
An Experimental Evaluation of the Adaptive Sampling Method for 
Time Series Classification and Clustering 

Muhammad Marwan Muhammad Fuad 
Forskningsparken 3, Institutt for kjemi, NorStruct 

Department of Chemistry, The University of Tromsø - The Arctic University of Norway, NO-9037 Tromsø, Norway 
 

Keywords: Adaptive Sampling, Classification, Clustering, Data Mining, Time Series. 

Abstract: Adaptive sampling is a dimensionality reduction technique of time series data inspired by the dynamic 
programming piecewise linear approximation. This dimensionality reduction technique yields a suboptimal 
solution of the problem of polygonal curve approximation by limiting the search space. In this paper, we 
conduct extensive experiments to evaluate the performance of adaptive sampling in 1-NN classification and 
k-means clustering tasks. The experiments we conducted show that adaptive sampling gives satisfactory 
results in the aforementioned tasks even for relatively high compression ratios. 

1 INTRODUCTION AND 
RELATED WORK 

A time series ܵ is a sequence of ݊ indexed values ܵ = ,(ଵݐ)ݏ〉 ,(ଶݐ)ݏ … , (1) 〈(௡ݐ)ݏ
Time series data mining arises in many domains 

including economics, medicine, finance, and 
astronomy.  For this reason, time series data mining 
has received attention over the last years. 

The major time series data mining tasks include 
query-by-content, clustering, classification, anomaly 
detection, motif discovery, segmentation, and 
prediction. Executing these tasks usually involves 
performing another fundamental task in data mining 
which is the similarity search. A similarity search 
problem consists of a database ܦ, a query or pattern ܳ, which does not necessarily belong to ܦ, and a 
tolerance ߝ that determines the closeness of the data 
objects to the query in order to be qualified as answers 
to that query. The principal component of the 
similarity search problem is the distance metric or the 
similarity measure which quantifies how much two 
data objects are close to each other. The Euclidean 
Distance (ED) (Figure 1) is a widely used time series 
distance metric. It is defined between two time series ܵ = ,ଵݏ〉 ,ଶݏ … , ܴ ௡〉 andݏ = ,ଵݎ〉 ,ଶݎ … ,  :௡〉  asݎ

,ܵ)ܦܧ ܴ) = ඩ෍|ݏ௜ − ௜|ଶ௡ݎ
௜ୀଵ

మ
 (2)

 
Figure 1: The Euclidean distance. 

Another popular similarity measure (not a distance 
metric) used in time series data mining is the Dynamic 
Time Warping (DTW) (Guo and Siegelmann, 2004) 
(Figure 2). DTW is defined as: 

,݅)ܹܶܦ ݆) = ݀(݅, ݆) + min ቐ ,݅)ܹܶܦ ݆ − ݅)ܹܶܦ						(1 − 1, ݅)ܹܶܦ							(݆ − 1, ݆ − 1) (3)

where 1 ≤ ݅ ≤ ݊,	1 ≤ ݆ ≤ ݉     □    

 
Figure 2: Dynamic time warping. 
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A trivial solution to the similarity search problem 
is to compare every single time series in ܦ against	ܳ. 
This is known as sequential scanning. Obviously, this 
solution is not an efficient one given that modern time 
series databases are usually very large. 

Dimensionality Reduction Techniques, also 
named Representation Methods, adopt the GEMINI 
framework (Faloutsos et al, 1994) (Figure 3) to 
process the similarity search problem of time series 
more efficiently. In GEMINI, the original time series 
are mapped onto low-dimension spaces, which 
reduces their dimensionality, and then the query is 
processed in those low-dimension spaces. 

There are quite a few dimensionality reduction 
techniques in the literature. The most popular ones are 
Piecewise Aggregate Approximation (PAA) (Keogh 
et al, 2000) and (Yi and Faloutsos, 2000), and 
Adaptive Piecewise Constant Approximation (APCA) 
(Keogh et al, 2001). 

One dimensionality reduction technique that is 
related to our experimental study is Piecewise Linear 
Approximation (PLA) (Morinaka et al, 2001) (Figure 
4). PLA transforms the time series into Δ-SEALS (Δ-
bounded Sequence of Approximated Liner Segments). 
The basic idea of the Δ-SEALS is to approximate the 
time series by a sequence of ݈  linear segments. Each 
line segment is the longest possible linear segment 
whose accumulated error does not exceed a given 
deviation bound ∆, where the error is defined by the 
least square method. 

Algorithm: range_query(Q,ߝ) 
 

1. Transform the time series in   
 database D from the original  
 n-dimensional space  into  
 a lower dimensional space of  
 N dimensions 
    

2. Define a lower bounding 
distance on the reduced space:   

        
   ݀ே൫ ௜ܵ, ௝ܵ൯ ≤ ݀௡൫ ௜ܵ, ௝ܵ൯				∀ ௜ܵ, ௝ܵ ∈   	ܦ
 

3. Eliminate all the time series  
 for which we have ݀ே(ܳ, ܵ) ൐     			ߝ
 to obtain a candidate answer 
 set              
        

4. Apply  ݀௡ to the candidate 
answer set and eliminate all 
the time series that are 
farther than ε from Q to get 
the final answer set. 

Figure 3: The GEMINI algorithm for range queries. 

Another dimensionality reduction technique 
related to the experimental section of this paper is 
Discrete Fourier Transform (DFT) (Agrawal et al, 
1993), (Agrawal et al, 1995) (Figure 5). The basic 
idea of DFT is that a time series can be represented 
using complex numbers called the Fourier 
Coefficients, so a time series of 256 dimensions, for 
instance, can be represented by 128 complex Fourier 
coefficients. However, the first coefficients are the 
most significant and the most representative ones, so 
the other Fourier coefficients can be truncated 
without much loss of information. 

 
Figure 4: Δ-SEALS. 

 
Figure 5: DFT using 8 coefficients. 

In this paper we present an extensive experimental 
evaluation of a certain dimensionality reduction 
technique which is the adaptive sampling method of 
time series.  We show how this method can give good 
results in time series classification and clustering 
tasks compared with other methods.  

The rest of the paper is as follows; in Section 2 the 
adaptive sampling method is introduced. In Section 3 
we present the experiments we conducted. In Section 
4 we conclude this paper with final remarks and 
directions for future work. 

An Experimental Evaluation of the Adaptive Sampling Method for Time Series Classification and Clustering

49



2 THE ADAPTIVE SAMPLING 
METHOD  

In (Marteau and Ménier, 2006) the authors presented 
the Adaptive Multiresolution Simplification model of 
times series data which was inspired by the Dynamic 
Programming Piecewise Linear Approximation 
model presented in (Marteau and Gibet, 2005) and 
derived from (Perez and Vidal, 1994) and 
(Kolesnikov and Franti, 2003). This adaptive model 
yields a suboptimal solution of the problem of 
polygonal curve approximation by limiting the search 
space.  

We briefly present here an outline of the model: 
given an n-dimensional time series ܵ, the objective is 
to find an approximation ܵఏ෡  of ܵ that satisfies:  ߠ෠ = ఏ݊݅ܯ݃ݎܣ ൫ܧ(ܵ, ܵఏ)൯ (4)

where E is the root mean square error between ܵ 
and the model ܵఏ . The search is limited to the family 
of piecewise linear and continuous functions ሼܵఏ	(݊)ሽ. The successive segments have to be 
contiguous, so that the end of one segment is the 
beginning of the next one. The authors apply the 
dynamic programing algorithm to select the optimal 
set of parameters ߠ෠ = ሼ ෝ݉௜ሽ . This is done as follows: 
first, we define the compression ratio of the piecewise 
approximation as: ߩ = 1 − |ሼ݊௜ሽ||ሼܵ(݊)ሽ| × ߩ + ߩ1  (5)

where ܵ(݊) ∈ ℝ௡, ∀݊ 
Given the value of ߩ and the width of the time 

window ݓ = หሼܵ(݊)ሽ௡∈ሼଵ,ଶ,…,௪ሽห, the number of 
piecewise linear segments ܰ = |ሼ݊௜ሽ| − 1 is known 
in this case. 

Let ߠ(݇), by definition, be the parameters of a 
piecewise approximation containing ݇   segments, and 
let ߜ(݇, ݅) be the minimal error of the best piecewise 
linear approximation containing ݇ segments and 
covering the time window	ሼ1,2, … ,݇)ߜ ,ሽݓ, ݅)  can 
then be written as: ߜ(݇, ݅) = ఏ(௞)݊݅ܯ ൝෍ฮܵఏ(௞)(݊) − ܵ(݊)ฮଶ௜

௡ୀଵ ൡ (6)

According to Bellman’s optimality principle 
(Bellman, 1957), the above term can be decomposed 
as: ߜ(݇, ݅) = ,௞ିଵஸ௡ೖஸ௜ሼ݀(݊௞݊݅ܯ ݅) 		+ ݇)ߜ − 1, ݊௞)ሽ (7)

where 

݀(݊௞, ݅) = ෍ ฮܴ௞,௜(݊) − ܵ(݊)ฮଶ௜
௡ୀ௡ೖ  

and ܴ ௞,௜(݊) = ൫ܵ(݅) − ܵ(݊௞)൯ × ௡ି௡ೖ௜ି௡ೖ + ܵ(݊௞)  is the 
linear segment between ܵ(݅) and ܵ(݊௞). 

Recursion is initialized by observing that: ߜ(݇, ݅) = 0 , ∀݇, ∀݅ < ݇ (8)
At the end of the recursion, we get the optimal 

piecewise linear approximation; i.e. the set of time 
stamps of the end points of the linear segments: ߠ෠(݇) = ఏ(௞)݊݅ܯ݃ݎܣ ൝෍ฮܵఏ(௞)(݊) − ܵ(݊)ฮଶ௪

௡ୀଵ ൡ (9)

with the minimal error: ߜ(݇, (ݓ = ෍ฮܵఏ෡(௞)(݊) − ܵ(݊)ฮଶ௪
௡ୀଵ  (10)

The complexity of the algorithm is ܱ(݇,ݓଶ). In 
order to reduce this complexity the search window 
can be limited by using a lower bound ݈ܾ ሼ݅ݔܽܯ= − ܾܽ݊݀, 0ሽ  for each step ݅, and where ܾܽ݊݀ 
is a user-defined parameter:  ߜ(݇, ݅) = ,௟௕ஸ௡ೖஸ௜ሼ݀(݊௞݊݅ܯ ݅) 		+ ݇)ߜ − 1, ݊௞)ሽ (11)

In practice we choose ܾܽ݊݀ = 	 ଶ௪௞ . 

3 EXPERIMENTS 

Before we present the outcome of our experiments, 
we briefly introduce the two main data mining tasks 
on which we tested the adaptive sampling method. 
The two tasks are classification and clustering.  
Classification: The goal of classification (also called 
supervised learning) is to assign an unknown object 
to one out of a given number of classes or categories 
(Bunke and Kraetzl, 2003). Classification is based on 
four fundamental components (Gorunescu , 2006): 1- 
Class, which is a categorical variable representing the 
‘label’ put on the object after its classification. 2- 
Predictors, which are represented by the attributes of 
the data to be classified. 3- Training dataset, which is 
the set of data containing values for the two previous 
components, and is used for ‘training’ the model to 
recognize the appropriate class based on available 
predictors. 4- Testing dataset, containing new data 
that will be classified by the model constructed in the 
previous steps.   
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Table 1: 1-NN classification errors for different compression ratios. 

 
One of the most popular classification techniques 

of time series is ݇ −Nearest Neighbor Classification 
(݇ − NN). In ݇ − NN the query is classified according 
to the majority of its nearest neighbours (Vlachos and 
Gunopulos, 2003). Usually ݇ is taken to be 1, thus 
applying a first nearest-neighbor (1 − NN) rule using 
leaving-one-out cross validation. This means that 
every data object is compared to the other data objects 
in the dataset. If the 1 − NN does not belong to the 
same class, the error counter is incremented by 1. 

Clustering: It is the task of partitioning the data 
objects into groups of similar objects. Clustering (also 
called unsupervised learning) is different from 

classification in that in clustering we do not have 
target variables. Instead, clustering algorithms seek to 
segment the entire data set into relatively 
homogeneous subgroups or clusters (Larose, 2005). 

There are different categories of clustering 
algorithms, the one we are interested in in this paper 
is Partitioning-based Clustering. In particular, we are 
interested in ݇-means clustering. In ݇-means 
clustering we have a set of ݊ data points in ݀-
dimensional space ܴௗ and an integer ݇ and the 
problem is to determine a set of ݇ points, the 
centroids, in ܴௗ so as to minimize the mean distance 
from each data point to its nearest center (Kanungo et 
al, 2002). 

  Dataset   Method ρ 

0%    5%    10%    25%    50%    75%    90%    
 
Synthetic Control 

DTW-PLA 0.007 0.003 0.010 0.036 0.083 0.147 0.217 

ED-PLA 0.120 0.113 0.127 0.147 0.210 0.273    0.290 

DFT 0.097 0.127 0.150 0.203 0.273 0.367 0.410 

DFT-PLA NA 0.097 0.103 0.127 0.203 0.217 0.273 

 
Gun-Point 

DTW-PLA 0.093 0.087 0.100 0.133 0.180 0.220 0.287 

ED-PLA 0.087 0.067 0.080 0.113 0.147 0.193 0.220 

DFT 0.087 0.113 0.133 0.160 0.200 0.233 0.307 

DFT-PLA NA 0.087 0.113 0.140 0.160 0.200 0.273 

 
CBF 

DTW-PLA 0.003 0.080 0.021 0.024 0.037 0.071 0.100 

ED-PLA 0.148 0.128 0.148 0.173 0.188 0.209 0.356 

DFT 0.112 0.147 0.184 0.209 0.234 0.382 0.398 

DFT-PLA NA 0.112 0.136 0.173 0.209 0.234 0.263 

 
Trace 

DTW-PLA  0.000 0.000 0.010 0.040 0.090 0.160 0.190 

ED-PLA  0.240 0.190 0.210  0.240 0.360 0.380 0.430 

DFT  0.186 0.210 0.350 0.380 0.410 0.430 0.480 

DFT-PLA NA 0.170 0.210 0.310 0.370 0.390 0.420 

 
Lightning-2 

DTW-PLA  0.131 0.117 0.131 0.164 0.183 0.217 0.262 

ED-PLA  0.246 0.250 0.250 0.283 0.311 0.367 0.383 

DFT  0.213 0.246 0.295 0.333 0.377 0.410 0.426 

DFT-PLA NA  0.213 0.217 0.233 0.283 0.317 0.367 

 
Lightning-7 

DTW-PLA  0.274 0.247  0.274 0.301 0.342 0.397 0.438 

ED-PLA  0.425  0.425 0.429 0.443 0.466 0.486 0.514 

DFT  0.405 0.414 0.443 0.466 0.514 0.629 0.729 

DFT-PLA NA 0.384  0.425 0.429 0.471 0.571 0.685 

 
ECG 
 

DTW-PLA 0.230 0.210 0.230 0.240 0.250 0.260 0.270 

ED-PLA 0.120 0.090 0.110 0.130 0.160 0.200 0.230 

DFT 0.120 0.130 0.150 0.170 0.210 0.240 0.260 

DFT-PLA NA 0.100 0.110 0.140 0.160 0.190 0.220 

 
Adiac 

DTW-PLA 0.396 0.389 0.399 0.427 0.484 0.574 0.608 

ED-PLA 0.389 0.385 0.393 0.420 0.473 0.567 0.595 

DFT 0.385 0.420 0.470 0.567 0.592 0.687 0.709 

DFT-PLA NA 0.385 0.413 0.475 0.560 0.575 0.673 
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Table 2: k-means clustering quality for different compression ratios. 

 
More formally, the ݇-means clustering error can 

be measured by: 

ܧ =෍෍݀൫ݑ௜௝, ܿ௜൯௡ೕ
௝ୀଵ

௞
௜ୀଵ  (12)

Where ݑ௜௝ is the ݆௧௛  point in the ݅௧௛ cluster, and ௝݊ is the number of points in that cluster. The quality 
of the ݇-means clustering increases as the error given 
in (Eq. 12) decreases.  

The number of clusters is determined by the user, 
application-dependent, or given by a certain  

clustering validity measure. □  
We conducted experiments on classification and 

clustering tasks of time series data available at (Chen 
et al, 2015). This archive makes up between 90% and 
100% of all publicly available, labeled time series 
data sets in the world, and it represents the interest of 
the data mining/database community, and not just one 
group (Ding et al, 2008). 

The length of the time series varies between 60 
(Synthetic_control) and 637 (Lightning-2). The size 
of datasets varies between 61 (Lightning-2) and 900 
(CBF), so as we can see, we tested our method on a 
wide range of datasets of different lengths  and  sizes 

  Dataset   Method ρ 

0%    5%    10%    25%    50%    75%    90%    
 
Synthetic Control 

DTW-PLA 0.990 0.995 0.962 0.858 0.726 0.618 0.528 

ED-PLA 0.649 0.656 0.617 0.573 0.479 0.392 0.289 

DFT 0.723 0.719 0.685 0.623 0.543 0.441 0.378 

DFT-PLA NA 0.839 0.718 0.653 0.587 0.456 0.389 

 
Gun-Point 

DTW-PLA 0.879 0.896 0.814 0.684 0.527 0.438 0.373 

ED-PLA 0.473 0.484 0.447 0.402 0.348 0.289 0.226 

DFT 0.489 0.491 0.469 0.424 0.351 0.312 0.261 

DFT-PLA NA 0.890 0.806 0.657 0.511 0.423 0.351 

 
CBF 

DTW-PLA 0.983 0.985 0.916 0.847 0.683 0.513 0.426 

ED-PLA 0.602 0.610 0.595 0.548 0.463 0.372 0.253 

DFT 0.643 0.656 0.617 0.579 0.512 0.436 0.324 

DFT-PLA NA 0.787 0.746 0.675 0.610 0.476 0.358 

 
Trace 

DTW-PLA  0.843  0.835  0.802  0.736  0.619  0.494 0.327 

ED-PLA 0.453 0.436 0.405 0.387 0.322 0.254 0.211 

DFT 0.510 0.476 0.447 0.406 0.359 0.287 0.244 

DFT-PLA NA 0.675 0.634 0.576 0.468 0.329 0.259 

 
Lightning-2 

DTW-PLA  0.958 0.969 0.879 0.808 0.612 0.465 0.389 

ED-PLA 0.589 0.602 0.566 0.526 0.445 0.361 0.222 

DFT 0.618 0.624 0.598 0.554 0.481 0.384 0.254 

DFT-PLA NA 0.917 0.858 0.765 0.548 0.411 0.354 

 
Lightning-7 

DTW-PLA  0.817  0.786  0.739  0.675  0.628  0.463 0.301 

ED-PLA 0.437 0.415 0.388 0.354 0.311 0.232 0.204 

DFT 0.458 0.435 0.403 0.389 0.355 0.285 0.254 

DFT-PLA NA 0.617 0.565 0.532 0.441 0.332 0.264 

 
ECG 
 

DTW-PLA 0.985 0.976 0.878 0.739 0.623 0.476 0.390 

ED-PLA 0.674 0.680 0.652 0.611 0.543 0.425 0.354 

DFT 0.662 0.653 0.635 0.578 0.521 0.398 0.322 

DFT-PLA NA 0.670 0.647 0.597 0.537 0.402 0.338 

 
Adiac 

DTW-PLA 0.672 0.684 0.646 0.585 0.449 0.386 0.269 

ED-PLA 0.362 0.380 0.343 0.321 0.287 0.224 0.189 

DFT 0.380 0.395 0.364 0.334 0.305 0.245 0.195 

DFT-PLA NA 0.395 0.351 0.344 0.311 0.264 0.211 
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to avoid getting biased results. 
Table 1 shows the classification error (the smaller 

the better) in a 1 − NN classification task of the 
adaptive sampling method applied to DFT (c.f. 
Section 1), and also applied using DTW and the 
Euclidean distance. The experiments are conducted 
for different compression ratios ρ, where the ρ = 0% 
indicates no adaptive sampling is performed (the 
method is turned off)  

The results show that DTW is adapted to the 
classification task in question. Adaptive sampling 
gave acceptable results even for compression ratios 
between 25% and 50%. For dataset ECG the results 
were quite acceptable even for a very high 
compression ratio (ρ = 90%). 

ED was also adapted to adaptive sampling as the 
classification error was in general acceptable for 
compression ratio of 50%.  

When applying adaptive sampling to DFT, the 
results were always better than the original method 
for all datasets and for all compression ratios.  

An interesting phenomenon that we noticed is that 
in many cases, applying adaptive sampling for a 
compression ratio of 5% gave better results than the 
raw data themselves. We believe the reason for this is 
that compassion has a positive effect of smoothing the 
data.  

We also conducted k-means clustering 
experiments on the same datasets and for the same 
compression ratios. Table 2 shows the k-means 
clustering quality (the larger the better) of the datasets 
we tested. As we can see from Table 2, the results of 
the k-means clustering are similar to those of  1 − NN 
classification. They show that DTW is the most 
adapted method for the k-means clustering task and 
again the adaptive sampling yielded acceptable 
results even for compression ratios between 25% and 
50% for almost all the datasets tested. The results, 
however, degraded in most cases for high 
compression ratios.  

ED was also adapted to adaptive sampling as the 
quality of k-means clustering was still acceptable 
even for a compression ratio of 50%.  

As was the case with classification, adaptive 
sampling improved the performance of DFT for all 
datasets and for all compression ratios. When 
applying adaptive sampling to DFT, the results were 
always better than the original method for all 
compression ratios and for all compression ratios.  

The smoothing effect that appeared in the 
classification task experiments for a compression 
ratio of 5% also appeared in the k-means clustering 
experiments.  

4 CONCLUSIONS 

In this paper, we conducted extensive experiments on 
the adaptive sampling method of time series in 1 −NN classification and k-means clustering tasks. These 
experiments were conducted on a variety of time 
series datasets, using the Euclidean distance, the 
dynamic time warping, and the discrete Fourier 
transform (DFT). The output of our experiments 
shows that even when using high compression ratios, 
the performance of the adaptive sampling method is 
still acceptable in the two aforementioned time series 
data mining tasks. In some cases, the adaptive 
sampling method yielded acceptable results even for 
a high compression ratio.  

In the future, we intend to study the impact of 
adaptive sampling on other time series data mining 
tasks and also to compare it with other time series 
dimensionality reduction techniques.   
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