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Abstract: In this study, chaos theory tools were used for feature extraction from Transcranial Doppler (TCD) signals. 
The surrogates data sets of the TCD signals which were used for the nonlinearity analysis were extracted as 
the first feature set. The nonlinear cross prediction errors which were used for the stationary analysis were 
also extracted for the TCD signals as another feature set. The chaotic invariant features like correlation 
dimension, maximum Lyapunov exponent, recurrence quantification measures etc. give quantitative values 
of complexity of the TCD signals. The correlation dimension and maximum Lyapunov exponent were 
already used as features for classification of TCD signals in the literature. As another chaotic feature set, the 
statistical quantitative values were extracted from the recurrence plots. The correct calculation of the time 
delay and the minimum embedding dimension is crucial to correctly estimate all of the chaotic features. 
These two data were calculated via mutual information and false nearest neighbours approaches, 
respectively. The space-time separation plots were used in order to find the ideal dimension of Theiler 
window w which is another important value for the correct estimate of chaotic measures. The reconstructed 
chaotic attractors with 3-D embedding and 1-step time delay represent the visual phase space portrait of the 
TCD signals. The attractors were also suggested as another candidate feature set. 

1 INTRODUCTION 

TCD study of the adult intracerebral circulation is 
used to evaluate intracranial stenoses, cerebral 
arteriovenous malformations, cerebral vasospasm 
and cerebral hemodynamics in general (Evans et al.., 
1989). The blood flow anomalies in the cerebral 
vessels can be visually observed in the sonograms. 
However, properly enabling the expert medical staff 
to interpret TCD signals is difficult and this prevents 
their wider and effective usage in the clinics.  

In the literature, the linear features extracted 
from Doppler signals via spectral analysis methods 
were used for automatic medical diagnosis (Ubeyli 
and Guler, 2005; Guler et al., 2002). The spectral 
features of TCD signals were used for the 
performance comparison of two different artificial 
neural networks in (Serhatlioglu et al., 2003) for the 
classification of the TCD signals.  

There are various studies in which chaos theory 
methods were used to analyse the Doppler signals 
(Keunen et al., 1994; Vliegen et al., 1996). Keunen 

et al., (1996) suggested that the TCD signals of 
healthy subjects have an underlying nonlinear 
dynamics. It was recognized by Visee et al., (1995) 
that the nonlinear phenomena were lost in ischemic 
cerebrovascular territory in patients with occlusive 
cerebrovascular disease while there was nonlinearity 
detected in noncompromised side. 

Two chaotic invariant measures, i.e. the 
correlation dimension and maximum Lyapunov 
exponent, were used for the classification of TCD 
signals in (Ozturk and Arslan, 2007; Ozturk et al., 
2008) to compare the performance of various 
classifiers. The performance of the chaotic and 
linear features were compared on a neuro-fuzzy 
classifier in (Ozturk and Arslan, 2015). 

If linear methods are used to analyse a time 
series which is generated by a nonlinear process, 
then some critical features of it can remain 
undetected and most of it can be considered as noise. 
The non-linear time series analysis (chaos theory) 
provided some tools to quantitatively analyse a time 
series which is generated by an underlying nonlinear 
process. However, in order to apply nonlinear time 
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series analysis (chaos theory) methods, it must be 
proven that the signals are both nonlinear and 
stationary. In (Ozturk and Arslan, 2007), the 
surrogates data method was used to detect the 
nonlinearity of TCD signals. In this study, The 
surrogates data set of the TCD signals were 
extracted as the first feature set. The stationarity of 
the TCD signals is detected with nonlinear cross 
prediction errors method in (Ozturk and Arslan, 
2007). In this study, this method was used to extract 
the non-linear cross prediction values as another 
feature set.  

The most famious chaotic features used in the 
literature are the maximum Lyapunov exponent and 
the correlation dimension. These chaotic measure 
will eventually be different for a specific time series 
generated by a specific  natural phenomea, since 
each chaotic attractor will have a different picture in 
the embedded phase space. These two features were 
also mentioned as a different feature set in this 
study. 

The recurrence plots are mainly used for 
nonstationarity analysis and visualization of time 
series. The visual data in the recurrence plots is hard 
to interpret. Therefore, recurrence quantification 
analysis is necessary to quantify the number and 
duration of recurrences which is presented by the 
state space trajectory of a dynamical system. The 
other proposed feature set in this study is the 
statistical quantitative values which are extracted 
from the recurrence plots of TCD signals. The time 
delay information and minimum embedding 
dimension play important role for the correct 
extraction of all chaotic features. This is also true for 
recurrence quantification analysis. The other 
important parameter which effects all of the results 
is the Theiler window w and it is estimated from the 
space-time separation plots. 

The reconstructed 3-D chaotic attractors of the 
TCD signals were also presented. These can be used 
to extract a different set of features via image 
processing methods. 

2 MATERIALS AND METHOD 

2.1 Hardware 

The hardware of the system used for this study 
involves a 2 Mhz ultrasound transducer, analog 
Doppler unit (Multi Doppler Transducer XX, DWL 
Gmb, Uberlingen, Germany), analog/digital 
interface board (Sound Blaster Pro-16), and  PIII 
600 Mhz microprocessor PC with printer. The 

Doppler unit is also equipped with imaging software 
that makes it possible to focus the sample volume at 
a desired location in the temporal region. The signal 
obtained from the blood vessel is transferred to a PC 
via a 16-bit sound card on an analog/digital interface 
board (Ozturk et al., 2008). The signals were then 
sampled to 0-255 interval as shown in Figure 1. 

2.2 Surrogates Data Set 

The method of Iterative Amplitude Adjusted Fourier 
Transform (IAAFT) discussed in (Schreiber and 
Schmitz, 1996) is used to generate surrogate data 
sets. The Fourier-based surrogates depend on the 
idea of creating constrained realizations. In this 
approach, the measurable properties of the time 
series are taken into account. The linear properties of 
the time series are specified as in the following  
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multiplying the Fourier transform of the data by 
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Where 0≤αk<2π are independent uniform 
random numbers. 

2.3 Nonlinear Cross Prediction Errors 
Data Set 

The method used for the stationarity test of the TCD 
signals in (Ozturk and Arslan, 2007) was utilized to 
extract the non-linear cross prediction errors as 
another feature set. This method divides the time 
series into equal parts and the simple nonlinear 
prediction algorithm (Hegger et al., 1999) is applied 
to the segments to find the one-step ahead prediction 
errors. The embedding vectors were obtained by 
embedding the time series in 3-D phase space with a 
time delay of 1. In the delay embedding space, all 
neighbours of ݏ௡ are taken into account in order to 
make a prediction at time ݊ + ௡ା∆௞ݏ  .݇ = ଵ|࣯ച(௦೙)| ∑ ௦೙∈࣯ച(௦೙)	௡ା∆௞ݏ  (3) 

Where |࣯ఢ(ݏ௡)| is the number of elements in the 
neighbourhood ࣯ఢ(ݏ௡) of radius3 є around the point ݏ௡. 

The time series was divided into segments Si, 
i=1,..,N. For each two segments Si and Sj, the root 
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mean squared error was computed using the 
neighbours of Si to predict Sj. For i=j, the cross 
prediction errors will be smallest, since Si and Sj are 
identical.    

For random time series such as white noise, the 
nonlinear cross prediction errors are close to 1. On 
the other hand, for a periodic signal which is 
generated by sinus function, they are close to 0. For 
the time series those are generated by natural 
processes, they generally lie in between. 

2.4 Recurrence Plots 

The other two common methods in nonstationarity 
analysis and visualization of time series are the 
recurrence plots (Eckmann et al., 1987) (Casdagli, 
1997) and the time-seperation plots (Provenzale et 
al., 1997). It is difficult to interpret the recurrence 
plots due to their complexity (Webber and Zbilut, 
1994). The points obtained from a time series 
belonging to a stationary process are spreaded over 
the plot homogenously, while the points of a time 
series belonging to non-stationary process are 
grouped around the diagonal (Sprott, 2002). If there 
are too many separated points in the plot, this 
indicates randomness. This occurs when there is too 
much noise in the time series or the embedding 
dimension is insufficient. If the points over the 
surface have no pattern then the process which 
generates the time series has no or very poor 
determinism (Kantz and Schreiber, 2005). Zbilut 
et.al (1998), extracted some statistical quantitative 
values from the recurrence plots. Some of these 
values are the surface coverage rate of the points 
(REC), the rate of the points parallel to the diagonal 
(DET), the length distribution of the points which 
form a straight line (ENT) indicating the rate of the 
deterministic structures in the time series and the 
regression coefficient (TREND) which represents 
the relationship between the distance from the 
diagonal and the recurrence number. The calculation 
of these values takes too long for huge time series. 
However, it was observed that for sub-sections of 
TCD time series, these values do not differ 
significantly and reflect the characteristics of the 
original time series. ܴܥܧ = ଵே∑ ܴ௜,௝ே௜,௝ୀଵ    (4) 

Where N is the total number of points in a 
recurrence plot and Ri,jЄ{0,1} depending of the 
existence of a point on the i-j coordinates. ܶܧܦ = ∑ ௟௉(௟)೗ಿస೗೘೔೙∑ ோ೔,ೕ೔ಿ,ೕసభ    (5) 

Where ܲ(݈) is the histogram of the length ݈ of 
the diagonal lines. ܶܰܧ = −∑ ே௟ୀ௟೘೔೙(݈)݌	ln(݈)݌   (6) 

Where ݌(݈) corresponds to the diagonal line length. ܴܶܦܰܧ = ∑ (௜ୀேෙ/ଶ)(ோோ೔ି〈ோோ೔〉)෩ಿ೔సభ ∑ (௜ିே෩/ଶ)మ෩ಿ೔సభ     (7) 

Where ෩ܰ is the maximal number of diagonals 
parallel to the main diagonal line.  〈ܴܴ௜〉 indicates 
the average of the recurrence points ܴܴ௜. 

The values of the time delay, the minimum 
embedding dimension and the Theiler window are 
important for the calculation of the statistical 
quantitative measures mentioned above. 

2.5 Space-time Separation Plots 

In recurrence plots, the graph of the points which are 
closer than a specific ε distance value are obtained 
with absolute time. The space-time separation plots 
are obtained with relative time. In this kind of plots, 
if a vector on the reconstructed attractor has at least 
one neighbour in a specific δt interval and Δd 
distance, then it is marked as δt – Δd point. By 
means of these plots, it is possible to identify the 
temporary correlations and to find the dimension of 
the Theiler window w which is used in correlation 
dimension algorithm of Theiler (1990) and in 
Lyapunov exponent estimation of Kantz algorithm 
(Kantz, 1994). The first peak point which is close to 
the general height in the space-time separation point 
generally gives the ideal dimension of Theiler 
window w. 

2.6 Correlation Dimension  

The correlation dimension is computed most 
efficiently by the correlation sum (Grassberger and 
Procaccia, 1983): 
 

)(
1

),( 
−<=

−−Θ=
N

wjk
kj

N

mjpairs

ss
N

mC εε     (8) 

Where si are m-dimensional delay vectors, 
Npairs=(N-m+1)(N-m-w+1)/2 is the number of pairs of 
points covered by the sums, Θ is the Heaviside step 
function and w is the Theiler window (Theiler, 
1990). The following power law exists between 
embedding dimension m, ball radius ε and 
correlation dimension D2 

2),( DmC εε ∝    (9) 

The correlation dimension D2 can be defined as D = limఢ→଴ limே→ஶ݀(ܰ, ߳)        (10) 

BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing

170



Where  ݀(ܰ, ߳) = డ௟௡஼(ఢ,ே)డ௟௡ఢ    (11) 

The minimum embedding dimension and the time 
delay between embedding vectors are crucial in 
order to estimate the correlation dimension correctly. 
For the calculation the time delay, the mutual 
information method suggested by Fraser and 
Swinney (1986) was used. In this method, the 
mutual information S is computed for different τ 
delay values, 

−=
ij ji

ij
ij pp

p
pS

)(
ln)(

τ
τ   (12) 

Where pi is the probability to find a time series 
value in the i-th interval, and pij(τ) is the joint 
probability that an observation falls into the i-th 
interval and the observation time τ later falls into the 
j-th interval. The time delay τ where the mutual 
information S takes the first minimum value is the 
optimum delay and is used for embedding. 

We used the false nearest neighbors method 
proposed in (Hegger et al., 1999) to find the 
minimum embedding dimension. This method 
includes some small changes to the original 
algorithm proposed by (Kennel et al., 1992) to avoid 
the wrong results due to the noise in the time series. 
Assuming that the standard deviation of the time 
series is σ, the threshold of false nearest neighbors is 
r and the distance between the vectors of the phase 
space is found according to maximum difference, 
the false nearest neighbors statistics is calculated as 
in the following: 

(13)

 Where, is the nearest neighbour of the 
vector Sn and k(n) is the index of the time series 
which is different than n and supplying the condition 
of |ܵ௡ − ܵ௞| being minimum. The second Heaviside 
function in the nominator is used to eliminate the 
vectors of which initial distances are higher than σ/r. 
The same function also exists in the denominator for 
the same reason. 

2.7 The Maximal Lyapunov Exponent  

In the phase space, the distances between embedding  
vectors on attractor do not grow everywhere with the 
same rate. They may shrink locally. Therefore, the 
maximal Lyapunov exponent calculation will be the 

average of the local divergence rates over the whole 
embedding vectors. 
 The algorithm developed by Rosenstein et. al. 
(1993) was used to find the maximal Lyapunov 
exponent. This algorithm computes the local 
divergence rates of the state space distances over the 
whole time series data. The stretching factor S is 
found for different N values as in following 
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Where, ܺ௡బ  is an embedding vector on the 
attractor, ܺ௡ are the neighboring vectors within 

diameter ϵ and 
0Xnϑ  is the number of these 

neighbors. 
The first slope of the curve obtained by plotting 

S values for various N values on x-y coordinate 
system gives the maximal Lyapunov exponent. 

3 EXPERIMENTAL RESULTS 
AND DISCUSSION 

The profile of the subjects from which the TCD 
signals were obtained is given in the following table.  

Table 1. The profile of the subjects used in this study. 

 
Males Females 

Age 
Range 

Avg. 
Age 

Cerebral 
aneurysm 12 8 55-65 59.5±0.5 

Brain 
Hemorrhage  4 6 21-36 27.0±0.5 

Cerebral 
Oedema 11 11 3-40 25.0±0.5 

Brain Tumor 12 18 12-41 29.5±0.5 

Healthy 15 8 23-65 31.5±0.5 

Summary 54 51 3-65 35.0±0.5 

 The Iterative Amplitude Adjusted Fourier 
Transform (IAAFT) method is used to generate the 
surrogate data sets for each TCD signal. A sample 
surrogate data set for the TCD signal of a patient 
with cerebral aneurysm (Figure 1) is given in Figure 
2. It is not easy to visually distinguish the surrogate 
data sets from the original TCD signal, but the 
surrogates are created with the linear properties via 
Fourier transform. 
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Figure 1: The TCD signal of a patient with cerebral 
aneurysm. 

 

Figure 2: The surrogate time series generated for the TCD 
signal given in Figure 1. 

 In the following figure, it can be seen that the 
nonlinear cross-prediction error values for the TCD 
signals lie between pure deterministic (sinus signal) 
and random (Gaussian) time series. These values can 
be used as another feature set for the classification of 
the TCD signals. 

 

Figure 3: The non-linear prediction errors for sinus, 
Gaussian random and one for each TCD signals time 
series. 

 In the following figure, the recurrence-plots 
of the TCD signals belonging to different patient 
groups are given. As can be seen from the figures, 
each patient has a different structure within its 
recurrence-plot. The statistical quantitative values 
like REC, DET, ENT and TREND were calculated 
using the recurrence-plots of the TCD signals. These 
values constitute the other chaotic feature set 
 In the following figure, the space-time 
separation plots of the TCD signals belonging to 
different patient groups are given. In these plots, the 
first peak point which is close to the  

a)  

b)  

Figure 4: Recurrence plots of the TCD signals belonging 
to a patient of (a) Hemorrhage and (b) Healthy subject. 

 general height in the space-time separation 
point was used to identify the ideal dimension of 
Theiler window w. 

a)  

b)  

Figure 5: The space-time separation plot of the TCD 
signal with patient groups a) Oedema (w=50) b) Tumor 
(w=40). 

BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing

172



 The chaotic attractors embedded in 3-
dimensions for each patient group are given in the 
following figure. The first 300 points of TCD signals 
were used to draw the attractors in order to enhance 
the visuality. The time delay used to draw the 
attractors was 1. These chaotic attractor pictures can 
be used to extract another feature set for the TCD 
signals. 

a)  

b)  

Figure 6: The chaotic attractors of the TCD signals 
embedded in 3-dimensions with 1 time delay a) Healthy b) 
Oedema.  

 In the following figure, the correlation 
dimension estimation for the TCD time series of a 
patient with brain hemorrhage is given as an 
example. 

 
Figure 7: Correlation dimension estimation of a patient 
with brain hemorrhage.  

 For all of the chaotic features, we need time 
delay information which is obtained by mutual 
information method. According to this method, the 
first delay value τ at which time delayed mutual 
information takes the minimum is a good candidate 
for a reasonable time delay. In the following figure, 
the time delay estimation for the TCD signals with 
brain oedema is given. 

 
Figure 8. Time delay value estimation for the patients with 
brain oedema. 

 In the following figure, it is shown how the 
maximal Lyapunov is calculated for a patient with 
cerebral aneurism. 

 
Figure 9: Maximal Lyapunov exponent estimation for the 
TCD signal of a patient with cerebral aneurism. 

 In the following figure, the minimum 
embedding dimension estimation for the TCD 
signals with brain tumor is given. 

 
Figure 10: Minimum embedding dimension estimation for 
some of the patients with brain tumor.  
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4 CONCLUSIONS 

Besides the chaotic invariant measures such as 
correlation dimension and maximal Lyapunov 
exponent, some other feature sets which can be 
extracted with non-linear time series analysis may be 
used to further evaluate some of the brain vessel 
diseases. The chaotic invariant measures may be 
supported with these feature sets. These features 
alone or with chaotic measures together may be used 
to train a classifier. After the generalization, the 
classifier may be used to make automatic diagnosis 
of the brain diseases. 

The non-linear cross prediction errors of the 
TCD signals and the statistical quantitative values 
extracted from the recurrence plots can also be used 
to train various classifiers in order to make 
automated diagnosis of the brain vessel diseases. 
 The reconstructed 3-D chaotic attractor 
pictures can be used to extract another feature set for 
the TCD signals. 

REFERENCES 

Casdagli, M., 1997. Recurrence plots revisited. Physica D. 
108:12-44. 

Eckmann, J.P., Oliffson, K.S., Ruelle, D., 1987. 
Recurrence plots of dynamical systems. Europhys. 
Lett. 4(9): 973-977. 

Evans, D.H., McDicken, W.N., Skidmore R., Woodcock, 
J.P., 1989. Doppler Ultrasound: Physics, 
Instrumentation and Clinical Applications. Wiley, 
Chichester. 

Fraser, A. M., Swinney, H. L. 1986. Independent 
coordinates for strange attractors from mutual 
information, Phys. Rev. A 33: 1134. 

Guler, I., Hardalac, F., Barisci N., 2002. Application of 
FFT analyzed cardiac Doppler signals to fuzzy 
algorithm, Comp. Biol. Med. 32:435–444. 

Grassberger, P., Procaccia, I., 1983. Characterization of 
Strange Attractors. Physical Review Letters, 50:346-
349. 

Hegger, R., Kantz, H., Schreiber, T., 1999. Practical 
implementation of nonlinear time series methods: The 
TISEAN package. Chaos, 9: 413. 

Kennel, M. B. Brown, R., Abarbanel, H. D. I., 1992. 
Determining embedding dimension for phase-space 
reconstruction using a geometrical construction. 
Physics Rev. A. 45: 340-353. 

Keunen, R.W., Pijlman, H.C., Visee, H.F., Vliegen, J.H., 
Tavy, D.L., Stam, K.J., 1994. Dynamical chaos 
determines the variability of transcranial Doppler 
signals, Neurol. Res. 16: 353–358. 

Keunen, R.W., Vliegen, J.H., Stam, C.J., Tavy, D.L., 
1996. Nonlinear transcranial Doppler analysis 
demonstrates age-related changes of cerebral  

 hemodynamics, Ultrasound Med. Biol. 22:383–390. 
Kantz, H., 1994. A robust method to estimate the maximal 

Lyapunov exponent of a time series. Phys. Lett. A. 
185: 77-87. 

Kantz, H., Schreiber T., 2005. Nonlinear Time Series 
Analysis, Cambridge University Press. 

Ozturk, A., Arslan A., 2007. Classification of transcranial 
Doppler signals using their chaotic invariant 
measures, Computer Methods and Programs in 
Biomedicine, 86(2): 171-180. 

Ozturk A., Arslan A., Hardalac F., 2008. Comparison of 
neuro-fuzzy systems for classification of transcranial 
Doppler signals with their chaotic invariant measures, 
Expert Systems with Applications, 34(2): 1044-1055. 

Ozturk A., Arslan A., 2015. Neuro-fuzzy Classification of 
Transcranial Doppler Signals with Chaotic Meaures 
and Spectral Parameters, 3rd Science and Information 
Conference, 591-596. 

Provenzale, A., Smith, L. A., Vio, R., Murante, G., 1992. 
Distinguishing between low-dimensional dynamics 
and randomness in measured time series, Physica D 
58, 31. 

Schreiber, T., Schmitz, A. 1996. Improved surrogate data 
for nonlinearity tests, Phys. Rev. Lett. 77, 635. 

Schreiber, T., 1997. Detecting and analysing non-
stationarity in a time series with nonlinear cross-
predictions, Phys. Rev. Lett. 78:843. 

Serhatlioglu S., Hardalac F., Guler I., 2003. Classification 
of transcranial Doppler signals using artificial neural 
network, J. Med. Syst. 27:205–214. 

Sprott, J.C., 2002. Chaos and Time-Series Analysis, 
Oxford University Pres, New York. 

Rosenstein, M. T., Collins, J. J., De Luca, C. J., 1993. A 
practical method for calculating largest Lyapunov 
exponents from small data sets, Physica D 65,: 117. 

Theiler, J., 1990. Estimating fractal dimension. J. Opt. 
Soc. Amer. A 7, 1055-1073. 

Ubeyli E.D., Guler I., 2005. Adaptive neuro-fuzzy 
inference systems for analysis of internal carotid 
arterial Doppler signals, Comp. Biol. Med., 35: 687–
702. 

Visee, H.F., Keunen, R.W., Pijlman, H.C., Vliegen, J.H., 
Tavy, D.L., Stam, K.J., Giller, C.A., 1995. The 
physiological and clinical significance of nonlinear 
TCD waveform analysis in occlusive cerebrovascular 
disease, Neurol. Res. 17:384–388. 

Vliegen, J.H.R., Stam, C.J., Rombouts, S.A.R., Keunen 
R.W.M., 1996. Rejection of the ‘filtered noise’ 
hypothesis to explain the variability of transcranial 
Doppler signals: a comparison of original TCD data 
with Gaussian-scaled phase randomized surrogate 
data sets, Neurol. Res. 18: 19–24. 

Webber, C.L. Jr., Zbilut, J.P., 1994. Dynamical 
assessment of physiological systems and states using 
recurrence plot strategies. Journal of Applied 
Physiology. 76:965-973. 

Zbilut, J.P., Guiliani, A., Webber, C.L. Jr., 1998. 
Recurrence quantification analysis and principle 
components in the detection of short complex signals.  
Physics Letters A, 237:131-135. 

BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing

174


