
Exchanging Solutions for Information Systems Development
using a Model Pattern Perspective

Diagram Templates in the Context of the Mdarte Collaborative Evolution Process

Rodrigo Salvador Monteiro1, Geraldo Zimbrão2 and Jano Moreira de Souza2
1Computer Science Department, Universidade Federal Fluminense, Niterói, Brazil

2COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Keywords: Collaborative Design, Sharing Solutions, Code Generation, Model Driven Architecture, MDA, MDArte,
Model Patterns.

Abstract: Information Systems Development faces many recurrent issues that must be addressed in every project. A
lot of common requirements and features repeatedly appear on different projects challenging the
development team. Exchanging solutions and the expertise gained over the evaluation of such solutions
among projects can prevent the development teams from reinventing the wheel. The MDArte framework
has been used to develop information systems through the Model Driven Architecture approach, automating
the generation from models reaching around 80% of the application code. Most important is that the
MDArte framework turned out to be a common platform between the adherent projects used to share new
solutions and features. This paper focus on recurrent issues present at the modeling phase. We applied the
concept of Model Patterns in order to provide diagram templates. A set of diagram templates were designed,
implemented and evaluated by a volunteer project. The feedback was extremely positive and the proposed
approach proves to be very promising. This level of collaboration between different projects on one hand
accelerates the development and on the other hand prevents from neglecting important issues on information
systems development.

1 INTRODUCTION

When it comes to information systems development,
the development teams are flooded out with business
requirements, recommended practices, technological
requirements, organizational patterns and so forth.
Even worse, the time constraints for delivering full
productive systems are getting tighter in order to
cope with organizational needs. Immersed in all
these worries and hurry it is a natural behavior for
the development team to try to prune the
requirements as much as they can. Keep it simple
and stupid (kiss rule) in order to cope with the
deadlines. Although it is an understandable behavior
given the context, this approach leads to some
problems: (1) some non-functional requirements,
such as security issues, may be neglected; (2) some
desirable business requirements may not be
implemented due to the lack of time for designing a
proper solution; and (3) some mandatory business
requirements may consume too much time for

defining a solution from scratch. Most of the time,
when asking if someone has already been through
the issue you have in hand the answer is yes. This is
especially true if you are talking about how to use
the underlying technology or framework that will
support the development of your specific business
requirement. Furthermore, if you have not defined a
specific technology, library or framework yet, your
research will probably reveal a suitable one. The
main issue here is that, although it is a better
approach than building from scratch, it still does
take a considerable effort. It is not just a matter of
discovering what could help. You also have to check
compatibility with your environment setup, define
which specific version should be used, define how it
will be combined with everything else you are using
and so forth. Now, what if someone has already been
through all these steps in a development
environment similar to yours? If he/she is willing to
share the solution it would be directly applied to
your case. This is exactly what the adherent projects
of the MDArte framework (MDArte, 2015) have

640
Monteiro, R., Zimbrão, G. and Souza, J.
Exchanging Solutions for Information Systems Development using a Model Pattern Perspective - Diagram Templates in the Context of the Mdarte Collaborative Evolution Process.
DOI: 10.5220/0005690306400647
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 640-647
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

been doing and benefiting from the exchange of
solutions through what we call the collaborative
evolution process. If no one has been through your
case, you will have to follow the traditional way, but
if someone has gone through all the steps to reach a
solution and have shared it then it will be readily
available for use in your project. In this paper we
applied the concept of Model Patterns in order to
identify similar diagram structures. Diagram
templates can be provided in order to prevent
recurrent modeling tasks. This work also presents a
proof of concept for applying the proposed Model
Pattern approach in a MDA development
environment.

This paper is structured as follows: section 2
introduces the MDArte framework and the
underlying methodology; the collaborative evolution
process is depicted in section 3; the concept of
Model Patterns is described in section 4; section 5
and 6 discuss the use of Model Patterns respectively
in the context of the Collaborative Evolution Process
and in the context of the MDA transformation
procedures; a proof of concept for using Model
Patterns in practice is depicted in section 7; related
works are addressed in section 8 and section 9
concludes the paper along with some future work.

2 MDARTE

Model Driven Architecture (MDA) is a
methodology for information system development
based on values from Model Driven Development
(MDD, 2003). The OMG (OMG, 2015) released it in
2001, and its main goal is to formalize a
methodology on code generation that uses the
Unified Modeling Language (UML, 2005) and some
other industry standards to build abstraction layers
from model to code. These layers represent the main
idea behind the MDA: promoting the separation
between what is considered specific to or
independent of technology. Thus, the same model
could be used to generate the information system for
different platforms without too much additional
work. From the models, more than 80% of
application code can be automatically generated;
leaving around 20% to be written to fit the specific
platform needs (Guttman and Parodi, 2006). Based
on the fact that the generation covers almost all the
code, the development requires less specific
knowledge from developers and reduces both
development time and cost.

After the methodology was released by the
OMG, different organizations started migrating and

building code generation frameworks to work with
its concepts. One of the most widely known and
used MDA frameworks is the AndroMDA
(AndroMDA, 2015), an open source project that
deals with different target technologies. In Brazil,
the project was extended due to the Brazilian
Government’s need to standardize the development
of its information systems, resulting in the creation
of the MDArte framework. Today, it is an open
collaborative community involving public and
private sectors, from industry to academia. Besides
this, although both frameworks have been exploring
the generation of specific information systems, they
are still contributing to each other in order to
streamline code generation.

2.1 Working with the MDArte
Framework

The MDArte consists of a framework with a set of
cartridges that covers different application solutions.
Its cartridges are components responsible for
generating code for specific platforms: EJB,
Hibernate, Java, jBPM, JUnit, and Struts. Because of
its open community nature, the MDArte allows its
users to create their own cartridges or improve
existing ones. Those cartridges can be enabled or
disabled depending on the need of each project to be
generated, at any time. Fig. 1 illustrates how they are
coupled to the framework and the code generated.

Figure 1: The MDArte structure model.

The process starts by the transformation kernel
reading the UML model representing the
information system specifications. After that, the
kernel starts the activated cartridges triggered to
each UML elements from the model (i.e., elements
such as Class, Use Case, Activity and others). As a
result, each cartridge called by the kernel generates a
set of artifacts that can be split into two major
categories: (1) application’s background
infrastructure and (2) implementation points. These
implementation points represent places where
developers will actually write code in order to cope

Exchanging Solutions for Information Systems Development using a Model Pattern Perspective - Diagram Templates in the Context of the
Mdarte Collaborative Evolution Process

641

with the domain specific business rules or any other
customization needed. The artifacts within this
category are generated only once in order to prevent
the loss of manual changes. The artifacts within the
application’s background infrastructure category are
always rewritten over every model transformation.
This behavior allows the automatically embedding
of new features, by changing the specifications that
guide the model transformation process.

3 COLLABORATIVE
EVOLUTION PROCESS

The MDArte community is hosted on the Portal de
Software Público Brasileiro
(www.softwarepublico.gov.br) and it comprises
forums, wikis, sources, tutorials, releases, etc. It
serves as a central point intended to gather
everybody related somehow to the MDArte. Since
the beginning of its creation a clear motivation was
to go beyond regular or traditional collaboration.
This section presents the process that has been used
in order to evolve the MDArte framework
collaboratively. In a birds eye view, the MDArte
forums and adherents projects are monitored by the
MDArte core team in order to identify solutions
designed in one project that could be of interest for
others. Once a solution is identified, the project that
designed it is asked to share it with the whole
community. The MDArte core team analyses the
designed solution in order to remove specificities
from the application domain and thus generalizes it
in order to improve reusability. The generalized
solution is embedded into the MDArte cartridges
either by changing existing model transformation
procedures or by creating new ones. Finally, a new
MDArte release is published in order to make the
solution available for the whole community. The
collaborative evolution process is depicted in Fig. 2
and explained in the following.

The first step in the process is to identify
requirements or solutions of interest. Any
requirement that has a reasonable chance of
appearing again in other projects or a solution that
could be reused represents a candidate. It is
important to remark that sometimes only the
requirements expressing a need are present without
any solution. As the MDArte community is also
composed by academic institutions, these
requirements may reveal a real-world problem that
deserves a research investigation. This a very
important feature in the MDArte environment as it
serves as a source of real-world problems that can

feed and motivate academic work such as final
projects, thesis and so forth. In such cases, the proof
of concept prototype generated by the academic
work is the input for the next step.

Either if we have in hand a whole solution
provided by a project or a proof of concept prototype
provided by an academic work, the next step is to
generalize the solution in order to improve
reusability. The main concern here is either to turn
the proof of concept prototype into a complete
solution solving and removing some simplifications
typical for such prototypes, or turn the domain
specific solution provided by one project into a
generic solution. In both cases the goal is to come up
with a ready-to-use and reusable solution.

Figure 2: The Collaborative Evolution Process.

Following the process it is required to define if it
will be necessary to annotate the UML model in
order to trigger the generation of the solution. In
many cases, the application models expressed in
UML must indicate where the solution is to be
applied. As an example, when requesting to publish
a service component as a Web Service or to generate
an audit trail for an entity manipulated by the system
it is required to annotate the specific service
components or entities that must present the
expected behavior. However, sometimes no
annotation is required as it is the case when
introducing code to prevent script injection.
Actually, you want to introduce this behavior for the
whole set of components of your system and thus it
is not required to introduce any annotation at all.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

642

Next, the model transformation procedures must
be implemented in order to embed the solution into
the code being generated. If a specific annotation
was defined, the new procedures are linked to them
so that the procedure will be triggered only when the
defined annotation is encountered.

The whole new set of model transformation
procedures are tested with project examples from a
test workbench in order to detect problems or
incompatibility issues.

Finally, a new release of MDArte comprising the
new embedded solution is published and made
available for the whole community.

It is interesting to highlight that the more the
adherent projects benefit from the shared features
the more proactive they turn to be. Indeed
sometimes a project provides not only the solution
but also the model transformation procedures they
have built locally to implement it, which eases the
job for sharing it. Of course there are projects at
complete different levels, but we try to keep a
common motto: share what you have at the level you
feel confident. Just please do not keep it only to
yourself. It does not matter if it is just a requirement,
a full solution or the model transformation
procedures implementation.

4 MODEL PATTERNS

When it comes to information systems development,
recurrent issues can also be identified over the
models that represent the structure and behavior of
the systems. For example, if we look at the UML
diagrams describing a set of use cases for
performing basic maintenance operations over
different domain entities of a system it is expected
that many of such diagrams will look very similar.
Actually this similarity is promoted by some
development guidelines in order to provide a
standardized interface to the end user. Consider an
information system in an academic environment
responsible for managing information on courses,
students, etc. Fig. 3 presents an activity diagram
specifying the flow of a use case for querying
students.

The first activity allows for capturing input filter
parameters from the user. The second activity
performs the filter querying the backend database
and retrieves the students that conform to the filter
conditions. A list of students returned by the system
is presented to the user in the third activity. Finally,
the user can decide among three possible actions:
delete a student returned in the filter list, look into

the details of a specific student or ask to perform a
new filter restarting the use case. Now, if we look at
the use case flow for querying courses we will find a
very similar diagram structure. Beside the specific
filter parameters, which would be naturally different
from students to courses, it is expected that the same
activities, flow and actions would be present.
Indeed, in many development environments it is a
concern to guarantee that such standardization is
obeyed. Identifying recurrent diagram structures
leads to what we call Model Patterns. In other
words, Model Patterns can be defined as a set of
diagrams and their inner elements representing a
standardized behavior associated to higher level
application functionality. Model Patterns can be
viewed as templates, as they define at the same time
the structure and the places where specific
information should be inserted in order to derive
specific instances.

Figure 3: Activity diagram representing the query student
use case flow.

Exchanging Solutions for Information Systems Development using a Model Pattern Perspective - Diagram Templates in the Context of the
Mdarte Collaborative Evolution Process

643

5 MODEL PATTERNS IN THE
COLLABORATIVE
EVOLUTION PROCESS

As stated in the previous section, Model Patterns are
able to capture recurrent behavior representing it
through template diagrams. If we look back to the
Collaborative Evolution Process depicted in Fig. 2
we can consider a Model Pattern to be a Solution of
Interest. Once we agree to do so, we can ask the
adherent projects to identify recurrent diagram
structures over their application domains.
Furthermore, in a broader view it is possible to
identify cross-domain recurrent diagram structures.
In the first case, activity diagrams representing
CRUD (Create, Retrieve, Update and Delete) use
cases are representative examples. Regarding cross-
domain recurrent diagrams, we could identify
diagrams for performing login and administration
tasks, such as an administrator use case for resetting
a user password. If we provide Model Patterns to
address each one of the identified recurrent diagram
structures it will massively reduce the effort of
building diagrams. Furthermore, the automatically
produced diagrams will also be transformed to
platform-specific application code reducing the need
of manual coding.

In the two following sections, we depict the
general approach for embedding Model Patterns into
the MDA transformation procedures and present a
proof of concept implementing a specific Model
Pattern for CRUD activity diagrams.

6 MODEL PATTERNS IN THE
MDA TRANSFORMATION
PROCEDURES

The MDArte cartridges comprise model
transformations receiving models as input and
providing coding artifacts as output. Although,
nothing prevents us from taking models as input and
producing other models as output. Actually, this
conforms to the MDA approach which also
considers model to model transformations. Fig. 4
sketches the regular MDArte transformation which
deals with model to text transformations.

In order to embed Model Patterns into the MDA
transformation procedures we must provide
annotation elements, regarding the third step in the
Collaboration Evolution Process, which will trigger
the diagram templates associated with the desired

Model Pattern. The diagram templates will be able
to read the required information from the input
model for filling the specific information into the
templates in order to produce a specific diagram
instance. The diagrams produced by the template
execution should then be presented as a new input to
the MDA transformation procedures in order to
produce the final coding artifacts. Fig. 5 sketches the
steps described above.

Figure 4: Sketch of Model to Text transformations.

Figure 5: Sketch of Model to Model and Model to Text
transformations.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

644

7 PROOF OF CONCEPT: MODEL
PATTERN FOR CRUD
ACTIVITY DIAGRAMS

Most of the entities handled by an information
system must have use cases for performing basic
data maintenance operations, such as creating,
retrieving, updating and deleting instances. This set
of operations is commonly known by the acronym
CRUD. Consider a project using a Model Driven
approach applying activity diagrams in order to
specify the use case flows. The task of designing
activity diagrams for each set of CRUD use cases for
each entity of the system is tedious and time
consuming. Furthermore, the mechanical nature of
this task invariably leads to copy-and-paste errors
and when performed by different developers
normally compromise the established standards.

CRUD activity diagrams are, therefore, recurrent
diagram structures that could be represented by
Model Patterns templates. Once the solution of
interest has been identified, we must generalize the
solution in order to improve reusability. In this case,
it corresponds to design activity diagram templates
following some desired standard use case flow,
removing all information regarding a specific entity
and replacing it with annotations that will be
replaced latter in the process. This should be done
for all CRUD diagrams. Fig. 6 presents an activity
diagram template for updating instances of an entity.

Figure 6: Activity diagram template for the Update use
case flow.

Once the template is designed, we must evaluate
it in order to identify the nature of the missing
information. This information corresponds to the
data that must be provided in order to fill the
template parameters. A closer look at the template at
Fig. 6 reveals that the missing information
corresponds to the details of the domain entity that
will be handled by the CRUD. On the other side, it
should be possible to specify which domain entities
must have CRUD use cases. This leads us to the
need of defining model annotation in order to
specify which domain entities will trigger the
generation of CRUD diagrams. In this particular
case, we created a new stereotype named
<<Manageable>> which must be applied to the
desired domain entities. Fig. 7 shows an example of
a domain entity with the new stereotype applied.

Figure 7: Example of domain entity with the manageable
annotation.

Figure 8: Update diagram instance generated for the
Student class.

Exchanging Solutions for Information Systems Development using a Model Pattern Perspective - Diagram Templates in the Context of the
Mdarte Collaborative Evolution Process

645

The MDArte model transformation specifications
where evolved in order to link UML Classes with
the Manageable stereotype to the new designed
diagram templates. The result of applying the
template in Fig. 6 to the domain entity in Fig. 7 can
be seen in Fig. 8.

The same way, diagram templates for the
remaining CRUD operations were designed and
implemented. A new candidate release of MDArte
was distributed to a volunteer project. On one hand,
the project members’ feedback was extremely
positive, once that they could perceive in practice
gains of productivity. On the other hand, it turned
out to be a very promising approach, once that they
could identify a lot of new candidate features, such
as supporting relationships among entities. The new
features identified are being analyzed and will derive
new diagram templates in future releases.

8 RELATED WORK

Most of the researches regarding collaborative
environments seem to be focused on the
improvement of system development processes. The
work presented on Ochoa et al. (2010) has explored
the use of collaborative applications applied directly
to the Software Engineering environment, aiming to
improve its process. It introduces a collaborative
application that can be used by small teams to share
data related to Software Requirements. Targeting the
same environment, the work on Zanoni et al. (2011)
described a semi-automatic method to speed the
documentation during the development process and
allows the workgroup to have better visibility of the
source code being produced and its documentation.
Moreover, it is also possible to find significant
works in the area that uses Model Driven
Architecture (MDA), as described in Angelaccio and
DAmbrogio (2007), to promote collaborative
support between members of development
environments. Moreover, when taking in
consideration the works that target the final user, we
have Matera et al. (2003) as one of the references
related to model-driven approach for collaborative
web application. Besides, in Pinel et al. (2012) we
describe the use of MDA to embed collaborative
tools into information systems.

Our work differs from others as it explores the
advantages of the Model Driven Architecture to
share solutions among different projects. This way,
every project participating in the community may
benefit from all solutions made available by the
whole community. Moreover, no matter the specific

application domain of each individual projects they
are constantly challenged by recurrent issues that
appear in complete different contexts. This way,
even when the application domains are completely
different, they can still contribute to each other.

9 CONCLUSION

The task of information system’s development teams
are getting more challenging. Tight schedules and
rapidly changing requirements are increasingly
frequent. Providing the right tools for the
development team in order to face such challenges is
a critical issue. The use of new methodologies such
as the Model Driven Architecture approach is
gradually proving its value and helping development
teams to cope with their tasks. This paper presented
how a virtual community built around the MDArte
framework has been using MDA to exchange
solutions for recurrent requirements present on
information systems development. The adherent
projects collaborate with the MDArte framework
evolution providing from requirements to be
addressed to complete model transformation
procedures in order to enrich the capabilities of the
framework. By doing so, the whole community is
benefited. The experience over the last years has
shown that the more the project is benefited by the
framework the more it is willing to contribute with
new solutions. The major contribution of this paper
is to report this successful experience on reuse and
collaboration among projects with completely
different application domains. Such level of
collaboration is achieved by following what we
called collaboration evolution process. Through this
process, the projects can exchange and share
solutions by the evolution of the MDArte
framework. In this paper we focused on the use of
diagram templates aiming at preventing recurrent
modeling tasks. The increasing level of collaboration
serves as an evidence of the usability and usefulness
of the MDArte framework and the presented
approach. As future works we can list: report the
application of the model in real world information
systems developed so far; the need of proposing a
business model to support and sustain the
community in order to make it more independent
from the institutions that conceived it; promote a
tighter interaction between the adherent projects and
the Academia; and aggregate new academic
institutions in the community ecosystem.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

646

ACKNOWLEDGEMENTS

Authors of this paper would like to thank FAPERJ,
CAPES and CNPq for supporting part of this
research.

REFERENCES

MDD, Model-driven development, IEEE Software Special
Issue, S.J. Mellor, A.N. Clark, T. Futagami (eds.), vol
20, n. 5, September 2003.

UML, Object Management Group, Unified Modeling
Language (UML): Superstructure, version 2.0, August
2005.

Ochoa, S. F., Quispe, A, Vergara, A., and Pino, J. A.,
"Improving requirements engineering processes in
very small software enterprises through the use of a
collaborative application", in the 2010 14th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2010, pp.
116-121.

Zanoni, J. C., Ramos, M. P., Tacla, C. A, Sato, G. Y., and
Paraiso, E. C., "A semi-automatic source code
documentation method for small software
development teams," in Proceedings of the 2011 15th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2011, pp.
113-119.

Angelaccio, M., and DAmbrogio, A., "A model
transformation framework to boost productivity and
creativity in collaborative working environments," in
2007 International Conference on Collaborative
Computing: Networking, Applications and
Worksharing (CollaborateCom 2007), 2007, pp. 464-
472.

Matera, M., Maurino, A., Ceri, S., and Fraternali, P.,
"Model-driven design of collaborative Web
applications," Software Practice and Experience, vol.
33, no. 8, pp. 701-732, 2003.

Guttman, M., and Parodi, J., Real-Life MDA: Solving
Business Problems with Model Driven Architecture,
1st ed. Morgan Kaufmann, 2006, p. 224.

AndroMDA. URL: http://www.andromda.org. Last visit:
Nov 2015.

OMG, Object Management Group. URL:
http://www.omg.org. Last visit: Nov 2015.

MDArte. URL:
http://www.softwarepublico.gov.br/dotlmlclubs/mdart
e. Last visit: Nov 2015.

Pinel, R. E. A., Monteiro, R. S., Zimbrao, G., and Souza,
J. M.: “Collaborative support embedded in
information system through automatic code
generation.” In Proceedings of the 2012 IEEE 16th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2012, pp.
328-333.

Exchanging Solutions for Information Systems Development using a Model Pattern Perspective - Diagram Templates in the Context of the
Mdarte Collaborative Evolution Process

647

