
Stereo Vision on an ARM/DSP Multicore Platform based on Code

Generation using the MATLAB Embedded Coder

Dennis Schuldt1, Jörg Thiem1 and Semir Mustedanagic2
1Department of Information and Electrical Engineering, University of Applied Sciences and Arts Dortmund,

Sonnenstraße 96, 44139 Dortmund, Germany
2Smart Mechatronics GmbH, Kronenburgallee 2, 44141 Dortmund, Germany

Keywords: MATLAB, MATLAB Embedded Coder, ARM Cortex-A8, DSP C674x, VRmagic D3 Platform, Texas

Instruments.

Abstract: Vision based techniques are by now well established means for contactless measuring applications, e.g. in

industrial automation, optical inspection, medical imaging or robot navigation. However, the development

and implementation of these applications on small-sized embedded systems is still challenging, because image

processing algorithms require quite a lot CPU performance. Therefore, code optimization has to be considered

in the development process. In this work we present our results on implementation and benchmarking of

stereo disparity algorithms on an ARM/DSP embedded multicore platform. The algorithms are developed

with the computer algebra framework MATLAB from Mathworks®, which allows to generate generic and

processor-specific C/C++ code automatically. The analysis of the code generation process and the benchmark

of the target performance are the main focus of this contribution.

1 INTRODUCTION

Image processing algorithms, especially stereo

reconstruction algorithms on small-sized embedded

platforms, e.g. mobile robots, make high demands on

the overall processor performance. For this reason,

many research groups all over the world are involved

with this field of investigation. Thus, there already

exist several approaches to get faster disparity

implementations, i.e. faster algorithms or of course

more processor performance.

To mention examples concerning the first

approaches, region-based methods are proposed

which are faster compared to dense stereo

reconstruction but only result in rough disparity

maps. In (Mustafah et al., 2012) the disparity

calculation is based upon object-background

estimation. Therefore, only the measurement of the

distance and size of objects using a stereo vision

system is possible. The algorithms are simple and fast

but the achieved accuracy is poor, e.g. the distance

error is about ±10 cm @ 3m. Lixin et al. (2009)

present their results based on color-segmentation as

comparable to existing methods as far as the disparity

error is concerned. Unfortunately, the calculation

time of this implementation is not supplied in detail

and therefore this cannot be compared.

The second approach is the usage of more

powerful processors, like DSPs (Digital Signal

Processor) or processor optimized algorithms, which

of course should result in faster implementations.

Nevertheless, one has to keep in mind, that with

changing the hardware, a redesign of the

implemented code is required or recommended.

In (Demirovic et al., 2014) the authors show their

results obtained with ARM NEON instructions for

mobile devices using the example of image

registration. Although we can expect significant

speed improvements, mobile devices don’t seem to

compete yet with powerful desktop CPUs.

Nevertheless, mobile processors do have a better

performance per watt.

Welch et al (2012) present their investigations

about the performance speed-up of SIMD

architectures (single instruction multiple data), like

Intel’s SSE or ARM’s NEON, which are

advantageous when the calculation of one pixel does

not affect another one and the algorithms are

parallelizable. Their study is focused on the NEON

SIMD instructions applied on two image processing

algorithms. The bilinear interpolation algorithm

558
Schuldt, D., Thiem, J. and Mustedanagic, S.
Stereo Vision on an ARM/DSP Multicore Platform based on Code Generation using the MATLAB Embedded Coder.
DOI: 10.5220/0005699405580562
In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016) - Volume 2, pages 558-562
ISBN: 978-989-758-198-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

results in a speedup of about 2 when using SIMD

instructions. The second test, a distortion algorithm,

achieves a speedup factor of 3.

Goldberg and Matthies (2011) presents their 7x7

SAD implementation for disparity estimation on an

ARM/DSP platform for small robots. The stereo

algorithm is implemented on the C64x+ DSP

core@520MHz of the multimedia processor

OMAP3530. This contribution also reveals a good

comparison of several disparity implementations on

DSP platforms, like (Ambrosch et al., 2010),

(Humenberger et al., 2009) and (Khaleghi et al.,

2008). With these results, we can get a well-founded

idea of the expected embedded processor power.

However, the implementations may have to be ported

and optimized for a different kind of processor, if this

is required.

A way out could be the model-based development

of algorithms and the use of automatic generic or

processor-specific code generation, which is already

well-established for example in the development

process of embedded control systems. Regardless of

how efficient the generated image processing code

may be, this approach would help to test the

functionality of the algorithm in a very early stage on

an embedded prototyping system. The upgrade to a

more powerful processor or to a different multicore-

architecture is easier than with manually

implemented code. Of course, this advantage also

applies if there is a hardware redesign during the

development process for other reasons.

2 SYSTEM SETUP

2.1 Camera Hardware Architecture

In Fig. 1 you can see the D3 Intelligent Camera

Platform from VRmagic with two camera modules

mounted on the stereo-rig. The evaluation board

provides input and output ports like Ethernet, HDMI,

GPIO or audio (VRmagic GmbH, 2015).

The two camera modules (VRm-S 12/C) have a

1/3” color CMOS sensor with a resolution of 754x480

pixels and a pixel size of 6μm x 6μm. With a maximal

frame rate of 69 Hz the cameras are able to take

monochrome and color images (VRmagic GmbH,

2015).

The architecture of the D3 camera is shown in Fig.

2. The DaVinci dual core platform consists of an

ARM-Cortex A8 general purpose processor and a

DSP C674x digital signal processor. Both have a

floating point unit (FPU). Communication between

these two cores is done over a 64-Bit interface, which

Figure 1: VRmagic D3 intelligent ARM/DSP camera

(EVM).

is controlled by the Texas Instruments Codec Engine.

There is also a separate interface for interrupt

requests. The ARM core is clocked with 1 GHz and

the DSP with 700 MHz respectively. Both cores can

access a shared memory of the overall 2 GB DDR3-

800 RAM which is clocked with 400 MHz. Other

areas of the partitioned RAM are used e.g. for

graphics output. The ARM-Cortex A8 runs a

customized version of Ubuntu 12.04 long term

support (LTS) with the Linux kernel 2.6.37 and

without a graphical user interface. The

communication between the ARM and DSP core is

implemented with the help of the TI Codec Engine.

The algorithm on the DSP is using the IUNIVERSAL

interface.

Figure 2: TI DaVinci DM8148 multicore architecture

(VRmagic GmbH, 2015).

2.2 Embedded Toolchain

Fig. 3 shows an overview of the VRmagic

development system. As you can see the

implementation of the desired algorithms is done on

an x86 host computer and the binary files are

transferred to the target (VRmagic GmbH, 2015).

The target can either be an x86 or an ARM based

computer, of course the appropriate runtime libraries

are needed for both systems. The x86 host computer

runs with a custom version of Ubuntu 12.04 (LTS)

which is offered by VRmagic. To generate binary

files for the different targets the toolchain provides a

cross-compiler suite, in our case the GNU Compiler

Collection (GCC), and all required development

libraries for the different target platforms. The custom

Stereo Vision on an ARM/DSP Multicore Platform based on Code Generation using the MATLAB Embedded Coder

559

Ubuntu operating system can be installed on a

PC/Laptop or a virtual machine.

2.3 Automatic Generation of C/C++
Code

As seen above, the compiler toolchain is

homogenous. The host machine as well as the

embedded target is based on an Ubuntu distribution

with an appropriate cross-compiler for the processor.

In addition, we are able to use the same generated

code from the algorithm function, if we use the

MATLAB Coder for generic code generation. If the

MATLAB Embedded Coder is used, of course, the

code is optimized for the target processor.

Nevertheless, the homogenous toolchain is still

profitable.

Figure 3: Toolchain of the used VRmagic camera

(VRmagic GmbH, 2015).

The process of automatic code generation sounds

easy. However, there are some preliminaries which

have to be done before automatic code generation.

The MATLAB language determines the type of

variables at runtime, which is called, dynamic typing

but the variable types for a static typing language like

C/C++ has to be set at compile time and therefore this

has to be done first. It should also be checked if the

used MATLAB functions are supported by the

MATLAB code generation framework. For example

we are not using the MATLAB toolbox function for

calculating the disparity, because it does not support

ARM based processors and therefore this approach

would not be implementable on our D3 camera

system. The disparity function of MATLAB needs a

library which is only available for x86 target systems.

For this reason, we are using an own SAD

implementation for our investigations.

3 RESULTS

The regarded algorithm performs the computationally

expensive stereo matching calculation based on

rectified images. The Windows 7 host platform is

running on an Intel Core-i5 3570k@3.4 GHz. We use

the sum of absolute differences (SAD) for correlation

as in (Goldberg & Matthies, 2011). The greyscale

stereo image pair Tsukuba from the Middlebury

Dataset (Middlebury, 2015) has the size 384x288 at 8

Bit depth. The calculated disparity image has integer

precision. In Fig. 4 the stereo image pair, the true

disparities and the calculated disparity map is shown

using a SAD window size of 7x7 and a disparity range

of 16.

Figure 4: Stereo image pair (above), ground truth disparity

map (bottom left) and calculated disparities (bottom right).

To evaluate the performance of our code on the

embedded platform, we measure the elapsed time of

the implemented code with the accurate time.h Linux

Library and the system function gettimeofday()

(Ubuntu Manpage, 2015). Because of our

homogenous toolchain, i.e. the host machine and the

embedded target are based on an Ubuntu distribution,

there are no variants in code concerning the

measurement method. The elapsed time within

MATLAB is calculated with tic/toc, which gives us

adequate precision in milliseconds.

To be able to compare our results with existing

approaches, especially (Ambrosch et al., 2010),

(Goldberg & Matthies, 2011), (Humenberger et al.,

2009) and (Khaleghi et al., 2008), we calculate the

performance parameter Mde (million disparity

estimations per second) out of our measurements.

Finally, we refer these results to the rate of the

processor cycle frequency and get Mde/GHz.

As one can see in TABLE 1 the implementation

of the C-Code, generated by the MATLAB

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

560

Embedded Coder achieves a performance value of 3.7

Mde/GHz and therefore cannot compete with more

powerful desktop CPUs. This finding corresponds to

other known publications (Demirovic et al., 2014),

(Welch et al., 2012). Here, the generic (not platform

specific) C-Code of the algorithm produced by the

MATLAB Coder results in 5.8 Mde/GHz as

MATLAB mex library and 6.5 Mde/GHz in the

Ubuntu Host environment. However, our embedded

performance is comparable to and better than the

MATLAB engine itself on a Core-i5 desktop CPU

which achieves 2.8 Mde/GHz.

In the section above the performance values

belong to MATLAB Code which has been optimized

for the code generation process. In TABLE 2 the

performance improvements are shown in detail. The

variant D is used in the preceding section. All results

are calculated by averaging over up to 100

measurements.

Table 1: Comparison of the MATLAB execution time and

the embedded implementation of the final optimized

algorithm.

Platform time/ms Mde/G

Hz

Core-i5 3570k@3.4Ghz,

MATLAB
184 2.8

Core-i5 3570k@3.4Ghz,

MATLAB mex
89 5.8

Core-i5 3570k@3.4Ghz,

Ubuntu Host
80 6.5

ARM Cortex-A8@1GHz 476 3.7

VLIW DSP C674x@700Mhz 428 5.9

One outcome of the investigations is that the

processor specific optimization of the MATLAB

Embedded Coder which results in using the NEON

SIMD instruction set seems to be not as noticeable as

expected. In the case of the final optimization D, we

can state a speed-up of only 12%.

In code variant A the SAD matching algorithm is

based on matrix-templates that are cut out of the left

and right image. Next, for each column in the

reference image and each disparity value the absolute

difference of the matrix-templates are calculated.

Obviously, addressing all window-elements of the

sub-matrices is rather time consuming, i.e. the

calculation of the depth map requires approx. 3.6

seconds (0.5 Mde/GHz). The performance can be

significantly increased by calculating the SAD metric

successively column by column. With this

modification variant B shows a speed-up of about 3

(1.2 seconds or 1.4 Mde/GHz). Finally, the

accumulation for the SAD metric in vertical direction

can also be optimized, that results in a calculation

time of about 500 milliseconds or 3.6 Mde/GHz

(variant C,D).

Table 2: Performance optimization of the generated C-Code

for the embedded implementation.

Algorithm
time/ms Mde/GHz

w/o

NEON

w

NEON

w/o

NEON

w

NEON

A: SAD with
sub-matrices

3625 n/a 0.5 n/a

B: SAD

column-wise
1274 1258 1.4 1.4

C: Sum up by
conv2

601 497 2.9 3.6

D: Sum up

manually
543 476 3.3 3.7

3.1 Comparison

In TABLE 3 our gathered performance parameter

Mde/GHz of our ARM implementation is compared

to given contributions that are based on different

embedded platforms, mainly on a DSP or ARM/DSP

processor. As expected, the implementation on the

ARM core of our system shows worse performance

characteristics compared to optimized DSP

implementations (Goldberg & Matthies, 2011),

(Ambrosch et al., 2010).

However, we can also compare our results to

another ARM Cortex-A8 implementation (Agadakos,

2015) that has already been optimized as stated by the

author. Our approach shows the final implementation

with the MATLAB Embedded Coder and our

optimizations for the SAD calculation which

therefore outperforms the given contribution.

Using the generated generic C-Code on the DSP

core yields to a performance increase of about 10%

compared to our ARM implementation. Although if

we compare that to other DSP implementations

(Goldberg & Matthies, 2011) and (Ambrosch et al.,

2010), we can see that the performance is still

multiple times slower than what can be achieved with

highly optimized code. Nevertheless, the scope of our

investigations was the analysis of automatically

generated code, rather than processor optimized

implementations.

Table 3: Comparison of the embedded stereo

implementations.

Author Method Mde/GHz

Khaleghi 3x3 Census 19.2

Humenberger 8x8 Census 78.38

Ambrosch Sparse Census 120.23

Goldberg 7x7 SAD 280.77

Agadakos 7x7 SAD 0.58

This work (ARM, variant D) 7x7 SAD 3.7

This work (DSP, variant D) 7x7 SAD 5.9

Stereo Vision on an ARM/DSP Multicore Platform based on Code Generation using the MATLAB Embedded Coder

561

4 CONCLUSION

In this work we have illustrated the implementation

of an SAD based stereo algorithm on an embedded

ARM/DSP vision platform. The algorithm is

developed as MATLAB function code that feeds the

MATLAB Embedded Coder to generate generic or

platform-specific C-Code code, in our case using the

NEON instruction set of the ARM Cortex processor.

We have evaluated the performance of the

implemented code by comparing the speed

performance in million disparity estimations per

second in respect to the processor cycle frequency.

The main outcome of our work is the awareness

that the performance of the embedded

implementation highly depends on the developed

MATLAB function code. The MATLAB Embedded

Coder seems to generate more efficient code if the

underlying algorithm is based on vector calculations

rather than addressing sub-matrices. This could be a

drawback, because the resulting MATLAB code

could be less compact and readable.

With the described optimizations our generated

C-Code achieves a performance of 3.7 Mde/GHz and

therefore outperforms an existing ARM

implementation of this algorithm. Unfortunately, no

further ARM-only implementations of the considered

algorithm are known.

Additionally, our algorithm on the DSP shows

worse performance characteristics compared to

existing DSP implementations. We used generic C-

Code generated with the MATLAB coder which has

a major drawback because we don’t specifically take

advantage of the DSP architecture (apart from TI

compiler optimizations). Therefore future work

should investigate the possibility of optimized code

generation for the DSP with the MATLAB Embedded

Coder and the TI C6000 Hardware Support Package.

Furthermore improvements should be made to the

SAD algorithm with special emphasis on the DSP

code generation.

REFERENCES

Agadakos, Y., 2015. A Heterogenous System Approach To

The Real Time Stereo Problem. [Online] Available at:

http://artemis.library.tuc.gr/MT2013-0114/MT2013-

0114.pdf [Accessed 03 March 2015].

Ambrosch, K., Zinner, C. & Leopold, H., 2010. A miniature

embedded stereo vision system for automotive

applications. Electrical and Electronics Engineers in

Israel (IEEEI), pp.000786-89.

Demirovic, D., Serifovic Trbalic, A., Prljaca, N. & Cattin, P.

C., 2014. Evaluation of image processing algorithms an

ARM powered mobile devices. Information and

Communications Technolog, Electronics and

Microelectronics (MIPRO), pp.417-20.

Goldberg, S. B. & Matthies, L., 2011. Stereo and IMU

assisted visual odometry on an OMAP3530 for small

robots. Computer Vision and Pattern Recognition

Workshops (CVPRW), pp.169-76.

Humenberger, M., Zinner, C. & Kubinger, W., 2009.

Performance evaluation of a cencus-based stereo

matching algorithm on embedded and multi-core

hardware. Image and Signal Processing and Analysis,

pp.388-93.

Khaleghi, B., Ahuja, S. & Wu, Q., 2008. An improved real-

time miniaturized embedded stereo vision system

(MESVS-II). Computer Vision and Pattern

Recognition Workshops, pp.1-8.

Lixin, Z., Dong, Y. & Zhengguang, X., 2009. A Segment

Based Dense Stereo Matching Algorithm. Information

Science and Engineering, pp.574-78.

Manpage, U., 2015. Ubuntu Homepage. [Online] Available

at: http://manpages.ubuntu.com/manpages/lucid/

man2/gettimeofday.2.html [Accessed 03 March 2015].

Middlebury Datasets, 2015. Middlebury. [Online]

Available at: http://www.middlebury.edu/stereo

[Accessed 03 March 2015].

Mustafah, Y. M., Noor, R., Hasbi, H. & Azma, A. W., 2012.

Stereo vision images processing for real-time object

distance and size measurements. Computer and

Communication Engineering, pp.659-63.

Scharstein, D., Szeliski, R. & Zabih, R., 2001. A taxonomy

and evaluation of dense two-frame stereo

correspondance algorithms. Stereo and Multibaseline

Vision, pp.131-40.

VRmagic GmbH, 2015. VRmagic Hompage. [Online]

Available at: http://www.vrmagic.com/downloads/

imaging/protected/D3_intelligent_camera_user_guide

_150128_EN.pdf [Accessed 03 March 2015].

Welch, E., Patru, D., Saber, E. & Bengston, K., 2012. A

study of the use of SIMD instructions for two image

processing algorithms. Image Processing Workshop (

WNYIPW).

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

562

