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Abstract: Given a family of feasible subsets of a ground set, the packing problem is to find a largest subfamily of pairwise
disjoint family members. Non-approximability renders heuristics attractive viable options, while efficient
methods with worst-case guarantee are a key concern in computational complexity. This work proposes a
novel near-Boolean optimization method relying on a polynomial multilinear form with variables ranging
each in a high-dimensional unit simplex. These variables are the elements of the ground set, and distribute
each a unit membership over those feasible subsets where they are included. The given problem is thus
translated into a continuous version where the objective is to maximize a function taking values on collections
of points in a unit hypercube. Maximizers are shown to always include collections of hypercube disjoint
vertices, i.e. partitions of the ground set, which constitute feasible solutions for the original discrete version of
the problem. A gradient-based local search in the expanded continuous domain is designed. Approximations
with polynomials of bounded degree and near-Boolean coalition formation games are also finally discussed.

1 INTRODUCTION

Consider a finite set N = {1,...,n} of items to be
packed into feasible subsets, where these latter con-
stitute a family F C 2¥ = {A : A C N}. The prob-
lem is to find a subfamily #* C F of pairwise dis-
joint feasible subsets with largest size |F*|. In the
weighted version, a function w : F — R identifies
as optimal those such subfamilies F* with maximum
weight W(F*) = Y sc e w(A). Maximizing |F*| is
equivalent to setting w(A) = 1 for all A € F. Thus
this work proposes to use the polynomial multilinear
extension, or MLE for short, of set functions (such
as w) in order to evaluate families of fuzzy feasible
subsets. Although unfeasible, such families shall still
drive the search towards locally optimal feasible ones.

Set packing is a key combinatorial optimization
problem (Korte and Vygen, 2002) extensively stud-
ied in computational complexity, where the aim is
to find efficient algorithms whose output approxi-
mates optimal solutions within a provable bounded
factor. In that field, the focus is placed mostly on non-
approximability results for k-set packing (Trevisan,
2001), where the size of every feasible subset is no
greater than some k < n (and with unit weight for all
as above). Recall that if all feasible subsets have size
k = 2, then the problem is to find a maximal match-
ing in a graph with vertex set N, and an efficient (i.e.
with polynomial running time) algorithm capable to
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output an exact solution is known to exist (Papadim-
itriou, 1994). In fact, if k > 2, then k-set packing
may be rephrased in terms of vertex clouring in hy-
pergraphs, with special focus on the d-regular and
k-uniform case, where every element of the ground
set is present in precisely d > 1 feasible subsets (i.e.
[{A:i€ A e F}|=d forevery i € N), each of which,
in turn, has size k (i.e. |A| =k for every A € F)
(Hazan et al., 2006).

Set packing aslo has important applications,
among which combinatorial auctions constitute a
main and lucrative example: the ground set may con-
sist of items to be sold in bundles (or subsets) to-
wards revenue maximization, and once bids are pro-
cessed the issue may be tackled as a maximum-weight
set packing problem, with maximum received bids on
bundles as weights (Sandholm, 2002). Given the ex-
ponentially large size of the search space, revenue
maximization often leads to use heuristics with no
worst-case guarantee or, more simply, to sell each
item independently but simultaneously over a suffi-
ciently long time period (Milgrom, 2004).

The approach to set packing problems proposed
in the sequel replaces standard pseudo-Boolean op-
timization (Boros and Hammer, 2002) with a novel
near-Boolean method. While the former employs
MLE to switch from {0,1} to [0,1] as the domain
of each of the n variables, the proposed near-Boolean
method relies on n variables ranging each in the 2"~ !-
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set of extreme points of a unit simplex, and employs
MLE to include the continuum provided by the whole
simplex. The n variables correspond to the elements
i € N of the ground set, while the extreme points of
each simplex are indexed by those (feasible) subsets
where each element is included. Then, the MLE of the
resulting near-Boolean function evaluates collections
of fuzzy subsets of N or, equivalently, fuzzy subfami-
lies of feasible subsets A € F. The objective function
to be maximized takes thus values over the n-product
of 2"~! — 1-dimensional unit simplices, allowing to
design a flexible gradient-based local search.

The following section comprenshively details the
framework for the full-dimensional case F = 2V.
This seems useful in general and also allows to clearly
see next that by simply introducing the empty set 0
and all n singletons {i} € 2V into the family ¥ of fea-
sible subsets (with null weights w(0) = 0 = w({i} if
{i} ¢ F) the whole class of set packing problems may
be framed within the proposed method. The gradient-
based local search differs when switching from the
full-dimensional case to the lower-dimensional one
F C 2V, as with the latter a cost function ¢: F — N
also enters the picture, in line with greedy approaches
to weighted set packing (Chandra and Halldorsson,
2001). The cost ¢c(A) = |{B:B € F,BNA #0}| of in-
cluding a feasible subset in the packing is the number
of members with which it has non-empty intersection
(itself included, hence c(A) e N,A € 7).

Note that maximum-weight set packing may be
tackled through constrained maximization of standard
pseudo-Boolean function v : {0,1}1¥1 - R,

Z XA W Ak

1<k<|¥|

ArNA; 750:>xAk+xA, <lforalll <k<lI< |f|,
where x4 € {0, 1} forallA € F ={Ay,...Aj¢|}. Also,
v can be replaced with xMx ~ v, where M is a suit-
able |F| x |¥|-matrix and x = (xa,,...,%a ;) (Ali-
daee et al., 2008). An heuristic then finds a con-
strained maximizer x*, while the corresponding so-
lution is #* = {A : x; = 1}. This differs from what is
proposed here, in many respects, the most evident of
which being that v has | 7| constrained Boolean vari-
ables, while the expanded MLE developed below has
n unconstrained near-Boolean variables.

given by v (xAl - xA\f\)

2 FULL-DIMENSIONAL CASE

The 2"-set {0,1}" of vertices of the n-dimensional
unit hypercube [0,1]" corresponds one-to-one to the
(power) set 2V of subsets A C N through character-
istic functions )4 : N — {0,1},A € 2V defined by
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xa() = 1if i € A and xa(i) = 0 if i € N\A = AC,
while collection {{(A,-) : A € 2V} is a linear basis of
the vector space R?" of real-valued functions w on 2V,
where zeta function { : 2V x 2V — R is the element of
the incidence algebra (Rota, 1964b; Aigner, 1997) of
Boolean lattice (2¥,N,U) defined by {(A,B) = 1 if
B DA and {(A,B) =0if B 2 A. Linear combination
w(B) = Lacov 1" (A)C(A,B) = Lacpu” (A) for Be 2V
applies to any w, with Mdbius inversion p” : 2V — R
uniquely given by (C is strict inclusion) p"(A) =

= Y (—1)Bhy (with ¢(B,A) = (_1)\/*\3\)

BCA
- Z u"¥(B) (recursion, with w(0) = 0).
BCA

Given this essential combinatorial “analog of the fun-
damental theorem of the calculus” (Rota, 1964b), the

MLE f*:[0,1]" — R of w takes values w(B) =
- X (Hw)ww _ ¥
AeV \ieA ACB

Ae2N \i€A

on vertices, and f*(q) = (HCL) "(A) (D)

on any point ¢ = (q1,...,qn) € [0,1]". Convention-

ally, [Tico gi :== 1 (Boros and Hammer, 2002, p. 157).
Let2N ={A:iecAe2¥} ={A},...,Ayn 1} be the

2"~ set of subsets containing each i € N. Simplex

A Asp— n—1 A
Ai_{<qi17"'aqi2 I)GRi : Z qik—l}

1<k<2n-1
has dimension 2"~! — 1 and generic point g; € A;.

Definition 1. A fuzzy cover q specifies a membership
distribution for each i € N over the 2"~ subsets con-
taining it, i.e. ¢ = (q1,...,qn) € AN = Xi<i<n A

Equivalently, q = {¢*: 0 £A €2V ¢* €0,1]"}
is a 2" — 1-set whose elements ¢* = (¢{,...,q)) are
n-vectors corresponding to non-empty subsets A € 2V
and specifying a membership q‘;‘ for each i € N, with
q* €[0,1]if i € A while ¢! = 0 if i € A°. Fuzzy cov-
ers being collections of points in [0, 1]", and the MLE
f* of w allowing precisely to evaluate such points,
the global worth W(q) of q € Ay is the sum over all
q*,A € 2V of f(q*) as defined by (1). That is,

S Y - Y [): (m) ww)],

Ac2N Ac2N |BCA \i€B
orW(q)= ), [Z (Hq?ﬂyW(A)- )
AcoN | BDA \ieA
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Example 2. For N = {1,2,3}, consider w defined by
w({1}) =w({2}) =w({3}) =02, w({1,2}) = 0.8,
w({1,3}) =0.3, w({2,3}) = 0.6, w(N) = 0.7. Mem-
bership distributions of elements i = 1,2,3 over 2{»\’
are q1 € A1,q2 € Ay, q3 € As,

g g 9

_ qi _ qz _ q3
611 - ’ 612 - H C]S -

qij q%v q%;

78} ) a3

If quz = c}%z = 1, then any membership q3 € A3 yields
W(QI7Q2,6]3) = W({172})
+ (B+ad +a3 +4) " ({3})

w({1,2}) +w({3}) = 1.
This means that there is a continuum of fuzzy covers
achieving maximum worth, i.e. 1. In order to select
the one @ = (§1,42,G3) where c}% = 1, attention must
be placed only on exact ones, defined hereafter.

For any two fuzzy covers q = {¢* : 0 # A € 2V}
and § = {@* : 0 # A € 2V}, define § to be a shrinking
of q if there is a subset A, with } ;<4 q‘l4 >0 and

B-
P = {%ilfflf_%f forall Be 2V,i € N,
Y& = ¢+ Y ¢fforallicA
BCA BCA

In words, a shrinking reallocates the whole member-
ship mass Y;c4 g7 > 0 from A € 2V to all proper sub-
sets B C A, involving all and only those elements i € A
with strictly positive membership ¢ > 0.

Definition 3. Fuzzy cover q € Ay is exact as long as
W(q) # W(q) for all shrinkings § of q.
Proprosition 4. If q is exact, then for all A € 2N
{ieA:q >0}|€{0,[A]}.

Proof. For0 C AT (q) ={i: ¢! >0} CA €2, with
= |AT(q)| > 1, notice that

Fe= ¥ (m>u

BCAt(q) \i€B

(B). Let shrinking §,

with g8 = ¢8 if B ¢ 24" (@, satisfy conditions
Y @#=q'+ Y glforallicAt(q)

Be2MmAt (@ Be2V AT (@
and []a7 =[]4’ +]] 4 forall Be 24 @ || > 1.
icB icB icB

These are 2% — 1 equations with ¥ j<;<q k(%) > 2%
variables §%,B C A*(q). Thus there is a continuum
of solutions, each providing precisely a shrinking (1

where Y (@) ="+ Y
Be2AT (@) Be2AT (@)
This entails that q is not exact. O
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Partitions (Aigner, 1997) P = {Ay,...,Ajp} C 2N
of N are families of pairwise disjoint subsets called
blocks, i.e. AyNA; =0,1 <k <[ <|P|, with union
N =Uj<x<|p| Ak- Any P corresponds to the collection
{Xa : A € P} of those |P| hypercube vertices identi-
fied by the characteristic functions of its blocks (see
above). Partitions P can thus be seen as p € Ay where
p‘i‘x =1forall A€ PicA,ie. exactfuzzy covers
where each i € N concentrates its whole membershisp
on aunique A € 2?’ , thus justifying the following.
Definition 5. Fuzzy partitions are exact fuzzy covers.

Ojective function W : Ay — R includes among
its extremizers (non-fuzzy) partitions. This expands
a result from pseudo-Boolean optimization. Denote
by ex(A;) the 2"~ !-set of extreme points of A;. For
q € Ay,i €N, let q = ¢;|q_;, with g; € A; as well as
q_; € Ay\; = X jen\; Aj. Then, for any w,

=Y M+ Y )=

N N
Ae2; A'e2N\ 2!

- XY (H¢4> (au (BUY+1"(B)) +

A2V BCA\i \Jj€B
© 3% (0)ew
Ae2N\2N B'CA" \j'eB’

at all q € Ay and for all i € N. Now define

Wiaila) w[z(m) B

AeaN BCA\i \JEB

>

Wailg) = ), [Z (H‘ﬁ)“w(m
Ac2V [BCA\i \jeB
©ox ()|
A’EZN\Z?] B'CA’ \j'eB’
yielding W(q) = W(qilq_;) + W-i(q_;). (3)

Proprosition 6. For all q € Ay, there are q,q € Ay

(i) W(g) <W(q) <W(q) and,
(i) 9., € ex(A;) for alli € N.

:2§V—>Rby

such that {

Proof. Fori € N,q_; € Ay\;, define wq_,

wq (A) =Y (Hq*“) (BUI). “4)

BCA\i \JjeB
Let Ay == argmaxwq , and Ay = = argminwg_,
with Ay #0# Ay atall q_;. Most importantly,
(ql|ql Z (qA Wq ) = <Qi7Wq,,->, (5)

Ae2V



where (-,-) denotes scalar product. Thus for given
membership distributions of all j € N\i, global worth
is affected by i’s membership distribution through a
scalar product. In order to maximize (or minimize)
W by suitably choosing ¢; for given q_;, the whole
of i’s membership mass must be placed over A(L_ (or

Ag ), anyhow. Hence there are precisely [Ag | >0
(or [Ag [ > 0) available extreme points of A;. The
following procedure selects (arbitrarily) one of them.

RouNDUP(w,q)

Initialize: Sett =0 and q(0) = q.

Loop: While there is a i € N with ¢;(r) & ex(A;),
sett =¢+1 and:

(a) select some A* € A;i_ "t
(b) define, forall j € N,A € N

qie—1)if j#i
lif j=iand A =A*
0 otherwise

() =

Output: Setq = q(¢).

Every change ¢/(t — 1) # ¢/'(t) = 1 (for any
i € N,A € 2)) induces a non-decreasing variation
W(q(z)) —W(q(t — 1)) > 0. Hence, the sought q is
provided in at most n iterations. Analogously, replac-
ing Af{_i with Ay yields the sought minimizer g (see
also (Boros and Hammer, 2002, p. 163)). O

Remark 7. Fori€ N,A €2V, ifall j € A\i # 0 sat-
isfy ¢} = 1, then (4) yields wy_,(A) = w(A) —w(A\i),
while wy ,({i}) = w({i}) regardless of q_,;.
Corollary 8. Some partition P satisfies W (p) > W (q)
forallq € Ay, with W (p) =Y 4cpw(A).

Proof. Follows from propositions 4 and 6, with the
above notation associating p € Ay to partition P. [

Defining global maximizers is clearly immediate.

Definition 9. Fuzzy partition ¢ € Ay is a global max-
imizer if W(§) > W(q) for all g € Ay.

Concerning local maximizers, consider a vector
o= (o,...,0,) € R of strictly positive weights,
with @y =} jcy ®;, and focus on the (Nash) equilib-
rium (Mas-Colell et al., 1995) of the game with ele-
ments i € N as players, each strategically choosing its
membership distribution ¢; € A; while being rewarded
with fraction (%W(ql ,--+,qn) of the global worth at-

tained at any strategy profile (q1,...,q,) = q € Ay.
Definition 10. Fuzzy partition § € Ay is a local max-

imizer if for all q;i € A; and all i € N inequality
Wi(Gilg_;) = Wi(qilg_;) holds (see (3)).

Continuous Set Packing and Near-Boolean Functions

This definition of local maximizer entails that the
neighborhood N (q) C Ay of any q € Ay is

N(a) = U{a:a=ala_ngica}.

ieN
Definition 11. The (i,A)-derivative of W at q € Ay is
oW (q)/9qi = W (g(i,A)) —W(q(i,A)) =
=Wi(@(.4)ig_i(i.4)) ~Wi(q,i.A)lg_(0.4)),
with q(i,A) = (él (i,A),...,én(i,A)) given by
4’ forall j € N\i,B €2y

lfor j=i,B=A ,
Ofor j=i,B#A

7 (i,A) =

and q(i,A) = (gl(i,A)7...,gn(i,A)) given by

B . . v
4(i,A) = Cljfor.all'JEN\z,Bgz_ ’
- Ofor j=iandall B € 2;

thus VW (q) = {0W (q)/9¢" : i € N,A € 2V} e R"2"™
is the (full) gradient of W at q. The i-gradient
ViW(q) € R of W at ¢ = qilq_; is set function
ViW(q) : 2V — R defined by VW (q)(A) = wq_,(A)
forall A € 2£-V, where wy_, is given by (4).
Remark 12. Membership distribution q,(i,A) is the
null one: its 2"~ entries are all 0, hence q,(i,A) € A;.
The setting obtained thus far allows to conceive
searching for a local maximizer partition p* from
given fuzzy partition q as initial candidate solution,
and while maintaing the whole search within the con-
tinuum of fuzzy partitions. This idea may be speci-
fied in alternative ways yielding different local search
methods. One possibility is the following.

LOCALSEARCH(w,q)

Initialize: Sett =0 and q(0) = q, with require-
ment |{i: ¢! > 0}| € {0,|A|} forall A € 2V.

Loop 1: While 0 < Y,c4 g (t) < |A| fora A € 2V,
sett =r+ 1 and

(a) selecta A*(¢) € 2V such that

Z W(Li(tfl)(A*(t)) > Z quj(tfl)(B)

i€A* (1) JjeB
for all B € 2V such that 0 < Y545 (t) < |BJ,
(b) fori€ A*(r) and A € 2V, define

Lif A = A* (1),
6 (1) = { 0if A #A*Eg,
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(c) for j € N\A*(r) and A € 21}’ with ANA*(t) =0,
define ¢} (1) = ¢} (1 — 1)+

-1

+w@) Y Fe-1) Y wB)
3621}] B/ezl}’
BNA*(1)#0 B/NA*(1)=0

(d) for j € N\A*(¢) and A € 2% with ANA*(r) # 0,
define

4} (1) =0.

Loop 2: While ¢/'(t) = 1,|A| > 1 for a i € N and
w(A) <w({i}) +w(A\i), sett =7+ 1 and define:

A = {1if|A|1

A~ AN
0 otherwise forall A € 27",

1if B=A\i o
B = N
q;(t) = { 0 otherwise forall j € A\i,B€ 2/,

B _ B i~ AC P oN
q;(t) = qp(t—1)forall j €A Be2;.

Output: Set q* = q(r).

Both ROUNDUP above and LOCALSEARCH yield
asequence q(0),...,q(r*) = q* where g € ex(A;) for
all i € N. In the former at the end of each iteration ¢
the novel q(¢) € A(q(zr — 1)) is in the neighborhood
of its predecessor. In the latter q(¢) € N(q(r — 1))
in general, as in |P| < n iterations of Loop 1 a parti-
tion {A*(1),...,A*(|P|)} = P is generated. Selected
subsets A*(¢) € 2Vt = 1,...,|P| are any of those
where the sum over members i € A*(¢) of (i,A*(¢))-
derivatives oW (q(t — 1))/8q?*(t) (t—1) is maximal.
Once a block A*(¢) is selected, then lines (c) and (d)
make all elements j € N\A*(¢) redistribute the entire
membership mass currently placed on subsets A’ € 21}/
with non-empty intersection A’ MA*(r) # 0 over those
remaining A € 2 such that, conversely, ANA*(¢) = 0.
The redistribution is such that each of these latter gets
a fraction W(A)/ZBezl}’:BnA*(z):mW(B) of the newly

freed membership mass ZA’€2§’:A’mA*(;)¢0 q,}v(; —1).
The subsequent Loop 2 checks whether the partition
generated by Loop 1 may be improved by exctract-
ing some elements from existing blocks and putting
them in singleton blocks of the final output. In the
limit, set function w may be such that for some el-
ement i € N global worth decreases when the ele-
ment joins any subset A € 2V, |A| > 1, that is to say

W(A) _W(A\i) - W({l}) = ZBe2A\2A\i;‘B‘>1luW(B) <0.

Proprosition 13. LOCALSEARCH(W,q) outputs a
local maximizer q*.
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Proof. 1t is plain that the output is a partition P or,
with the notation of corollary 8 above, q* = p. Ac-
cordingly, any element i € N is either in a single-
ton block {i} € P or else in a block A € P,i € A
such that |A| > 1. In the former case, any mem-
bership reallocation deviating from pi{l} =1, given
memberships p;,j € N\i, yields a cover (fuzzy or
not) where global worth is the same as at p, be-
cause Hjeg\,»p? = 0 for all B € 2N\ {i} (see exam-
ple 2 above). In the latter case, any membership re-
allocation ¢; deviating from p? = 1 (given member-
hips p;, j € N\i) yields a cover which is best seen by
distinguishing between 2{»\7 \A and A. Also recall that
w(A) = w(A\i) = Lpcpn\pni 4" (B). Again, all mem-
bership mass 28621_\1\ N g% > 0 simply collapses on sin-
gleton {i} because [T;cp; p? = 0 for all B € 2)'\A.
Hence W (p) =W (qilp_;) = w(A) —w({i})+

o CD)Y

Be2A\2A\:|B|>1

=(l-4) ¥

Be2A\2A\:|B|>1

p'(B)+ ), w'(B)| =
B/EZA\i

1" (B).

Now assume that q is not a local maximizer, i.e.
W (p) —W(qilp_;) < 0. Since p? —g* > 0 (because
p =1and g; € A; is a deviation from p;), then

Y H(B)=w(A) —w(A\) —w({i}) <O.

Be2A\2A\:: B> 1
Hence q cannot be the output of Second Loop. O

In local search methods, the chosen initial can-
ditate solution determines what neighborhoods shall
be visited. The range of the objective function in a
neighborhood is a set of real values. In a neighbor-
hood A(p) of a p € Ay or partition P only those
Yaep:jaj>1 |A| elements i € A in non-sigleton blocks
A € P,|A| > 1 can modify global worth by reallocating
their membership. In view of (the proof of) proposi-
tion 13, the only admissible variations obtain by de-
viating from p‘l“ = 1 with an alternative membership
distribution ¢** € [0,1), with W (g;|p_;) — W (p) equal
to (51? - 1)23g2A\2A\i7\B|>1:UW(B) + (1 - q/zq)w({l})
Hence, choosing partitions as initial candidate solu-
tions of LOCALSEARCH is evidently poor. A sen-
sible choice should conversely allow the search to
explore different neighborhoods where the objective
function may range widely. A simplest example of
such an initial candidate solution is qf =217 for all
A€ 2?’ and all i € N, i.e. the uniform distribution.
On the other hand, the input of local search algo-
rithms is commonly desired to be close to a global
optimum, i.e. a maximizer in the present setting.



This translates here into the idea of defining the in-
put by means of set function w. In this view, consider

¢ = W(A)/ Lyeay wiB), yielding %y — 25 — Zij,; for
allA,B e 2?’02’}’ and all i, j € N (see lines (c), (d)).
With a suitable initial candidate solution, the
search may be restricted to explore only a maximum
number of fuzzy partitions, thereby containing the
computational burden. In particular, if q(0) is the
finest partition {{1},...,{n}} or qi{’}(O) =1 for all
i € N, then the search does not explore any neigh-
borhood at all, and such an input coincides with the
output. More reasonably, let Ag®™* = {Ay,... A} de-
note the collection of O-maximal subsets where input

memberships are strictly positive. That is, q?k/ >0
for all i € Ay,1 < k' <k as well as q? =0 for all

Be2V\ (241U---U2%) and all j € B. Then, the out-
put shall be a partition P each of whose blocks A € P
satisfies A C Ay for some 1 < k&’ < k. Hence, by suit-
ably choosing the input q, LOCALSEARCH outputs
a partition with no less than some maximum desired
number k(q) blocks.

3 LOWER-DIMENSIONAL CASE

If F 2V, then Zf.vﬂ F # 0 for every i € N, other-
wise the problem reduces to packing the proper sub-
set N\{i : F N2V =0} of elements contained in at
least one feasible subset. As outlined in section 1,
without additional notation simply let {0} € F > {i}
for all i € N with null weigths w(0) = 0 = w({i})
if {i} ¢ F. Thus (F,2) is a poset (partially or-
dered set) with bottom element @, and weight func-
tion w: F — R, has well-defined Mo6bius inversion
U F — R (Rota, 1964b). Memberships g; distribute
over F; =2V NF ={A1,...,A 5}, with lower(| Fi|)-
dimensional unit simplices

Ai: <qil7""qi‘ ‘>€R|+‘ Z qikzl
1<k<Az

and corresponding fuzzy covers q € Ay = X |<i<p A;.
Note that a fuzzy cover now may maximally con-
sist of |F| — 1 points in the unit n-dimensional hy-
percube [0,1]". Accordingly, hypercube [0, 1]" is re-
placed with C(F) =co({xa : A € F}) C[0,1]", ie.
the convex hull of feasible characteristic functions, re-
garded as n-vectors (Griinbaum, 2001). Recursively
(with w(0) = 0), Mobius inversion ¢ : F — R is

Y W(B),

BeF:BCA

1 (A) = w(A) -
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while the MLE f* : C(¥) — Rof wis

- Y (nqg*) ()

BeFn2A \i€B

Therefore, every fuzzy cover q € Ay has global worth

Wa-Y ¥ (m) - (5).
AeF BeFmA \i€B
Forallie N,g; € Aj,and q_; € Ay = X A,
JEN\I

+

wiw)- L] (T14)ww

A€ | BeFn2A\i \JeB

CE o r (ma)ew)|

A'eF\F: | BeFraa’ \JjeB

Wilgila_) =Y, ¢! L Y (H cf}‘) /JW(B)],

A€ e FimA \jeB\i

yielding again

W(q) =Wi(qilq_;) +W-i(q_;)- (6)

From (4) above, wq_, : #i — R now is

wq ,(A)=Y <Hq’}>pw(3) )

BeF;mA \jeB\i

forallie N,allA e Fiandallq_; € Ayy;.

For each i € N, denote by ex(4;) the set of |7
extreme points of simplex A;. Like in the full-
dimensional case, at any fuzzy cover § € Ay every
i € N such that §; ¢ ex(A;) may deviate by concen-
trating its whole membership on some A € % such
that wg ,(A) > wq ,(B) for all B € ;. This yields a
non-decreasing variation W (g;|q_;) > W(q) in global
worth, with g; € ex(A;). When all n elements do
so, one after the other while updating wq ;) as in
RouNDUP above, i.e. = 0,1,..., then the final

q = (q1,...,qn) satisfies q € x ex(A;). Yet cases
ieN

F c 2V and F =2 are different in terms of exact-
ness. Specifically, consider any 0 # A € F such that
{i:q! =1} €{0,|A[}orAf ={i: g} =1} CA, with

W o W AT . .
M (g*) = degrmz/*é“ (B). Then, F N2% is likely
to admit no shrinking (see above) yielding an exact

fuzzy cover with same global worth as (non-exact) q.

Proprosition 14. The values taken on exact fuzzy
covers do not saturate the range of W : Ay — R
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Proof. Consider this example: N = {1,2,3,4}
and F = {N,{4},{1,2},{1,3},{2,3}}, with worth
w(N)=3,w({4})=2,w({i,j})=1for1 <i< j<3.

Define q = (q1,...,q4) by g} = 1 =¢,i=1,2,3,
with non-exactness |{i: ¢" >0}| =3 <4 =|N|. As
W) =w{4h)+ Y w{ij})=2+1+1+1

1<i<j<3
and Ay = {1,2,3}, for all distributions §1,42,§s

placing membership only over feasible B € ¥ N 244
global worth is W(41,42,43,94) < W(q). O

This observation simply indicates that an arbitrary
search for optimal fuzzy covers may yield a maxi-
mizer (global or local) which is not reducible to any
feasible solution of the original set packing problem.
On the other hand, such feasible solutions are parti-
tions P all of whose blocks are feasible, and where
singleton blocks with worth 0 are not included in the
packing. In fact, similarly to the full-dimensional
case, fairly simple conditions may be shown to be suf-
ficient for a partition to be a local maximizer.
Definition 15. Any §;|¢_; = § € Ay is a local maxi-
mizer of W : Ay — Ry if WiGild_;) = Wilaila_;) for
alli € N and all g; € A; (see (6) above).

The neighborhood A((q) C Ay of q € Ay thus is

(@) = U{a:a=alaa €}
ieN
Any partition P with A € # for each block A € P
clearly has associated p such that p € .xNex(A,-) C Ay.
IS

Proprosition 16. Any partition P with associated p
such that p € Ay is a local maximizer if for all A € P
wA) =w({ih+ Y w(B)

BeFnAv
Proof. Firstly note that for all blocks A € P, if any,
such that |A] = 1 there is nothing to prove, as the
summation reduces to w(0) = 0, and thus there only
remains w({i}) > w({i}). Accordingly, let A € P
and |A| > 1. For every i € A, any membership re-
allocation ¢; € A; deviating from p; (i.e. pt = 1),
given memberships p_; of other elements j € N\i (i.e.
A BpA =1 for all A’ € P and all j € A'), yields

(q,|p ;) € Ay which is best analyzed by distin-
gu1sh1ng between F\A and A. In particular,
wA)=w{ih)+ Y u"B)+ ) u"(B)
BeFin24 BeFmAv
[B]>1
All membership mass } pe £\4 q? > 0 collapses on

singleton {i}, because [] p% =0 for all B € F\A
i'€B\i
by the definition of p_; (see example 2 above). Thus,

W(p) —W(gilp_;) = w(A) —w({i})+
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Y w3+ Y u®B)|=

BeFin2A Be FnAv
|B|>1
Y, w"(B)
B F;n24
|B|>1

Now assume that p is not a local maximizer, i.e.
W(p) — W(qilp_;) < 0. Since p? — ¢! > 0 because
p‘? =landg; € A, is a deviation from pi, then

Y #B) =wA)-w{i})- Y w"(B)<0
G

must hold. This contradicts precisely the premise

w(A) > w({i}) + Lgegrpnii”(B) for all A € P and
i € A, thus completing the proof. O

4 LOCAL SEARCH WITH COST

In order to design a gradient-based local search for
this lower-dimensional case, the only tool still miss-
ing is the derivative, which clearly shall reproduce
definition 11 above with %; in place of 2?' . Before
that, as outlined in section 1, let ¢ : F — N count the
number ¢(A) = [{B: B € F,BNA # 0}| of feasible
subsets with which each A € ¥ has non-empty inter-
section, itself included, i.e. ¢c(A) € {1,...,|F|} is the
cost of including A in the packing. Accordingly, the
underlying poset function w: F — R now used (still
taking positive values only) incorporates both weights
w(A),A € F (used thus far) and costs by means of ra-
tiow(A) = %. The result is quasi-objective function
W :Ay — R, obtained via MLE f*: C(F) — Ry of
W, ie. W(q) = Yacsr f7(¢"), and all of the above ap-
plies invariately simply replacing W with W.

Definition 17. The (i,A)-derivative of W at q € Ay,
A€ i is W (g)/9g) = W (g(i,4)) — W (g(i,4)) =
= Wi(@i(0,4) 2_i(0,4) ) = Wi(4,.A)lq_,(i,) ),
with 4(i,A) = (,(3,A),.....3,(,A) ) given by

q?forallj eEN\i,Be ¥;
77 (i,A) = lfor j=i,B=A :
Ofor j=i,B#A
and q(i,A) = (gl(i,A),...,gn(i,A)) given by

B(i,A) = q?foralleN\i,BG Fi
i Ofor j=iandall B<€ 7F;



The (full) gradient of W at q € Ay is
VW(q) = {oW(q) /3¢ :i € N,A € F} € REen |7l

as well as the_i-gradient ViW(q) € R of W ar
q = (qilq_;) € Ay is poset function VW (q) : F; — R
defined by VW (q)(A) = W,_.(A) for all A € F;, where
Wy, is given by (7) with W in place of w. Again, mem-
bership distribution g (i,A) is the null one: its | il
entries are all 0, hence q,(i,A) ¢ A;.

LS-WITHCOST(W,q)

Initialize: Set t =0 and q(0) = q, with require-
ment |{i: ¢! > 0}| € {0,|A]} forall A € F,w(A) > 0.

Loop 1: While 0 < ¥;c4q?(t) < |A| foraA € F,
sett =t+1 and:

(a) selecta A*(¢) € F such that

min g (A°(1) = min 1) (B)

for all B € 2V such that 0 < ¥ qf(t) < |B
(b) fori € A*(t) and A € F;, define

[ LifA=AY(r),
4 (1) = { 0ifA £ A1),
(c) for j € N\A*(1) and A € F; with ANA*(t) = 0,
define q‘;‘(t) = q‘?(t =1)+

)

-1

+w@) Y Fe-1) Y w(B)
Be ¥ B'c¥;
BNA* (1) 70 B/NA*(1)=0

() for j € N\A*(r) and A € F; with ANA*(z) # 0,

define
q}(t) =0.

(e) forA € F with ANA*(t) = 0, update cost function
byc(A)=|{B:B€ F,BNA#0=BNA*(t)}| and
plug it into w.

Loop 2: While ¢/(t) = 1,|A| > 1 forai € N and
w@d) <w({ih+ ) wu"(B)
Be FrAv

sett =t + 1 and define:

A = {1if|A|:1

0 otherwise forall A € %,

s [ LifB=A\i o '
q;t) = {Ootherwise forall j € A\i,B € ¥;,

qf,(t) = qf,(z—l)forallj’eAc,BeTj/.

Output: Set q* = q(1).
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Both LOCALSEARCH and LS-WITHCOST gen-
erate in |P| < n iterations of Loop I a partition
{A*(1),...,A*(JP))} = P. Now selected blocks
A*(t) € F, 1 <t < |P| are any of those feasible
subsets where the minimum over elements i € A*(t)
of (i,A*(t))-derivatives aW (q(t — 1))/dg" " (t — 1)
is maximal. The following Loop 2 again checks
whether the partition generated by Loop 1 may be
improved by exctracting some elements from exist-
ing blocks and putting them in singleton blocks of the
final output, which thus allows for the following.

Proprosition 18. LS-WITHCOST(W, q) outputs a lo-
cal maximizer q*.

Proof. Follows from proposition 16 since Loop 2
deals with w, not with w. O

Concerning input q = q(0), consider again setting

%)
! ZBe Fi W(B )
7 _wA)e(B) _ 4
@& wB)e(A) b
Evidently, Loop 1 may take exactly the same form
as in LOCALSEARCH, that is with selected blocks
A*(t) € F,t =1,...,|P| of the generated partition P
being any of those feasible subsets where the sum,
rather than the minimum, over elements i € A*(¢)
of (i,A*(t))-derivatives aW (q(t — 1))/dg" " (t — 1)
is maximal. This possibility may be useful in those
settings where set packing appears in its weighted
version, while using the minimum in place of the
sum may be interesting for k-uniform set packing
problems (see section 1). }n fact, for the k-uniform
case Mdobius inversion is " (A) = Th) if |A| = k and
w(A)=0if |A| € {0,1} forall A € F (recall the con-
vention {0} € F > {i} for all i € N), with the cost
function iteratively updated in line (e). It is also plain
that in k-uniform set packing Loop 2 is ineffective.

forall A € ¥;,i € N, which entails

forall A,B € F;N¥F;,i,jEN.

S NEAR-BOOLEAN FUNCTIONS

Boolean functions (Crama and Hammer, 2011) pro-
vide key analytical tools and methods with a variety of
important applications. Beyond set packing problems
that here constitute the main benchmark, this section
further develops the full-dimensional case detailed in
section 2 with the aim to indicate additional oppor-
tunities obtained from expanding the standard frame-
work where pseudo-Boolean models are traditionally
exploited. Recall that Boolean functions of n vari-
ables have form f : {0,1}" — {0,1}, and constitute
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a subclass of pseudo-Boolean functions f : {0, 1}" —
R, which in turn admit the unique MLE £ : [0,1]" — R
over the whole n-dimensional unit hypercube exten-
sively employed thus far. The n variables thus range
each in the unit interval [0, 1]. Such a setting is here
expanded by letting each variable i = 1,...,n range
in a 2"~! — 1-dimensional simplex A;, with the goal
to evaluate collections of fuzzy subsets of a n-set
through the MLE given by (1) and (2).

Definition 19. Near-Boolean functions of n variables

have form F : X ex(A;)) = R
1<i<n

Following (Hammer and Holzman, 1992, p. 4),
denote by N = {1,...,n} the set of indices of vari-
ables (i.e., the ground set in previous sections).
As already observed, any pseudo-Boolean function
has a unique expression as a multilinear polynomial
f(xl, e ,xn) = Z <O(,A Hx,-)

ACN icA

and Hammer, 2002, p. 162), since 0i4,A € 2V is in fact
the Mobius inversion (Rota, 1964b) of a unique set
function w : 2V — R such that w(A) = f()a), where
X4 1s the characteristic function defined in section 2.

Definition 20. The MLE F of near-Boolean

in n variables (Boros

functions F has polynomial form F: x A; — R
1<i<n

given by expression (2) in section 2, that is

Flg= ¥ [z (qu>

AcoN | BDoA \ieA

u"(A), with (see above)

4= (g1 sqn) and g = (¢"....4;*™") € A
5.1 Bounded-degree LS
Approximations

In line with (Hammer and Holzman, 1992), the issue
of approximating a given near-Boolean function F by
means of the least squares LS criterion amounts to
determine a near-Boolean function Fj such that

Y [F(q)-F(q)] ®)

€ x ex(A;
q ¥ (A)

attains its minimum over all near-Boolean functions
Fj, with polynomial MLE F;, of degree k, that is

- 5 [ (1) oo
A‘Agé/: BDA \i€A

or, equivalently stated in terms of the underlying set
function w, such that 4 (A) = 0 if |A| > k.
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Near-Boolean functions F' take their values on n-
product x ex(A;), and |ex(A;)| = 2"~ ! foreachi € N.
ieN

They might thus be regarded as points F' € R in

a 2""=1)_dimensional vector space. In view of propo-

sition 4 formalizing exactness, this seems conceptu-

ally incorrect and with useless enumerative demand.

Specifically, for every partition P € PV with associ-

atedp € _xNex(A,-), there clearly exist many non-exact
€

q € X ex(A;) such that F(q) = F(p) (see corollary 8
ieN

above). Counting these redundant extreme points of
simplices appears wothless. Hence k-degree approxi-
mation is to be dealt with by replacing expression (8)
with the following, applying to partitions p <> P only:

Y [Fo)-F®@). ©)
pE x ex(4;)
ieN
with pesPePN

The number |PV| of partitions of a n-set is given by
Bell number B, (Rota, 1964a; Aigner, 1997). Ac-
cordingly, near-Boolean functions might be regarded
as points F € R% in a B,-dimensional vector space.
Still, this also is far too large, as points in such a vec-
tor space correspond in fact to generic partition func-
tions, i.e. with Mobius inversion free to live on every
partition P € PV. Conversely, near-Boolean functions
factually involve only partition functions i : PV — R
such that A(P) = hy,(P) = Yscpw(A) for some set
function w : 2¥ — R. The Mobius inversion of these
partition functions lives only on the 2" — n modular el-
ements (Stanley, 1971) of lattice (PV,A,V), namely
on those partitions with a number of non-sigleton
blocks < 1. When regarded as points in a vector space
(i.e. expressed as a linear combination of a basis, see
above) these functions may be seen as A, € RZ'-",
This is shown below via recursion through the Mobius
inversion of additively separable partition functions
(Gilboa and Lehrer, 1990; Gilboa and Lehrer, 1991).

It seems crucial emphasizing that while pseudo-
Boolean functions admit a unique set function pro-
viding their best k-degree approximation, 0 < k < n
(Hammer and Holzman, 1992), every near-Boolean
function admits a continuum of set functions w deter-
mining their unique best k-degree approximation. In
particular, consider first the linear (i.e. k = 1) case:
the issue is to find a best (least squares) approxima-
tion F; of any given F. That is, the set function w
determining F has to satisfy w(A) = ¥4 w({i}) for
all A € 2V Then,

hw(P) =Y wiA) =Y ¥ w({i}) =w(N)
AeP A€PicA

for all P € PN. Thus h,, is a constant partition func-
tion, or a valuation (Aigner, 1997) of partition lat-
tice (PY,A,V). Also, any further linear v : 2¥ — R



such that v(N) = w(N) also satisfies h,(P) = h,,(P)
for all P € PN. 1In other terms, there is a contin-
uum of equivalent linear v # w such that h,, = h,,
obtained each by distributing arbitrarily the whole of
w(N) over the n singletons {i} € 2V. Cases k > 1
maintain this same feature: consider a set function w
such that " (A) # 0 for one or more (possibly all (}))
subsets A € 2V such that |A| = k. Now fix arbitrarily n
values v({i}),i € N with Yoy w({i}) = L v({i}).
For all A € 2V, |A| > 1 Mébius inversion p” : 2V — R
can always be determined uniquely via recursion by

v(A)+ ) v({i}) = ) u'(B)+ Y v({i}) =

icA¢ BCA icA¢
—w(A)+ ¥ wd{i}) = ¥ 1" (B)+ X wi{i}).
IEAC BCA IEAC

If set function w additively separates partition func-
tion h, i.e. h=h,, and vV = w — v is a linear set
function, then v+ also additively separates #, i.e.
hy = h,,s. Hence, there is a continuum of equivalent
set functions w and v +1' available for the sought k-
degree approximation Fg, but still the B, values taken
by Fj (more precisely, the 2" —n values taken by F; on
the modular elements of partition lattice (PV,A,V))
are unique and independent from the chosen set func-
tion in the continuum of set functions w, v + V' avail-
able, each determining an equivalent MLE £ of F.

5.2 A Continuum of Polynomials

In this work, two lattices play a central role, namely
the Boolean lattice (2N ,N,U) of subsets of N ordered
by inclusion D, and the geometric lattice (P, A,V)
of partitions of N ordered by coarsening > (Aigner,
1997; Stern, 1999). Both, of course, are posets (par-
tially ordered sets), and Mobius inversion applies to
any (locally finite) poset, provided a bottom element
exists (Rota, 1964b). The bottom subset is @, while
the bottom partition P, = {{1},...,{n}} is the finest
one. For a lattice (L,A,V) ordered by > and with
generic elements x,y,z € L, any lattice function f :
L — R has Mobius inversion @/ : L — R given by
1 (x) =X, <y<xtr (%) f(v), where x| is the bottom
element and yy, is the Mobius function, defined recur-
sively on ordered pairs (y,x) € L x L by up(y,x) =
— Yyt (z,x) if y <x (ie. y<xandy#x) as
well as pp(y,x) = 1 if y = x, while yz(y,x) =0 if
y & x. The Mobius function of the subset lattice im-
plicitly appears since the beginning of this work, and
is uon(B,A) = (—1)"\Bl, with B C A. Concerning
the Mobius function of PV, given any two partitions
P,Q e PN if Q <P={Aj,...,Ajp}, then for every
block A € P there are blocks By,...,B, € O such
that A = B{ U--- U By,, with k4 > 1 for at least one

Continuous Set Packing and Near-Boolean Functions

A € P. Segment [Q,P] = {P': Q < P < P} is thus
isomorphic to product xscpP(ks), where P (k) de-
notes the lattice of partitions of a k-set. Accordingly,
let my = |{A : ka = k}| for k =1,...,n. Then (Rota,
1964b, pp. 359-360),

HpN (QaP) = (_1)7n+):1§k§nmk H (k!)karl.

1<k<n

If a partition function / : PV — R admits a set func-
tion v: 2V — R to satisfy h(P) = Y4cpv(A) for all
P € PV, then it may be said to be additively separable
(Gilboa and Lehrer, 1990; Gilboa and Lehrer, 1991),
with the notation 7 = h,. As already outlined, any
such an additively separable partition function h = h,
has Mobius inversion g/ that lives only on the mod-
ular elements of the partition lattice, i.e. where only
one block, at most, has cardinality > 1. That is to
say, together with the bottom P, and top P' = {N},
all other modular elements are those partitions of the
form {A} UPf for A € 2V such that 1 < |A| < n,
where Pf is the finest partition of A° (Aigner, 1997,
Ex. 13, p. 71). The total number of these modular
partitions thus is 2" —n. The Md&bius inversion of an
additively separable partition function A, is detailed
hereafter; see (Gilboa and Lehrer, 1990, Prop. 4.4, p.
138 and Appendix, p. 144) and (Gilboa and Lehrer,
1991, Prop. 3.3, p. 452).

Proprosition 21. If h = h,, then h = h,, for a contin-
uuum of set functions w : 2N — R, w # v.

Proof. Firstly, by direct substitution, for all P € PV,

WPy =Y Y v(B) Y e (QP).

AEPBCA O<PBEQ

Secondly, if P # {B} U PP, then the recursive defini-
tion of Mobius function upy yields

Z IUEPN(Q7P) =0.

Q< P:BeQ

Mobius inversion u thus takes non-zero values only
on modular elements, where it obtains recursively by
W (PL) = Tionv({i}), u(PT) = i’ (N) as well as
©({AYUPY) = p'(A) for 1 < |A| < n. In other
terms, any w #£ v satisfying Y ;cy v({i}) = Liey w({i})
and @¥(A) = " (A) for all A € 2V |A| > 1 also addi-
tively separates A, i.e. h, = hy,. O

In view of corollary 8, the setting considered in
this work deals precisely with additively separable
partition functions, and thus the polynomial expres-
sion (2) in section 2 is not unique. Specifically, recall
that the degree of a polynomial is the highest degree
of its terms. Hence in (2), for any chosen set function
w additively separating partiton function i = h,,, the
degree is max{|A| : 4" (A) # 0}, while every non-zero
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value of Mobius inversion g" : 2V — R is a coefficient
of the polynomial. The only degree k such that there
is a unique set function available for polynomial ex-
pression (2) is k = 0, in which case the unique addi-
vitely separating set function w is trivial: w(A) =0
for all A € 2. On the other hand, for any degree
k,0 < k < n there exists a continuum of set func-
tions available for additive separability and such that
max{|A| : 4”(A) # 0} = k, each defining alternative
but equivalent coefficients of the polynomial.

6 NEAR-BOOLEAN GAMES

In view of the above definition of local maximiz-
ers relying on equilibrium conditions for strategic n-
player games, and having mentioned additive separa-
blity of partition functions or global games (Gilboa
and Lehrer, 1990), it seems now useful to regard vari-
ables as players in near-Boolean coalition formation
games (for pseudo-Boolean functions and coalitional
games see (Hammer and Holzman, 1992, section 3)).

Definition 22. A near-Boolean n-player game is a
triple (N,F, ) such that N = {1,...,n} is the player
set and F is a near-Boolean function taking real
values on profiles q = (q1,...,q,) € X ex(4;) of
ieN
strategies, while T : X ex(A;) — R" efficiently as-
ieN
signs payoffs ©(q) = (T1(q),...,T.(q)) to players, i.e.
Lienilq) =F(q) atall g € X ex(A).

Definition 23. A fuzzy near-Boolean n-player game is

atriple (N,F ) such that N = {1,...,n} is the player

set and F is the MLE of a near-Boolean function tak-

ing values on profiles q = (q1,...,qn) € ‘XNAI’ while
IS

T: X A; — R" efficiently assigns payoffs to players,
ieN
ie. Yienmi(q) =F(q)atallq e 'gNA,-.
I

In both near-Boolean games and fuzzy ones the
player set is finite. Given this, a main distinction
is between games where players have either finite
or else infinite sets of strategies, with near-Boolean
games in the former class and fuzzy ones in the lat-
ter. In addition, players may play either determinis-
tic (i.e. pure) or else random (i.e. mixed) strategies.
In the latter case equilibrium conditions are stated
in terms of expected payoffs, and by means of fixed
point arguments for upper hemicontinuous correspon-
dences such conditions are commonly fulfilled (Mas-
Colell et al., 1995, p. 260). The sets of deterministic
strategies in fuzzy near-Boolean games are precisely
the sets of random strategies in near-Boolean games.
Nevertheless, the payoffs for the fuzzy setting are not,
in general, expectations.
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The main framework where these games seem in-
teresting is coalition formation, which combines both
strategic and cooperative games. A generic strat-
egy profile q € 'XNex(A,') of near-Boolean (non-fuzzy)

1S

games may well fail to be exact (see proposition 4),

but it seems plain that there is a unique partition P

of N with associated p € x ex(A;) obtained through
ieN

shrinkings of q and such that F(p) = F(q). Let
p(q) be such a unique p. In view of the above dis-
cussion, it is also evident that for every p there are
many (non-exact) q such that p=p(q). In these terms,
near-Boolean games model stategic coalition forma-
tion in a very handy manner, in that they totally by-
pass the need to define a mechanism mapping strategy
profiles into partitions of players or coalition struc-
tures (Slikker, 2001). More precisely, a mechanism
is a mapping M : .xNex(Ai) — PV such that when
e

each player i € N specifies a coalition A; € 2?’ , then
M(Ay,...,A,) = P is a resulting coalition structure.
If the n specified coalitions A;,i € N are such that
for some partition P it holds A; = A for all i € A
and all A € P, then M(A,,...,A,) = P. Otherwise,
the generated partition P' = M(Ay,...,A,) depends
on what mechanism is chosen, and generally may be
a rather fine one, i.e. possibly consisting of many
small blocks. Conversely, near-Boolean games do not
need any mechanism, in that even if players’ strate-
gies (q1,...,9,) = q are such that q does not corre-
spond to a partition, still the global worth F(q) is that
attained at the partition P with corresponding p(q),
i.e. whose blocks A € P each include maximal sub-
sets of players choosing the same superset A’ D A.
Given coalitional game v : 2¥ — R, v(0) = 0,
with F(p) = Y 4cpVv(A) for all partitions P < p, let
payoffs be defined, fori € A and A € P and p = p(q),

1" (B)
by mi(q)= ) B]
Be2A\2AN

forallq € x ex(Aj),
JEN

where P thus is the partition with associated p(q).
Apart from the absence of any coalition structure gen-
eration mechanism (see above), this is in fact a well-
known coalition formation game (Slikker, 2001), with
payoffs given by the Shapley value (Roth, 1988).

Definition 24. A local maximizer of near-Boolean
Sunction F is any q € X ex(A;) such that for alli € N
ieEN

and all g} € ex(A;) inequality F(q) > F(q}|q_;) holds.

Remark 25. If payoffs are given by m;(q) = %
J J

foralli € N, with ®,...,0, > 0, then near-Boolean

games are (pure) common interest potential games
(Monderer and Shapley, 1996, Bowles, 2004). That
is to say, the set of equilibria of (N,F,1t) coincides



with the set of local maximizers of F, and players’
preferences all agree on the set of strategy profiles.

In artificial intelligence, these games may model
coalition formation in multiagent systems (Rahwan
and Jenning, 2007; Conitzer and Sandholm, 2006).

7 CONCLUSIONS AND FUTURE
WORK

Via polynomial MLE, near-Boolean functions of
n variables take values on the n-product of high-
dimensional unit simplices, thus enabling to approach
discrete optimization problems, namely set pack-
ing/partitioning, through an objective function de-
fined over a continuous domain, and with feasible so-
lutions found at extreme points of the simplices. Least
squares approximations with polynomials of bounded
degree are discussed in terms of additive separabil-
ity of partition functions, while near-Boolean n-player
games flexibly model strategic coalition formation.
Apart from settings in artificial intelligence such
as combinatorial auctions and coalition structure gen-
eration in multiagent systems discussed above, near-
Boolean optimization seems generally interesting for
objective function-based clustering (Rossi, 2015), and
for graph clustering in particular (Schaeffer, 2007).
Specifically, for a given weighted graph, edge weights
and vertices’ weighted degrees may be used (in alter-
native ways) to obtain a quadratic MLE in expression
(2), i.e. a polynomial with degree 2. Then, optimiza-
tion with respect to such an objective function pro-
vides a method for partitioning the vertex set. This de-
serves separate investigation in a forthcoming work.
Along an alternative route, through the core con-
cept in cooperative game theory, it may be interesting
to consider the following problem: for given generic
(i.e. non-additively separable) global game or parti-
tion function & € R%", determine a quadratic MLE in
(2), i.e. a set function w such that ¢ (A) = 0 for all
A €2V |A| > 2, satisfying h,,(P) > h(P) for all parti-
tions P € PV of players, where h,,(P) = Y4cpw(A),
and with h,,(P") = h(P") for the coarsest partition.
The idea behind this problem comes from a novel ap-
proach to the solution of global games 4 (Gilboa and
Lehrer, 1990), and shall be explored in future work.
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