problem can be extended to the
models we present in this paper. We compare numer-
ically the exponential model versus the two compact
polynomial formulations for randomly generated in-
stances. For this purpose, we solve the exponential
model by generating all cycle elimination constraints
at once and also by using a simple iterative algorith-
mic approach which consists of adding violated cycle
elimination constraints within each iteration until no
cycle is found in the current solution. Finally, we use
the iterative algorithm in order to compute tight lower
bounds in significantly short CPU time.

The remaining of the paper is organized as fol-
lows. In section 2, we present the two-stage stochastic
formulations of the problem. Then, in section 3, we
present the iterative algorithm to solve the exponential
formulation alternatively. Subsequently, in section 4
we conduct numerical results in order to compare all
the proposed models and the algorithmic approach.
Finally, in section 5 we give the main conclusions of
the paper.

2 TWO-STAGE STOCHASTIC
FORMULATIONS

In this section, we propose three stochastic formu-
lations for the STSP that we adapt from the classic
TSP (Miller et al., 1960; Gavish and Graves, 1978;
Letchford et al., 2013). The first one is an exponen-
tial model that contains an exponential number of sub-
tour elimination constraints (SECs). The second one
is adapted from (Miller et al., 1960), and the third one
corresponds to an extension of the single flow com-
modity model proposed in (Gavish and Graves, 1978).
Consider the non directed complete grapland the
set of discrete scenari#sas defined in section 1. An
exponential model for the STSP can be written

STSk:
} (1)

L2

IK|

Cljxlj + Zps

min
{xy}
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subjectto:

Xij + Z yij =LvieVseK (2)
J:(ivj)EED J(I/J)GES

Xij + Vi =1LVjeV,seK (3)
i:(i,])€Ep i:(i,])€Es

Xij + z yfj <|§9-1,

(i.i)eE(9NED (i,))€E(9NEs
ScV,seK 4)
xij € {0,1},¥(i, ]) € Ep, (5)
yij €{0,1},¥(i,]) € Es,;seK (6)

In (1), we minimize the sum of the deterministic
edge weights plus the expected cost of uncertain edge
weights obtained over all scenarios. The parame-
ter ps,Vs € K, represents the probability for scenario
se€ K wherey ok ps = 1. Constraints (2)-(3) ensure
that the salesman arrives at and departs from each
node exactly once for each scenas@& K. Con-
straints (4) are sub-tour elimination constraints for
eachSc V,se K. Finally, (5)-(6) are the domain con-
straints for the binary decision variabbes, (i, j) €

Ep andy;;, v(i, j) € Es,s€ K. The variablegj = 1 if

the deterministic edgé, j) € Ep is selected in each
Hamiltonian cycle Vs € K, otherwisexjj = 0. Simi-
larly, the variabley® = 1 if the edge€(i, j) € Esis se-
lected in the Hamlitonian cycle associated to the sce-
narios € K, andy? = 0 otherwise.

Now let Ap andAs represent the sets of arcs ob-
tained fromEp andEs, respectively where an edge
(i,]) is replaced by two arc§, j), (j,i) of same cost
in each corresponding set. A polynomial compact for-
mulation based on (Miller et al., 1960) is

STSPR:

K]
min CijXij + ) Ps 5's'ys}
{xy,u}{ ,JZEAD szl (i.j)zeAs o
subject to:

g Xij + Z Vi =1VvieV,seK
j:(i,])€AD j:(i,))eAs

Xij + z Yij =1VjeV,seK

i+(i,})€AD i+(i,))eAs

u; =1vseK 7
2<UW< V| Vie|V],(i#1),YseK  (8)
W—uj+1<

(V] =) (1 — X (i,j)eAp — yisj:(i.,j)eAs)7

Vi, j eV, (i, j;él)seK 9)
xij € {0,1},V(i,]) € Ap, (10)
yﬁe{o 1},V(i,j) € As, seK (11)
uweR,,VieVseK (12)

where the constraints (9) ensure that, if the salesman
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travels fromi to j, then the nodelsandj are arranged  The idea is as follows. If we remove constraints (4)
sequentially for eacls € K. These constraints to- from ST SPand solve the resulting integer linear pro-
gether with (7) and with the bounds (8) ensure that gramming problem, then the underlying optimal so-
each node is in a unique position. Finally, (10)-(12) lution induces a graplss for eachs € K that may
are the domain constraints for the decision variables. contain a cycle with at least three or up | — 1

A third formulation can be obtained by extending nodes. In this case, it can be detected by a depth-first
the classic single commaodity flow formulation for the search procedure (Cormen et al., 2009). We refer the
TSP (Gavish and Graves, 1978). For this purpose, reader to the Algorithm 4.1 in (Adasme et al., 2015)
we assume that the salesman carfifls— 1 units of for a deeper understanding on how we obtain cycles
a commaodity when he leaves node 1, and delivers 1for eachGs,s € K. In particular, if the cardinality of
unit of this commodity to each node. Using the sets a subset of nodes found with Algorithm 4.1 inducing
Ap andAs, we can define additional continuous vari- a cycle equal$V |, we do not generate the SEC, oth-
ablesg;j, (i, j) € Ap andwjj, v(i, j) € As,s€ K, rep- erwise Hamiltonian cycles would be infeasible for the
resenting the amount of the commodity (if any) routed problem. The Algorithm 4.1 is used iteratively by the
directly from nods to nodej, for all s€ K. The new

formulation is Algorithm 1: Iterative procedure to compute lower
STSB: bounds forST SR.
' K| Data: A problem instance 0BT SP.
. Result: A lower bound with solutior(x,y) for

min { Y CiXjt Y Ps Y O } ST SR with objective function value,.
{xy.gw} S s=1  (i,))€As Step 0: Setv =1,
subject to: Let ST SR, be the problem obtained fro8iT Sk by

5 g removing the constraints (4) at iteration

4 Xij + ) Z yISJ =1lvieViseK Solve the LP relaxation of proble®T Sk, and let
j:(i.])eho j:(.))eAs (X',y") be its optimal solution of valug, at

Z Xij + Z ylsJ =1VjeV,scK |terat|or_w;'
QA0 i.1TeAs b

Step 1: while|z, 1 —2]| >&do
Z gji + WJ$i foreach s K do

IHORIS' JHORICES Construct the grapts = (V, Eq UEs) for
. gii — wo=1 scenarics with the rounded solution

_ 2 e Z iy (%, ¥") obtained from(x",y");

j>1:(i,))eAp i>1:(1.]))eAs Cs = searchCyclels,V);
Vie{2,...,|V|},seK (13) foreach cyclec (s do

‘o Add the corresponding constraint (4) to
OSQU §(|V|_1)Xijav(lvl)€AD (14) L STSR; P g ( )
0<wj < (IVI—1)yij, V(i }) € As, s K (15) -
.. Setv=v+1,;

xij €{0,1},¥(i,]) € Ao, (16) Solve the LP relaxation of probleiT SR, and
Yisj € {0,1},Y(i,j) € As,se K (17) :teetrg‘;é)r/]"v). be its optimal solution of valug, at

The constraints (13) ensure that one unit of the com-
modity is delivered to each nodés € K. The bounds
(14)-(15) ensure that the commodity can flow only
along arcs in the solution. Algorithm 4.2 in (Adasme et al., 2015) that we adapt
In the next section, we propose an iterative a|go_ to solve problenST SP. First, we remove constraints
rithmic procedure that allows to obtain optimal solu- (4) from STSP and solve the resulting integer opti-
tions and lower bounds for the STSP while using the Mization problem. Consider the underlying optimal
exponential formulation. solution undirected grapBs = (V,Eq UEs) whereV
is the set of nodes arif); UEs is the set of edges such
thatEy C Ep andEs C Esfor a given scenarie. If Gg
contains a cycle with three or up | — 1 nodes, then
3 ITERATIVE PROCEDURE FOR the Algorithm 4.1 detects it. A sultkﬁet of nodes induc-
GENERATING SECS ing a cycle defines a new constraint (4) which cuts off
this cycle from the solution space. Probl&Mm SR is
The procedure to generate SECs is quite general ande-optimized taking into account the new added con-
it can be adapted straightforwardly using Algorithms straints. This iterative process goes on until the under-
4.1 and 4.2 from (Adasme et al., 2015) to the STSP. lying current optimal solution 8T S has ho more

return the solution(x",y¥,z,);
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cycles. Since the number of cycles is finite, so is the number. Columns 2-3 present the number of nodes
number of constraints (4) that can be added to prob-|V| and the number of scenarigi§| of each instance,
lem ST SP. Notice that each subset of nodes contain- respectively. Columns 4-8, 9-13 and 14-18 present
ing at least three or up t&| — 1 nodes generates one the optimal solution ofSTSP, STSR, STSR, the
cycle elimination constraint for a particular scenario. number of branch and bound nodes used by CPLEX,
Also notice that the number of SECs of type (4) that the CPU time in seconds to solve the mixed integer
can be added to probleSiT SRis at mostO(|K|2V]). programs and their corresponding LP relaxations to-
Consequently, Algorithm 4.2 adapted to SoBESP, gether with their CPU time in seconds, respectively.
converges to the optimal solution of the problem in Finally, in columns 19-21, we present gaps we com-
at mostO(|K[2V)) outer iterations. The proof can be e as[Opt*LP} +100 forSTSP, STSRandSTSR
directly deduced from Theorem 2 in (Adasme et al., respective?pt ’ '
2015). The aforementioned procedure can also be y:

. From Table 1, we observe that the optimal objec-
used to compute lower bounds 8T Sk. This proce- . .
dure is depicted in Algorithm 1 and it is described as tive function values fo6T Sk andST Sp are exactly

: . the same and slightly larger f&@T SB. We also see
follows. First, we remove constraints (4) frd8T SP . o~
and solve the resulting linear programming (LP) re- that the_CPU times are significantly lower 8T SP.
laxation of STSP at step 1. Next, we enter into a Regarding the number of branch and bound nodes,
while loop searching cycles in the current rounded LP :/xe gl')rsgé\ﬁ:rgfgé_ E;( dggggz:?j’lseggiﬁjgosr %?Iv-
solution for eacts € K. If Gs contains a cycle with 95 >
three or more nodes up 14| — 1, then the Algorithm so_lvmgSTSBthan forST SR. Finally, the LP relax-

’ o ations of ST SP can be solved faster than f&T SP

4.1 referred to assearchCyclegss,V)” in (Adasme andST SR, However, we see that the gaps of the LP
et al., 2015) detects it. A subset of nodes inducing o S gap .
a cycle defines a new constraint (4). The LP relax- relaxations are tighter for the exponential model. Fi-
ation of problemSTSP is re-optimizéd taking into nally, we observg tha_t aII_the instances_‘ (e.g._ 1-24,26)
account the new added constraints. This iterative pro- are solved to optimality with the exception of instance

cess goes on until the difference between the currentgtjemggtraiznsé dlr;vﬁ?éqrcg;r{hzl': tshheosvssogtlsniwar:izggjrn?ns
optimal objective function valug, and the previous g y

: . better performance. Finally, we mention that we can-
O S antl " alials sl pogitve vgEs not solve, with the exponential model, instances with
more than 15 nodes due to the large number of sub-
tour elimination constraints involved. The instances
4 NUMERICAL RESULTS in Table 2 are the same as in Table 1. In Table 2,

the legend is as follows. In column 1, we show the

In this section, we present preliminary numerical re- instance number. In columns 2-5, we show the op-
sults. A Matlab (R2012a) program is developed using fimal solution obtained with the adapted version of
CPLEX 12.6t0 solvéST SR, STSR, STSRand their  Algorithm 4.2 (Adasme et al., 2015), its CPU time in
corresponding LP relaxations. The numerical exper- S€conds, the number of cycles found with this algo-
iments have been carried out on an Intel(R) 64 bits rithm and the number of iterations, respectively. In
core (TM) with 3.4 Ghz and 8G of RAM. CPLEX columns 6-10, we present the lower bound obtained
solver is used with default options. We generate the With Algorithm 1, its CPU time in seconds, the num-
input data as follows. The edges i and Es are ber of cycles found with it, the number of iterations,
chosen randomly with 50% of probability. The values and the optimal solution found witST Sk while us-

of ps,Vs € K are drawn randomly from the interval N all the cycle elimination constraints found with
[O’ 1] such thatZSEK ps = 1. Without loss of genera|_ Algonthm 1, respeCtIVely. . For the latter, we do not
ity, we assume that the set of scenakois finite and ~ report the CPU time required by CPLEX. However,

known. Deterministic and uncertain edge costs are We mention that for most of the instances (e.g. 1-21)
randomly drawn from the intervd0;5. We set the these CPU times are less than 2 seconds. For the in-

parametee = 10-8 in Algorithm 1. Finally, we men-  Stances 22-26, we limit CPLEX to a maximum CPU
tion that we solveST SP with up to 15 nodes while time of 1 hour. In particular, for the instance num-
generating all cycle elimination constraints. In par- Per 25 we cannot find a feasible solution in 1 hour.
ticular, for the instances 1-25, we set the maximum Finally, in columns 11-12, we provide gaps that we

R F
CPU time to solve the linear models with CPLEX to compute by[% x100 and’or’%;pgpt“ ’ %100,

at most 2 hours. Except for the last instance where we respectively. From Table 2, we observe that Algo-
set the maximum CPU time to 12 hours. The legend (jthm 4.2 can find the optimal solutions for all the

of Table 1 is as follows. Column 1 shows the instance
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Table 1: Numerical results obtained with the Mixed integeedr models.

Inst. Dim. STSR STSP STSR Gaps
V| |K] | Opt [B&Bn|Time(s)| LP |Time(s)| Opt | B&Bn | Time(s)| LP |Time(s)| Opt | B&Bn | Time (s)| LP |Time (s)| Gap % | Gap % | Gaps %
1{a| 5 | 750| o 027 | 750| 014 |750| o© 014 |681| 013 |750| O 014 |681| 013 0 9.12 9.12
26| 5 |1098 0 0.16 |10.98| 0.14 |[10.98| 28 0.16 |9.28| 014 1098 0 0.14 |[1061| 0.13 0 1549 | 3.38
3| 8 5 7.66 0 0.38 7.65 0.20 7.66 0 0.19 6.90 0.14 7.66 0 0.25 7.32 0.14 0.08 9.90 4.46
410 5 |12.22| 9 139 (11.16( 0.36 |[12.22| 47 0.25 9.42 0.16 |(12.38] 95 0.48 9.89 0.16 8.67 22.93 20.09
5112 5 |10.60( 7 6.10 |10.30| 1.33 |10.60f 33 0.42 8.09 0.14 |10.60| 23 0.75 9.01 0.14 2.88 23.69 15.08
6[14| 5 |12.40| 74 | 47.33 [11.29| 7.04 |12.40| 153 0.62 |10.28| 0.17 |12.89| 412 335 [10.45| 0.17 889 | 17.10 | 18.95
7(15| 5 | 979| 36 | 87.10 | 865| 1657 | 9.79| 974 198 | 7.43| 014 |10.49| 1298 | 11.72 | 7.60| 0.16 | 11.69 | 24.05 | 27.51
8| 4| 10 (1016 O 0.27 |10.16| 0.16 |10.16 0 0.16 9.74| 0.16 |(10.16 0 0.16 9.74 0.16 0 4.11 4.11
9| 6 | 10 [12.02 7 0.30 |11.28] 0.14 |12.02( 31 0.27 |10.15| 0.28 |12.60[ 34 0.33 |10.33| 0.12 6.15 15.57 17.95
10| 8 | 10 |12.39| 15 170 |11.43| 020 |12.39| 136 034 |932| 016 |12.46| 97 056 [10.30| 0.16 7.74 | 2472 | 17.36
11|10 10 |11.47| 27 362 |11.04] 050 |[11.47| 596 131 |10.39| 0.17 |12.19|508533| 828.00 | 10.66| 0.39 3.74 9.41 | 1254
12|12 10 |1163| 7 12.65 |11.51| 229 [11.63| 50 059 |8.64| 017 |11.63] 125 190 |9.88| 0.19 099 | 2573 | 15.07
13| 14| 10 |13.61| 224 | 214.91|11.90| 11.57 |13.61| 25584 | 81.73 |10.85| 0.16 |17.57(656991| 7200.51|11.42| 0.42 12.62 20.32 34.99
14| 15| 10 |12.32| 171 | 439.33|10.62| 29.20 |12.32| 8720 30.97 | 9.56 0.20 |14.00| 96228 | 1377.95| 9.79 0.33 13.80 22.42 30.05
15| 4 | 25 |1035| ©O 041 |10.35 020 [1035 O 020 |10.15| 0.4 |10.35/ O 0.20 |[10.15| 0.16 0 1.99 1.99
16| 6 | 25 | 864| O 036 |864| 019 |864| 7 023 |670| 016 |864| 0 020 |6.96| 014 0 22.48 | 19.51
17| 8 | 25 |10.13| O 0.47 |10.13| 0.44 |10.13| 15 0.30 9.10 0.17 |(10.13 0 0.19 9.96 0.17 0 10.17 1.70
18| 10| 25 |12.32| 40 10.64 | 11.48| 0.95 |12.32| 460 239 |11.25| 0.22 |[13.13| 1884 22.00 |11.44| 0.23 6.79 8.65 12.85
19| 12| 25 |16.70| 151 | 135.99|15.06] 5.20 |16.70| 2473 20.26 [13.82| 0.22 |16.89| 1237 42.28 [14.11| 0.30 9.82 17.27 16.48
20| 14| 25 [13.77| 126 | 1163.72(12.91| 29.80 |13.77| 944 14.17 |11.46| 0.28 |[14.13| 566 35.79 |11.83| 0.37 6.27 16.81 16.26
21| 15| 25 [10.30| 80 |[3469.84| 8.69 | 81.57 |10.30| 614 | 12.48 |7.20| 0.95 [10.30| 413 | 69.05 | 7.67| 098 | 1561 | 30.10 | 25.55
22120 5 - - - - - 12.63| 34329 | 139.25 [10.47| 0.31 |13.79|198011| 2824.50|11.08| 0.39 - 17.06 19.65
23|125| 5 - - - - - 12.89| 50541 | 443.95 | 9.97 0.30 |12.98|147422| 6962.65(10.11| 0.64 - 22.64 22.13
24130| 5 - - - - - 16.76| 380096| 3254.34|14.67| 0.41 |27.77|121894| 7200.36|15.17| 1.11 - 12.48 | 45.39
25/35( 5 - - - - - 13.07| 314434| 7231.83|10.59| 0.56 |22.81| 55442 | 7200.55|10.76| 1.31 - 19.01 | 52.80
26|40 5 - - - - - 13.05| 625722| 29773.38/ 10.76| 0.72 |19.88|213290| 39599.72 10.96| 3.40 - 17.58 | 44.90
Table 2: Numerical results obtained with the iterative atfmic procedures.
4 Algorithms 4.1 and 4.2 adapted from (Adasme et al., 2015) Algorithm 1 Gaps
Optit Time (s) | #Cycles #iter OpR | Time(s) | #Cycles | #iter | Optf | Gam% | Gap: %
1 7.50 0.48 10 2 7.50 0.42 10 2 7.50 0 0
2 10.98 0.28 15 2 10.98 0.30 15 2 10.98 0 0
3 7.66 0.31 20 2 7.65 0.58 97 3 7.66 0.08 0
4 12.22 1.11 43 6 11.16 0.59 94 3 11.64 8.67 4.80
5 10.60 0.52 36 3 10.30 0.61 150 3 10.52 2.88 0.76
6 12.40 1.58 75 6 11.20 0.72 261 3 11.77 9.64 5.03
7 9.79 1.34 53 5 8.54 0.70 233 3 9.69 12.81 0.96
8 | 10.16 0.34 20 2 10.16 | 0.33 20 2 10.16 0 0
9 | 12.02 0.92 64 5 11.28 | 0.61 133 3 11.88 | 6.15 1.12
10 | 12.39 1.72 78 7 11.43 | 0.80 280 4 11.89 7.74 4.01
11 11.47 2.65 129 8 11.04 1.30 502 6 11.43 3.74 0.39
12 | 11.63 0.69 60 2 11.51 0.98 439 4 11.63 0.99 0
13 13.61 10.73 227 17 11.88 1.19 655 4 12.96 12.71 4.82
14 12.32 10.65 188 17 10.62 1.72 886 5 11.69 13.86 5.14
15 | 10.35 0.39 50 2 10.35 0.33 50 2 10.35 0 0
16 8.64 0.33 75 2 8.64 0.36 75 2 8.64 0 0
17 10.13 0.38 100 2 10.13 0.36 100 2 10.13 0 0
18 12.32 3.28 210 5 11.48 1.33 1054 4 12.13 6.79 1.54
19 16.70 17.29 535 14 15.06 1.64 1530 4 16.27 9.86 2.57
20 13.77 12.04 460 11 12.88 1.75 1361 4 13.47 6.49 2.16
21 10.30 11.26 268 5 8.67 3.17 2285 4 10.22 15.81 0.82
22 12.63 57.99 329 41 11.27 1.64 583 5 12.01 10.79 4.89
23 | 12.89 1706.91 409 43 10.84 2.96 985 5 12.13 15.96 5.90
24 16.76 438.17 325 34 15.64 1.84 599 3 16.29 6.65 2.77
25 12.93 | 36135.64 799 84 11.23 1.61 488 2 - 13.18 -
26 13.05 | 56379.58 959 81 11.60 3.38 817 3 12.58 11.16 3.64
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Figure 1: Numerical results f@T SB varying the number of scenarios usijWj = 16.

instances. In particular, the optimal solution of in- the performances obtained with the compact model
stance 25 is also found, although at a higher CPU time ST SR and with Algorithm 1, in Figure 1, we solve
when compared t&T SR. The number of cycles and  several instances for fixef/| = 16 while varying
iterations are not so large, e.g., less than 1000 andthe number of scenarios from 2 to 16. More pre-
100, respectively, for the largest instance. Notice that cisely, in Figure 1a, we show the optimal solution
the total number of cycles for most of the instances of STSPR we denote byOpt(STSR), its LP relax-

is huge. However, the number of cycles required by ation LP(STSP), the lower boundOpt,Fi obtained
Algorithm 4.2 to find the optimal solution is signifi-  with Algorithm 1 and the lower boun@ pt; obtained
cantly small. In general, we see that the Algorithm 1 with ST SR while using all the cycle elimination con-
can find tight lower bounds in very short CPU time, straints found with Algorithm 1. In Figure 1b, we
i.e., in less than 4 seconds for all the instances. In this present the CPU time in seconds 8T SP, for its
case, the number of cycles are slightly larger when LP relaxationLP(ST SP), and forOpt,f. In the lat-
compared to Algorithm 4.2. On the opposite, we see ter, we include the CPU time required to solve Al-
that Algorithm 1 requires less iterations. Finally, we gorithm 1 and the time required to sol€d SP with
observe that solvin®T SP with all the cycle elimi- CPLEX. In Figure 1c, we show the number of cycles
nation constraints found with Algorithm 1 allows to and iterations required by Algorithm 1. Finally, in
compute tight bounds when compared to the optimal Figure 1d, we present gaps as defined for Tables 1
solution of the problem and optimal solutionsin many and 2. From Figure 1a, we mainly observe that the
cases (e.g. instances 1-3, 8, 12, 15-17). More pre-lower boundOpt; remain tight when incrementing
cisely, these bounds are computed with gaps which the number of scenarios. In general, we see that the
are lower than 6% for most of the instances. boundsLP(ST SB), Optf andOpt; do not seem to

In order to give more insight with respect to be affected by the increase in the number of scenarios.
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Finally, we observe that the boun@gpt|; are tighter Flaxman, A. D., Frieze, A., and Krivelevich, M. (2006). On

thanOptf, andOptY are tighter tha. P(ST SP). the random 2-stage minimum spanning trBandom
From Figure 1b, we confirm that the Algorithm 1 Struct Algor 28:24-36.

can find these lower bounds in very short CPU time. Gaivoronski, A., Lisser, A., Lopez, R., and Xu, H. (2011).

Similarly, the LP relaxation o8 T SRis obtained very é?atfslaék t_prof;gsr?a?wﬂsprobabll|ty constraintsJ

fast. In Figure 1c, we observe that the number of iter- 0bal Uptim 49:597=4L3.

. Gavish, B. and Graves, S. C. (1978). The travelling sales-
ations are very low and that the number of cycles used man problem and related problem@perations Re-

. F . .
to find the lower bound®pt; slightly grows with the search Centre, Massachusetts Institute of Technology
number of scenarios. Finally, in Figure 1d, we €on- | eichford, A. N., Nasiri, S. D., and Theis, D. O. (2013).
firm with the gaps, the quality and order of the bounds Compact formulations of the steiner traveling sales-
presented in Figure 1a. man problem and related probleni&iropean Journal

of Operational Researct228:83—-92.

Maggioni, F., Perboli, G., and Tadei, R. (2014). The multi-
path traveling salesman problem with stochastic travel

S5 CONCLUSIONS costs: a city logistics computational studylrans-
portation Research Procedia(3):528-536.

In the context of combinatorial optimization, recently Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). In-

some efforts have been made by extending classical ~ teger programming formulations and travelling sales-

optimization problems under the two-stage stochastic man problemsJ. Assoc. Comput. Mact:326-329.

programming framework (Gaivoronski et al., 2011; Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2009).

Flaxman et al., 2006; Escoffier et al., 2010; Adasme Lectures on stochastic programming: Modeling and

et al., 2013; Adasme et al., 2015)_ In this paper, we the_ory. MOS-SIAM Series on Optimization, Philadel-

introduce a deterministic two-stage stochastic travel- phia

ing salesman problem and propose two compact mod-

els and a formulation with an exponential number of

constraints that we adapt from the classic TSP. Subse-

quently, we adapt the iterative algorithmic procedure

proposed in (Adasme et al., 2015) and compute opti-

mal solutions and tight lower bounds for the stochas-

tic traveling salesman problem. Our preliminary nu-

merical results indicate that one of the compact mod-

els allows to solve instances with up to 40 nodes and 5

scenarios to optimality. Finally, the lower bounds are

obtained within a small CPU time for all the tested

instances.
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