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The scale invariant feature transformation algorithm (SIFT) has been designed to detect and characterize local
features in images. It is widely used to find similar regions in affine transformed images, to recognize similar
objects or to retrieve near-duplicates of images. Due to the computational complexity of SIFT based match-
ing operations several approaches have been proposed to speed up this process. However, most approaches
lack significant decrease of matching accuracy compared to the original descriptor. We propose an approach
that is optimized for near-duplicate image retrieval tasks by a dimensionality reduction process that differs
from other methods by preserving the information around the keypoints of any region patches of the original
descriptor. The computation of the proposed Region Compressed (RC) SIFT—64D descriptors is therefore
faster and requires less memory for indexing. Most important, the obtained features show at the same time
a better retrieval performance and seem to be even more robust. In order to prove this, we provide results of
a comparative performance analysis using the original SIFT—128D, reduced SIFT versions, SURF—64D and
the proposed RC-SIFT—64D in image near-duplicate retrieval using large scale image benchmark databases.

1 INTRODUCTION

Finding similar images that show the same scene,
but have been taken with slightly different condi-
tions (so-called “near duplicate images”) is still a very
challenging task, even though its a very fundamental
problem in many real world tasks. In the literature
(e.g., Xu et al., 2010), (Chum et al., 2007)) one can
meanwhile find several benchmark databases contain-
ing sets of near duplicates that can be used to study
the performance of algorithms and similarity mea-
sures that have been designed for the task of finding
near duplicate images. The sets of near duplicate im-
ages provided slightly differ by quite diverse factors
as noise, blurring, compression rates, lighting condi-
tions or camera viewpoint. Therefore, these collec-
tions nicely cover characteristics of real world collec-
tions and tasks, e.g., such as the daily business of me-
dia agencies to filter and sort huge amounts of images
that have been taken by different photographers dur-
ing fashion fairs or political events. The main under-
lying problems here are data redundancy, e.g., having
two or more of copies of the same image in a collec-
tion; view configuration issues, i.e., detecting near du-
plicate images which are taken using different config-
uration of a camera or different cameras; problems of
copyright infringement, e.g., the task of detecting ma-
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nipulated (fabricated) images and problems of time
offsets, i.e., finding similar images of the same scene
taken minutes or hours apart.

The first step in image near-duplicate retrieval
(NDR) is to extract the features of an image. The
goal is to represent images by means of one or more
kinds of their distinct characteristics. One of the
most used approaches for finding the local features
in the field of NDR (Auclair et al., 2006), (Chum
et al., 2008), (Zhang and et al., 2004), (Chu et al.,
2013) is the scale invariant feature transform algo-
rithm (SIFT) (Lowe, 2004), because the SIFT features
are invariant to scale and rotation variation and per-
form robustly even if the images differ in perspective,
noise, and illumination (Lowe, 2004). Furthermore,
approaches to index and quantize SIFT descriptors
have been proposed to improve the performance of the
matching process, especially in the image NDR tasks
(see e.g., (Jiang et al., 2015), (Nister and Stewenius,
2006), (Auclair et al., 2006), (Chum et al., 2008)).

In this work, we propose a method to further
improve the performance of SIFT by reducing the
dimensionality of SIFT—128D descriptors to 64D.
Thereby we tackle two issues: First, especially in im-
age NDR field the reduced SIFT—64D speeds up the
process of image matching by decreasing the mem-
ory and time complexity of the indexing and match-
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ing process. Second, the reduced SIFT improves
the robustness and accuracy of the matching pro-
cess. The performance of the proposed approach
is tested by conducting extensive experiments using
established benchmark datasets. The experiments
show that the reduced SIFT—64D improves the per-
formance of SIFT in image NDR tasks.

The remainder of this paper is organized as fol-
lows. Section 2 gives an overview of prior work re-
lated with the SIFT algorithm and image NDR algo-
rithms. Section 3 details the proposed method to re-
duce SIFT descriptors. Section 4 presents the settings
of our experiments and Section 5 discusses the results
of experiments. Finally, Section 6 draws conclusions
of this work and discusses possible future work.

2 RELATED WORK

Due to the robustness of the SIFT descriptor
against different kinds of image deformation, it
has been widely used in image NDR (Auclair
et al., 2006), (Chum et al., 2008), image classifica-
tion (Nister and Stewenius, 2006) and diagnosis of
tumors in medical images (Jiang et al., 2015).

In (Khan et al., 2011) the SIFT descriptor have
been reduced to 96D, 64D and 32D by ignoring the
contribution of some regions around the keypoints
when building the descriptors. It has been mentioned
in the original SIFT—128D algorithm that ignoring
some values of SIFT descriptor lead to decreased
matching performance. However, in (Khan et al.,
2011) SIFT—96D, 64D have shown robust perfor-
mance of image matching as the original SIFT—128D
across a substantial range of affine transformation and
addition of noise. However, the performance of the
original SIFT—128D is still better than the perfor-
mance of SIFT—96D, 64D descriptors in case of ad-
ditional noise and illumination change (Khan et al.,
2011). In (Ke and Sukthankar, 2004) principle com-
ponent analysis is used to obtain the 64D SIFT de-
scriptors. In (Jegou et al., 2010) the SIFT descrip-
tors are aggregated to represent the images in form of
vectors after that, principle component analysis is ap-
plied to jointly optimize the dimensionality reduction
of these vectors. However, both approaches require a
training stage for the specific image collection.

To optimize the use of SIFT features in the match-
ing process, various techniques are suggested to struc-
ture, index and quantize the descriptors in suitable
form for further processing. In (Lowe, 2004) the
kd—tree has been used to structure the SIFT descrip-
tor in 128D space and to speed up their matching pro-
cess. However, the efficiency of kd—tree decreases
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for high dimensional data because of the request
time for backtracking through the tree. In (Li et al.,
2014), (Yang and Newsam, 2008), (Grauman and
Darrell, 2005), (Grauman and Darrell, 2007), SIFT
descriptors have been quantized by splitting them into
k groups using the k—means clustering algorithm. In
this case a specific number of clusters is determined
and the descriptors are indexed by their closest cen-
ters. The produced cluster centers form a bag of
words and the images are presented in form of vectors
of these bag of words. In (Li et al., 2014), (Yang and
Newsam, 2008), (Grauman and Darrell, 2005), (Grau-
man and Darrell, 2007) the concept of bag of words is
used in further training steps to optimize the matching
process. In (Jiang et al., 2015), (Nister and Stewenius,
2006) hierarchical k—means clustering is employed
to build a vocabulary tree. Each leaf node of the tree
is associated with an inverted file which contains the
indexes of images that have at least one descriptor
passed through a specific path in the tree. In our work,
the concept of a vocabulary tree is applied to index
the descriptors of several kinds. In the next subsec-
tion the details of compressing the SIFT descriptors
are explained.

3 REGION COMPRESSED SIFT
DESCRIPTOR FOR NDR

To motivate and describe our suggested modifications
of the SIFT descriptor, we will firstly explain briefly
the working mechanism of the SIFT detector and de-
scriptor (Lowe, 2004).

3.1 SIFT-128D Descriptor

The detection of SIFT features can be achieved in four
main stages specified as follow: scale space extrema
detection, keypoint localization, orientation computa-
tion and keypoint descriptor computation.

In the first stage image scale space is built by
downsampling and blurring the input image several
times. The blurring is achieved by convolving the in-
put image with multiple-scale Gaussian filters. After
that, the difference of neighbors in the scale space is
computed to form difference of Gaussian (DoG) im-
ages. In the second stage, SIFT keypoints are deter-
mined by finding the local maxima and minima in
DoG images. The stability of keypoints is verified
against contrast change and edge response and the un-
stable keypoints are rejected. In the third stage, the
dominant orientation is determined and assigned to
each keypoint.



In the final stage a highly distinctive descriptor is
computed at each keypoint. The SIFT descriptor is
extracted from the region around the keypoint which
is called region of interest (Rol). The Rol is rotated
around a keypiont relative to the dominant orienta-
tion. Afterwards, a n X n orientation histogram is cre-
ated over the Rol. For each bin in the histogram r ori-
entations are assigned, so that the descriptor has three
dimensions and n X n X r element. The size of the
SIFT descriptor is controlled by the width of the ori-
entation histogram n and the number of orientation
bins r. In the original SIFT algorithm (Lowe, 2004),
it has been shown that the best matching results are
reported when n =4 and r = 8§, i.e., when a descriptor
of 4 x4 x 8 = 128 element is constructed. Fig. 1(a)
presents the way in which the SIFT—128D descriptor
is constructed.

However, the high dimensionality of SIFT de-
scriptor (128D) increases the sparsity of descriptors
and this may affect the accuracy of descriptor index-
ing in image NDR (for a discussion of problems re-
lated to high dimensional data indexing and cluster-
ing, see e.g., (Steinbach et al., 2003)). Therefore, in
this work we aim to compress the dimensionality of
the SIFT descriptor. In the next subsection, we ex-
plain our approach to compress SIFT descriptor.

3.2 Region Compressed SIFT
Descriptor

To increase the efficiency of descriptor indexing, i.e.,
speeding up the process and reducing the amount of
stored data in NDR, we propose a method to com-
press the dimensionality of the SIFT descriptor from
128D to 64D. We achieve this by extracting first the
SIFT features in the same way as in the original SIFT
algorithm (Lowe, 2004) (as described in Section 3.1).
Afterwards, the descriptors are computed over all pix-
els in Rol with specific location, gradient and orienta-
tion with respect to the corresponding keypoint. The
descriptor is computed in form of a 3D histogram cen-
tered at the keypoint. In the original SIFT algorithm,
this descriptor has the dimensions 4 x 4 x 8. The val-
ues of these three dimensions indicate how the key-
point can be shifted to each allowed position in Rol
in vertical and horizontal locations that is 4 x 4 lo-
cations. For each location 8 directions are allowed
between 0° and 360°. In contrast to the reduction
method presented in (Khan et al., 2011) through ig-
noring some patches of Rols, we suggest in this work
that for each two possible horizontal shifting in the
same direction with respect to the keypoint, only one
vertical shifting is available so that, for the all possi-
ble horizontal shifting (i.e., four horizontal shifting)
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in all directions only two vertical shifting exists. For
each of this (4 x 2) locations eight directions are as-
signed. In this way we reduce the amount of the pos-
sible change of the SIFT descriptor when the Rol is
modified. Moreover, the number of altered bins in
the Rol histogram decreases. As a result we obtain
4 x 2 x 8 histogram i.e., 64D SIFT descriptor. We call
our method for extracting and compressing SIFT de-
scriptor “Region Compressed SIFT” (RC-SIFT). The
histogram at each keypoint can be presented by a
triplet of elements H,, H, and Hg where:

N, —1
Hy=y— y2 (1
N, —1
Hy =x— > )
21
Hy = — 3
= No 3

where N, and N, define the number of bins in Hy and
H,, respectively. The values of y and x are defined
asy=0,...,Ny—1,and x=0,...,N, — 1. Ny is the
number of orientations in each bin of the histogram
and 0 is definedas 0 =0, ...,Ng — 1.

In this work, we perform the experiments for N, =
2, Ny =4 and Ny = 8 to get the descriptor of the
form 4 x 2 x 8. We refer to this descriptor as RC-
SIFT—64D(R) (see Figure 1(b)). Afterwards, the ex-
periment is applied for Ny =4, Ny = 2 and Ng = 8
to obtain the descriptor of the form 2 x 4 x 8. we re-
fer to this descriptor as RC-SIFT—64D(C) (see Fig-
ure 1(c)). After that, experiments are performed for
Ny =2, Ny =2 and Ny = 8 to get RC-SIFT—-32D
and finally for Ny =2, N, = 2 and Ny = 4 to get RC-
SIFT—16D.

In this way the compressed SIFT descriptor pre-
serves the size of Rol around a keypoint, i.e., con-
trary to the method suggested in (Khan et al., 2011),
no region around the keypoint is ignored. In the next
step the efficiency of RC-SIFT—64D, RC-SIFT—32D
and RC-SIFT—16D are evaluated against the perfor-
mance of the original SIFT—128D, SURF—64D and
SIFT—64D suggested in (Khan et al., 2011) for image
near-duplicate retrieval.

3.3 SIFT Descriptors Indexing with a
Vocabulary Tree

The straightforward way to match SIFT features is
exhaustive search, which can be achieved by match-
ing each feature of a given query image with all fea-
tures in the feature database. However, the exhaus-
tive search of SIFT features is extremely time con-
suming especially for large scale image databases
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(a) 4 x4 computed orientation histogram (b) 2 x4 computed orientation his- (c) 4 x 2 computed orientation histogram
array in SIFT—128D. togram array in RC-SIFT—64D(R). array in RC-SIFT—64D(C).

Figure 1: Comparison between SIFT—128D and RC-SIFT—64D descriptors. We refer to the compression of forms 4 x 2 x 8
and 2 x 4 x 8 as RC-SIFT—64(R)and RC-SIFT—64(C), respectively. These symbols are used in the all presented tables.

which produce a huge amount of features. To over-
come this problem, hashing functions (Auclair et al.,
2006), (Chum et al., 2008), direct clustering (Chum
et al., 2007), (Zhang et al., 2013) and hierarchical
clustering (Jiang et al., 2015), (Nister and Stewenius,
2006) have been adapted to quantize and index SIFT
descriptors. In our study, a vocabulary tree and in-
verted files are used as described in (Jiang et al.,
2015), (Nister and Stewenius, 2006) to index SIFT de-
scriptors. The vocabulary tree is built by applying the
k—means algorithm on the entire descriptor database
which split them into k clusters where each cluster
consists of a set of descriptors closest to a particular
center. This process is applied recursively on each
cluster to build a vocabulary tree of depth L and k*
leaf nodes. The tree nodes present cluster centers and
are referred to as “visual word” (Jiang et al., 2015).
The leaf nodes in the tree are represented by inverted
files. Each inverted file contains the indexes of the
images that they represent with at least one descrip-
tor at a particular leaf node. The inverted files of the
leaf nodes are concatenated to get the inverted files of
inner and root nodes. These inverted files strongly
speed up the matching process. Moreover, the in-
verted files help to adapt weights for the branches of
the tree.

In (Nister and Stewenius, 2006) the L1 —norm and
L2—norm have been used to compute the similarity
between images. The L1—norm tends to give better
matching results (Nister and Stewenius, 2006). In our
evaluation, we use both the L1—norm and L2—norm
in order to compute the similarity between normalized
query and database vectors by traversing each vector
in a vocabulary tree as described in Eq. 4 (Nister and
Stewenius, 2006).
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3.4 Complexity of Vocabulary Tree for
SIFT—64D and SIFT—128D

After building the vocabulary tree (see Section 3.3),
the tree is used for image matching. The complexity
of this process is computed assuming that descriptors
are represented as character data-type. A D dimen-
sional descriptor vocabulary tree of depth L and k"
leaf nodes need a memory of O(DkL). Specifically,
a 128D descriptor tree requires O(128kX) whereas,
a 64D descriptor tree requires only O(64k"). More-
over, the time complexity of building a vocabulary
tree is affected by the dimensionality of descriptors.

Considering that total number of nodes in the vo-
= 1y L+1_
cabulary tree is given as T~k = % ~ kL (see

also (Nister and Stewenius, 2006)), the time complex-
ity of the vocabulary tree for a D— dimensional de-
scriptor database is given as O(DNTkL), where k is
the number of initial clusters, T is the iteration of al-
gorithm and N is the number of all descriptors of a
given image database. Based on this, the time com-
plexity of building a tree for a descriptor database
of dimensionality D = 128 is O(128NTk") whereas
the time complexity for the RC-SIFT—64D descrip-
tors is O(64NTKY). So it is just a linear decrease
but the suggested RC-SIFT—64D descriptors obvi-
ously speeds up the indexing process and reduce the
required memory for processing. Table 1 presents
that the indexing time needed by RC-SIFT—64D and
SIFT—64D (Khan et al., 2011) is about the halve time
needed by SIFT—128D. The presented results are
computed using a vocabulary tree of depth L = 4 and
initial centers k = 10.

In the next section, the performance of the sug-
gested RC-SIFT (64D, 32D and 16D) descriptors
are evaluated against the performance of the original
SIFT—128D, SIFT—64D and SURF—64D based on
typical near-duplicate retrieval tasks.




Table 1: The computation time needed to perform the in-
dexing for both SIFT—128D, RC-SIFT—64D and SIFT-
64D (Khan et al., 2011) using a standard processor(Intel(R)
Core(TM)i5-2500 CPU) and a Matlab implementation.
Desc-No refers to the number of descriptor vectors.

Method Time(sec) | Desc-No

SIFT-128D 3396.86 2,095,545
RC-SIFT-64D | 1639.82 2,095,545
SIFT-64D 1588.38 2,095,545

4 EVALUATION

In the image near-duplicate retrieval field, the per-
formance of the RC-SIFT—64D, RC-SIFT—32D and
RC-SIFT—16D is verified against the SIFT—128D,
the SURF—64D descriptor and the SIFT—64D (Khan
et al., 2011) descriptor mentioned in 2. The perfor-
mance is measured on a large scale image databases
using the vocabulary tree for feature indexing and
L1—norm to achieve the image NDR task. The vo-
cabulary trees are constructed as described in Subsec-
tion( 3.3) for each kind of the used descriptors sepa-
rately. In our experiment the initial number of clusters
is k= 10.

To perform the NDR task, the similarity between
normalized query vectors g_img and database vectors
d_img is computed by traversing each vector in a vo-
cabulary tree and it is given as (Nister and Stewenius,
2006):

q-img
g-img|
The normalization can be in any desired norm. In our
experiment L1 —norm and L2—norm.

In this work we used our own implementation
of SIFT algorithm using some “Opencv” functions.
SUREF descriptors are computed by means of Opencv
functions. The vocabulary tree is constructed using
Matlab functions and VLFeat library. Moreover, we
implement the SIFT—64D described in (Khan et al.,
2011) based on our implementation of SIFT algorithm
by ignoring some patches of descriptors as it is de-
scribed in (Khan et al., 2011).

Furthermore, the experiment is performed on
benchmark databases as used in (Nister and
Stewenius, 2006) (the dataset can be download
from the website (Nister and Stewenius, )). These
databases consist more than 10,000 of indoor/outdoor
images for about 2,500 different scenes. The images
of each scene differ through a combination of changes
(additional blurring, scale change, rotation change, il-
lumination decrease/increase, additional noise, view-

d_img H

s(q_img,d_img) = H
| [|d-img||
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point change) and another conditions (i.e., appear new
objects and occlusion of objects).

The results of the experiments are evaluated by
computing the recall value. Since we always have a
fixed number of relevant images and the comparison
is done use a ranked list of fixed length (i.e., length of
one, three or ten images as indicated in the respective
tables), we omit precision since it is directly corre-
lated to the recall values. Considering N, is the num-
ber of relevant images to a specific query image in the
database, N, the number of relevant images obtained
in matching results, then the recall is defined as fol-
lows:

N,
Recall = - 5
ecall = — Q)

5 RESULT AND ANALYSIS

The results of SIFT—64D and SIFT—128D are eval-
uated in different cases using various kinds of image
databases.

5.1 Mixed Database

The database described in (Nister and Stewenius,
2006) is used for experiments. This database con-
tains four different images of 2,550 different in-
door/outdoor scenes i.e., 10,200 images in total.
Moreover, it contains a mixed complex images for
some scenes (i.e., image of the same scene but present
different arrangement of objects, appear/disappear of
some objects in addition to changes in lightness, con-
trast, sharpness, scale, and viewpoint conditions). To
test the robustness of the RC-SIFT in image NDR
field, we select the first image of each scene as a query
image while the remaining three images of each scene
are used as a basic database for retrieval task (i.e.,
2,550 query image and 7,550 database image). The
features and descriptors are extracted using the orig-
inal SIFT—128D, SURF—64D, SIFT—64D (Khan
et al., 2011) (produced by ignoring some patches of
the Rols) and our RC-SIFT—64D, RC-SIFT—-32D
and RC-SIFT—16D. After that, the descriptors of
each kind are indexed separately using the vocabu-
lary tree of depth L = 4 and initial clusters k = 10.
To achieve the retrieval task, L1 —norm and L2—norm
are used to compute the distance between the query
image and the database images as described in equa-
tion 4. However, in our experiment L1—norm ob-
tains better results than L2—norm. A query image
is considered to be retrieved if its corresponding im-
ages in the database appear in the top three or ten
retrieved images. Table 2 summarizes the results
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of the all proposed kinds of descriptors. It shows
that the RC-SIFT—64D obtained slightly better re-
sults than SIFT—128D. However, it presents that the
RC-SIFT—64D obtains better results than the RC-
SIFT—32D and RC-SIFT—16D. We assume that the
ignoring of some patches of the original descriptors
affects the performance of SIFT in solving image
NDR task therefore, the performance of RC-SIFT64D
seems to be superior than the performance of the sug-
gested SIFT—64D (Khan et al., 2011). The perfor-
mance of SURF descriptor seems to be low in solving
image NDR task. In our evaluation, it seems to be re-
lated with the complexity of the scenes. This result is
consistent with other studies, e.g., (Khan et al., 2011).
However, in (Khan et al., 2011) only a subset of
a benchmark database (Nister and Stewenius, 2006)
(i.e., 2,500 images) are used whereas, our experiment
is applied on the whole images in the same database
(i.e., 10,200 images). The worst results are obtained
when the dimensionality of RC-SIFT is compressed
to 16D. Figure 2 presents a comparison between the
all proposed methods to achieve image NDR task. It
shows that the best results are found when the RC-
SIFT—64D is used. However, there is another exam-
ples where the SIFT—128D preforms the best. More-
over, we note in many cases that despite the equiva-
lent results of SIFT—128D and RC-SIFT—64D obtain
better ranking of the results than SIFT—128D. Fig-
ure 3 presents an example where the performance of
SIFT—128D and RC-SIFT—64D is equivalent but the
ranking of the results found by RC-SIFT—64D is bet-
ter than SIFT—128D.

The experiment is repeated for vocabulary trees of
depth L =1,2,3,4 and the best retrieval results for all
proposed descriptors are obtained when L = 4. There-
fore, we present the results only when a vocabulary
tree of depth L =4 is used.

In the next step the robustness and invariant prop-
erties of the RC-SIFT—64 are verified against dif-
ferent image transformations, blurring, scale change
and viewpoint change. These invariant and robust-
ness properties are compared for the all proposed de-
scriptors. We don’t verify the invariant and robust-
ness properties of RC-SIFT—32 and RC-SIFT—16
because their performance in solving NDR task is low
comparing with the other used descriptors.

5.2 Image Affine Transformations

To verify the robustness of our RC-SIFT against dif-
ferent kind of image transformations in the field of
image NDR, the performance of all proposed descrip-
tors is evaluated against rotation change, illumina-
tion increase or decrease and adding different kinds of
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Table 2: The retrieval performance of SIFT—128D,
SIFT—64D, SURF—64D and our RC-SIFT-64D, RC-SIFT-
32D and RC-SIFT-16D using a large ground truth database
(7,650 images) with groups of three images belong to the
same scene and using a set of 2,550 query images, each of
them has three related images in the database. The recall
is computed firstly based on the top three retrieved images
and secondly using the top ten retrieved images. The sym-
bols RC-SIFT—64D(R) and RC-SIFT—64D(C) are used to
refer for the compression of forms 4 x 2 x 8 and 2 x 4 x §,
respectively.

Method Top 3 results | Top 10 results
SIFT-128D 0.4932 0.5797
SIFT-64D 0.2715 0.3534
SURF-64D 0.2432 0.2952
RC-SIFT64D(R) | 0.5067 0.6013
RC-SIFT64D(C) | 0.4989 0.5914
RC-SIFT-32D 0.2892 0.3365
RC-SIFT-16D 0.2460 0.2878

noise. To achieve this, 500 images of different scene
of the benchmark database (Nister and Stewenius,
2006) are picked to test the invariance properties of
features. The setting of generating the transformed
images are similar to the setting applied in (Khan
et al., 2011). The descriptors are indexed using a vo-
cabulary tree of depth L =4 and initial centers k = 10.
The similarity is computed using L1—norm. A query
image is considered to be found in the database if its
corresponding database image appear in the top of the
retrieved images.

5.2.1 Rotation Change

To verify the rotation invariance, the first 500 images
of the benchmark database (Nister and Stewenius,
2006) are rotated at different angels in a clockwise
direction to generate 500 database images for each
angle. Results of NDR task are summarized in Ta-
ble 3. The results shows that all proposed descriptors
(SIFT—128D, SIFT—64D, SURF—64D and our RC-
SIFT-64D) are rotation invariant. For a big rotation
change the results shows that RC-SIFT-64D perform
a little bit better than the other proposed descriptors.

5.2.2 Addition of Noise

To test noise invariance, three types of noise are ap-
plied for the first 500 images of the database (Nister
and Stewenius, 2006). These types are: Gaussian
noise, salt and pepper noise and multiplicative noise.
The noise is added to the images using the follow-
ing settings: Gaussian white noise with 6> = 0.1 and



(b) The top three results found by SIFT—128D

= 3

(e) The top three results found by RC-SIFT—-64D

Figure 2: An example of the results of all proposed meth-
ods to perform the image NDR task. In this example RC-
SIFT—64D shows the best matching results.

Table 3: The performance comparison of SIFT—128D,
SIFT—64D, SURF—64D and our RC-SIFT-64D(R)and RC-
SIFT-64D(C) using a ground truth database (500 images)
and a set of 500 query images, each of them has one rotated
image in the database. For each query image we check if its
corresponding database image appear as the first retrieved
image in the result. The experiment is repeated for the rota-
tion values: {40°,135°,215°,250°}.

Method | 400 | 1350 | 215° | 2507 |
SIFT-128D 0.934 | 0.926 | 0.934 | 0.918
SIFT-64D 0.928 | 0.924 | 0.926 | 0.928
SURF-64D 0.933 | 0.926 | 0.933 | 0.920

RC-SIFT64 (R) | 0.931 | 0.924 | 0.930 | 0.924
RC-SIFT64 (C) | 0.928 | 0.924 | 0.928 | 0.923

62 = 0.2, salt and pepper noise with density of 15%
and 35% and multiplicative white noise with mean
0 and 6> = 0.04. The performance of the all used
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(c) The top three query results by RC-SIFT—64D

Figure 3: Comparison of retrieval results of SIFT—128D
and RC-SIFT—64D descriptors. This example shows
an equivalent performance of the RC-SIFT—64D and
SIFT—128D in retrieving the belonged images to the same
scene. However, RC-SIFT—64D presents better raking of
the results than SIFT—128D.

descriptor in this work are presented in Tables 4, 5
and 6. These results show that performance all pro-
posed descriptors decrease very strongly when the ra-
tio of noise incease (see Tables 4 and 5). However, in
case of using the salt and pepper noise RC-SIFT-64D
obtains better results than the other descriptors even
though when the ratio of noise increases.

Table 4: The performance of SIFT—128D, SIFT—64D,
SURF—64D and our RC-SIFT—64D using a ground truth
database (500 images) and a set of 500 query images, each
of them has one Gaussian noised image in the database. The
experiment is repeated for 62 = 0.1 and 62 = 0.2. For each
query image we check if its corresponding database image
appear as the first retrieved image in the result.

Method 62=0.1|062=02
SIFT-128D 0.684 0.356
SIFT-64D 0.648 0.290
SURF-64D 0.644 0.352
RC-SIFT-64D(R) | 0.682 0.352
RC-SIFT-64D(C) | 0.679 0.354

5.2.3 Illumination Change

The illumination invariance is verified in the cases of
increase and decrease the brightness of the 500 test
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Table 5: The performance of SIFT—128D, SIFT—64D,
SURF—64D and our RC-SIFT-64D using a ground truth
database (500 images) and a set of 500 query images,
each of them has one salt and pepper noised image in the
database. For each query image we check if its correspond-
ing database image appear as the first retrieved image in the
result. The experiment is performed for two level of noise
density (i.e., 15% and 35%).

Method 15% | 35%

SIFT-128D 0.826 | 0.202
SIFT-64D 0.822 | 0.152
SURF-64D 0.812 | 0.145
RC-SIFT-64D(R) | 0.834 | 0.208
RC-SIFT-64D(C) | 0.831 | 0.205

Table 6: The performance of SIFT—128D, SIFT—64D,
SURF—64D and our RC-SIFT-64D using a ground truth
database (500 images) and a set of 500 query images, each
of them has one multiplicative noise noised image in the
database. For each query image we check if its correspond-
ing database image appear as the first retrieved image in the
result.

Method 62 Recall
SIFT-128D 0.04 | 0.98
SIFT-64D 0.04 | 0.822
SURF-64D 0.04 | 0.801
RC-SIFT-64D(R) | 0.04 | 0.972
RC-SIFT-64D(C) | 0.04 | 0.970

images. This is done by adding or subtracting a value
of all pixel’s channels(i.e., the channels red, green and
blue of each pixel are incremented equally). The val-
ues of pixel’s channels are adjusted to be within the
range 0 —255. The brightness effect is tested using
the values {50,70,100,120} and the darkness effect
is test using the values {—30,—50,—70,—90}. Re-
sults of NDR tasks summarized in Tables 7 and 8 de-
scribe that all kinds of used descriptors perform well
for illumination increase and decrease.

5.3 Image Blurring

To test the robustness of descriptors against image
blurring, three blurred image databases are gener-
ated using the first 500 images of the benchmark
database (Nister and Stewenius, 2006) and using three
different values of Gaussian filteri.e., 6> =5, 6> = 10
and 6 = 20. Table 9 shows that the performance de-
grade most clearly when the ratio of blurring increase
(i.e., when the value of o? increases). However, for
a small amount of blurring the descriptors seem to be
invariant. For a big amount of blurring, RC-SIFT-64D
is superior in matching images.
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Table 7: The retrieval performance of SIFT—128D,
SIFT—64D, SURF—64D and our RC-SIFT-64D using a
ground truth database (500 images) and a set of 500 query
images, each of them has one brightened image in the
database. For each query image we check if its correspond-
ing database image appear as the first retrieved image in the
result. The results are checked for the following brightness
values: {50,70,100,120}.

Method 50 70 100 120

SIFT-128D 1.00 | 1.00 | 0.968 | 0.912
SIFT-64D 0.998 | 0.998 | 0.942 | 0.902
SURF-64D 0.995 | 0.993 | 0.932 | 0.881
RC-SIFT64(R) | 0.995 | 0.995 | 0.956 | 0.902
RC-SIFT64(C) | 0.970 | 0.970 | 0.956 | 0.902

Table 8: The retrieval performance of SIFT—128D,
SIFT—64D, SURF—64D and our RC-SIFT-64D using a
ground truth database (500 images) and a set of 500 query
images, each of them has one darkened image in the
database. The performance is presented using the darkness
values: {—30,—50,—70,—90}. For each query image we
check if its corresponding database image appear as the first
retrieved image in the result.

Method -30 | =50 | =70 | —90

SIFT-128D 1.00 | 0.992 | 0.958 | 0.810
SIFT-64D 0.998 | 0.992 | 0.956 | 0.802
SURF-64D 0.997 | 0.992 | 0.947 | 0.822
RC-SIFT64(R) | 1.00 | 0.990 | 0.955 | 0.822
RC-SIFT64(C) | 0.997 | 0.988 | 0.955 | 0.820

Table 9: Comparison of retrieval performance of
SIFT—128D, SIFT—64D, SURF—64D and our RC-SIFT-
64D using a ground truth database (500 images) and a set
of 500 query images, each of them has one blurred image
in the database. For each query image we check if its corre-
sponding database image appear as the first retrieved image
in the result. The experiment is repeated for different level
of blurring using 6 = 5, ¢ = 10 and ¢ = 20.

Method c=5|06=10|06=20
SIFT-128D 0.922 | 0.426 | 0.358
SIFT-64D 0.836 | 0.368 0.330
SURF-64D 0.859 | 0.347 0.298
RC-SIFT-64D(R) | 0.830 | 0.366 | 0.386
RC-SIFT-64D(C) | 0.834 | 0.368 | 0.388

5.4 Scale Change

The robustness of all proposed descriptors is veri-
fied against scaling change by selecting 500 differ-
ent scenes of the benchmark database (Nister and
Stewenius, 2006) for which there are two images



taken at different scales. Some of the selected images
have additional viewpoint change as well. The first
image of each scene is used as a query image and the
second one is used as an available image in the image
database. Table 10 shows that both SIFT—128D and
RC-SIFT—64D perform consistent in the case of scale
change. Moreover, it presents that the SURF—64D
descriptors perform the worst in this case.

Table 10: Comparison of retrieval performance of
SIFT—128D, SIFT—64D, SURF—64D and our RC-SIFT-
64D using a ground truth database (500 images) and a set
of 500 query images, each of them has one salt and pep-
per noised image in the database. For each query image we
check if its corresponding database image appear as the first
retrieved image in the result.

Method Recall
SIFT-128D 0.801
SIFT-64D 0.763
SURF-64D 0.533

RC-SIFT-64D(R) | 0.801
RC-SIFT-64D(C) | 0.801

5.5 Perspective Change

To test the invariance of descriptors against perspec-
tive change. 500 different scenes of the benchmark
database (Nister and Stewenius, 2006) are selected for
which there are two images taken at different view-
point angles. The first image of each scene is used
as a query image and the other one is used as an
image in the database. The results are presented in
Table 11, which describes that contrary to the other
kinds of changes, the robustness of all proposed de-
scriptors against perspective change decrease. But
SIFT—128D and RC-SIFT-64D still have the best per-
formance.

Table 11: Comparison of retrieval performance of
SIFT—128D, SIFT—64D, SURF—64D and our RC-SIFT-
64D using a ground truth database (500 images) and a set
of 500 query images, each of them has one salt and pep-
per noised image in the database. For each query image we
check if its corresponding database image appear as the first
retrieved image in the result.

Method Recall
SIFT-128D 0.626
SIFT-64D 0.602
SURF-64D 0.439
RC-SIFT-64D(R) | 0.720
RC-SIFT-64D(C) | 0.717

Adapted SIFT Descriptor for Improved Near Duplicate Retrieval

6 CONCLUSION

In this work, we consider the fact that “the spar-
sity of fixed amount of feature increase as their di-
mensionality increase” (Steinbach et al., 2003) to
reduce dimensionality of the SIFT descriptor from
128D to 64D. The goal of dimensionality reduc-
tion is to decrease the sparsity of SIFT descriptors,
speeding up the indexing process and improve the
performance of SIFT descriptors in the image NDR
field. We verified in this work the performance
of the RC-SIFT—64D (for both horizontal and ver-
tical compression), RC-SIFT—32D, RC-SIFT—16D
against the original SIFT—128D to solve image NDR
tasks using a benchmark which contains different
kind of indoor/outdoor images. The experiments
show a slight improvement in matching results when
tested on benchmark databases. Moreover, the RC-
SIFT—64D needs shorter time for indexing and less
memory than the original SIFT—128D. However, the
performance of RC-SIFT—32D and RC-SIFT—16D
decrease, due to the compression of descriptors infor-
mation in both direction at once. The robustness and
stability of our suggested RC-SIFT—64D are verified
against different kinds of image affine transformation,
blurring change, scale change and viewpoint change.
However, the results shows that the RC-SIFT—64D
descriptors are invariant to image affine transforma-
tion in some specific ranges. Moreover, it presents
that RC-SIFT—64D descriptors are robust against im-
age blurring, scale change and perspective change. In
addition, its descriptors are more robustness than the
other presented descriptors against a big change in the
rotation, some kinds of noise, big amount of blurring
and viewpoint change. In the next step, we will at-
tempt to improve the performance of RC-SIFT—64D
by adapting suitable weights inspired by the rela-
tion between features to improve the performance of
matching in the field of image NDR.

In future work, we will also evaluate if the more
robust performance of the RC-SIFT—64D can be used
in the field of human visual attention, e.g., as a more
stable predictor for creating a saliency map of hu-
man gaze as discussed in a previous study (Steffen
et al.,, 2012). Furthermore, the more efficient RC-
SIFT—64D approach may improve interactive image
search when a large scale image collection is used
as e.g., in (Low et al., 2014) and (Beecks and Seidl,
2009).
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