
Formal MOF Metamodeling and Tool Support

Liliana Favre1,2 and Daniel Duarte1
1Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

Keywords: Model Driven Development, MDA, Metamodeling, MOF, Formal Specification, ANTLR, Test Driven
Development (TDD).

Abstract: Model Driven Development (MDD) has emerged as a new road to software development industrialization.
The most well-known realization of MDD is the Model Driven Architecture (MDA). The essence of MDA is
the metamodel MOF (Meta Object Facility) allowing interoperability of different kind of artifacts from
multiple technologies. It is important to formalize and reason about MOF metamodels properly. In this paper,
we propose a rigorous framework for reasoning about “correctness” of metamodels. Our main contribution is
the integration of MOF metalanguage with formal specification languages based on the algebraic formalism.
We define NEREUS, a formal metamodeling language, and processes for reasoning about MOF-like
metamodels such as ECORE metamodels. The paper describes a set of tools developed to make formal
metamodeling feasible in practice.

1 INTRODUCTION

In the last decade, Model Driven Development
(MDD) has emerged as a new road to the software
development industrialization (Brambilla et al.,
2012). MDD refers to a range of development
approaches based on the use of models as first class
entities. The most well-known is the Object
Management Group standard Model Driven
Architecture (MDA), i.e., MDA is a realization of
MDD (OMG, 2015) (MDA, 2014). Among the
benefits provided by MDA, it can be remarked the
improvement of interoperability, productivity, code
and processes quality and, software evolution costs.

The key idea behind MDA is to separate the
specification of the system functionality from its
implementation on specific platforms, increasing the
degree of automation and achieving interoperability
with multiple platforms. Any artifact in MDA is a
model and any MDA process is carried out as a
sequence of model transformations. Model and model
transformations need to be expressed in some
notation and the MDA standard to express them is the
MOF (Meta Object Facility) metamodel. It can be
considered the essence of MDA allowing different
kinds of artifacts from multiple technologies to be
used together in an interoperable way (MOF, 2015)
(MOF, 2006). MOF provides two metamodel: EMOF
(Essential MOF) and CMOF (Complete MOF). The

former favors simplicity of implementation over
expressiveness, while the latter is more expressive,
but more complex. Based on MOF transformations,
the MDA unifies every step of software development.

The Eclipse Modeling Framework (EMF) has
become the reference platform for developing MDD
tools. Particularly, its meta-metamodel ECORE is an
implementation of MOF (Steinberg et al., 2008).

It is important to formalize and reason about MOF
metamodels and we propose to exploit the strong
background achieved by the community of formal
methods. In previous work, we presented NEREUS,
a formal language for metamodeling that combines
the most successful features of algebraic languages
explored in different contexts (Favre, 2009). It can be
viewed as a concrete syntax for MOF extended with
additional properties expressed by axioms. Besides,
NEREUS is an intermediate notation that can be
integrated with property-oriented formal approaches.
Particularly, we integrate NEREUS with the
Common Algebraic Specification Language (CASL)
as target algebraic language (Bidoit and Mosses,
2004).

Our current contribution can be viewed as an
evolution of the previous results. We describe
practical and theoretical advances. From the
theoretical point of view, we describe the current
syntax of NEREUS and its semantics that was given
by translating it to CASL. On the practical point of

Favre, L. and Duarte, D.
Formal MOF Metamodeling and Tool Support.
DOI: 10.5220/0005689200990110
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 99-110
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

99

view, the current version of an analyzer of NEREUS
and a translator from NEREUS to CASL will be
described.

The rest of the paper has the following structure.
Section 2 introduces related work and Section 3
presents motivation remarking our contribution.
Section 4 introduces the features of the NEREUS
language. Section 5 describes tools developed to
assist in formal metamodeling processes. Finally, in
Section 6 we present conclusions.

2 RELATED WORK

We describe related work to formalization of MOF-
like metamodels.

The state of the art and emerging research
challenges for metamodeling are described in
(Sprinkle et al., 2010). Authors review approaches,
abstractions, and tools for metamodeling, evaluate
them with respect to their expressive power,
investigate what role(s) metamodels may play at run-
time and how semantics can be assigned to
metamodels and the domain-specific modeling
languages they could define. They also highlight
emerging challenges regarding the management of
complexity, consistency, and evolution of
metamodels, and how the semantics of metamodels
will impact on each of them.

The MetaModeling Language (MML) is a subset
of UML that was proposed as a core language to
define UML (Clark et al., 2001). It has a formal
semantic based on a small language called MML
calculus. It is an imperative object-oriented calculus,
which captures the essential operational features of
MML and is inspired in the calculus proposed by
(Cardelli and Abadi, 1991).

Varró and Pataricza (2003) presented a visual and
formally precise metamodeling (VPM) framework
that is capable of uniformly handling arbitrary models
from engineering and mathematical domains. They
propose a multilevel metamodeling technique with
precise static and dynamic semantics (based on a
refinement calculus and graph transformation) where
the structure and operational semantics of
mathematical models can be defined in a UML
notation.

A graph grammar to generate instances of
metamodels, one of the limitations of metamodel
implementations, for instance in Eclipse Modeling
Framework is described in (Erigh et al., 2006). An
instance generating graph grammars for creating
instances of a metamodel was introduced in (Karsten
et al., 2006).

The correspondence semantic between UML class
diagrams and Alloy is described in (Anastasakis et al.,
2007). Alloy is a modeling language based on first
order relational logic. Its analyzer is equipped with a
SAT-based engine that can be used to generate valid
system configurations or counterexamples to a
property.

Boronat and Messeguer (2010) describe an
algebraic, reflexive and executable framework for
metamodeling in MDD. The framework provides a
formal semantic of the notions of metamodel, model
and conformance relation between a model and a
metamodel. The semantic is integrated to EMF as a
plugin called MOMENT (MOdelmanageMENT).
The underlying formalism of MOMENT is MAUDE.
Bridges between technological spaces MAUDE and
EMF that provide interoperability were defined.

The problem of identifying, predicting and
evaluating the significance of the metamodel change
impact over the existing artifacts is described in
(Iovino, Pieroantonio and Malavolta, 2012). The
approach is based on the concept of megamodel. In
this context a megamodel is considered a model of
which at least some elements represent and /or refer
to models and metamodels. This approach allows
developers both, to establish relationships between
the metamodel and its related artifacts, and to
automatically identify those elements within the
various artifacts affected by the metamodel changes.

Barbier et al., (2013) describe how to construct
metamodels based on the constructive logic, along
with inherent proofs. The key contribution is a
generative approach to construct new metaclasses
from existing ones. Authors propose to define the
entire MOF in this way and implement it in Coq Proof
Assistant (https://coq.inria.fr/). They do not target
automatic transformation from Coq to MOF-like
metamodels.

An approach to the metamodel formalization
based on algebraic data types and constraint logic
programming (CLP) is described in (Jackson et al.,
2011). Proofs and test-case generation are encoded as
CLP satisfiability problems to automatically be
solved. Authors describe the framework Formula to
solve proofs to verify properties of the metamodels
that are viewed as instances of CLP. The Eclipse
plugin CD2FORMULA that implements in a way
aligned with MDA the translation of UML class
diagrams to FORMULA is described in (Perez and
Porres, 2014). The proposed framework can be used
to reason, validate and verify UML software designs
by checking correctness properties and generating
model instances by using a model exploration tool
based on Formula.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

100

3 MOTIVATION

MOF metamodels are specified by using restricted
UML class diagrams and annotations OCL. On the
one hand, UML has the advantage of visualizing
language constructs. On the other hand, OCL has a
denotational semantics that has been implemented in
tools allowing dynamic validation of snapshots.

It is important to formalize and reason about MOF
metamodels properly. Instantiating a metamodel
produces models, which in turn are instantiated.
Having errors in a metamodel leads to having errors
in its model instances. Besides, a model can be well-
formed but still be incorrect. A combination of MOF
metamodeling and formal specification can help
metadesigners to address these issues.

 A formal specification technique must at least
provide syntax, some semantics and an inference
system. The syntax defines the structure of the text of
a formal specification including properties that are
expressed as axioms (formulas of some logic). The
semantics describes the models linked to a given
specification; in the formal specification context, a
model is a mathematical object that defines behavior
of the realizations of the specification. The inference
system allows defining deductions that can be made
from a formal specification. These deductions allow
new formulas to be derived and checked. So, the
inference system can help to automate testing,
prototyping or verification.

Current metamodeling tools enable code
generation and detect invalid constraints however,
they do not find instances of the metalanguage
(models). This is a limitation for certain applications
related with MDA. For instance, to have enough valid
instances available is a requisite to test model
transformations.

Our main contribution is related to the integration
of specifications expressed in MOF metalanguage
with formal specification languages, based on the
algebraic formalism. We define the NEREUS
language, in particular. It is a formal notation closed
to MOF metamodels that allows metadesigners who
must manipulate metamodels to understand their
formal specification. The semantic of MOF
metamodels (that is specified in OCL) can be
enriched and refined by integrating it with NEREUS.
This integration facilitates proofs and test of models
and model transformations via the formal
specification of metamodels.

Figure 1: Our contribution: Typical flow with formal tools.

Figure 1 summarizes our approach. First, a
specification of a MOF metamodel is transformed
into a NEREUS specification. A system of
transformation rules to automatically transform MOF
into NEREUS was previously described (Favre,
2009). Next, the formal specification is analyzed by
using the analyzer of NEREUS and is modified
according to the results of the translation process with
the goal of obtaining a syntactically correct
specification. Subsequently, the NEREUS
specification is translated to a CASL specification by
using a NEREUS-to-CASL Translator. NEREUS
could be linked through CASL with Automatic
Theorem Provers (ATP) provided by the
Heterogeneous Tool SET (HETS) (Hets, 2015)
(Mossakowski et al., 2014). ATPs allow performing
a consistency analysis of the metamodel and
achieving an analyzed specification. The initial MOF
specification can be improved by reinjecting the
changes introduced in the latter NEREUS
specification.

Formal MOF Metamodeling and Tool Support

101

In this paper, the emphasis is given to the
NEREUS formalization of MOF metamodels and the
tool support for it.

4 FORMALIZING
METAMODELS

The MOF modeling concepts are “classes, which
model MOF meta-objects; associations, which model
binary relations between meta-objects; Data Types,
which model other data; and Packages, which
modularize the models” (MOF, 2006 pp. 2-6). OCL
can be used to attach consistency rules to metamodel
components.

The MOF model is self-describing, that is to say
it is formally defined using its own metamodeling
constructs. This provides a uniform semantic
treatment between artifacts that represent models and
metamodels in MDA.

In this section we provide a general background
of the NEREUS language that allows specifying
MOF and ECORE metamodels. NEREUS provides
modeling concepts that are supported by MOF and
the UML Infrastructure, including classes,
associations and packages and, mechanisms for
structuring them. First, we describe the syntax of
classes, associations and packages. Next, we present
examples of NEREUS specifications (section 4.2).
Finally, in 4.3 we analyze why to use NEREUS.

4.1 NEREUS Syntax

4.1.1 Defining Classes

Classes may declare types, attributes, operations and
axioms which are formulas of first-order logic. They
are structured by different kinds of relations:
importing, inheritance, subtyping and associations.
Next, we show the syntax of a class in NEREUS:

CLASS className [<parameterList>]
IMPORTS <importsList>
IS-SUBTYPE-OF <subtypeList>
INHERITS <inheritsList>
ASSOCIATES <associatesList>>
BASIC CONSTRUCTOR(S) <constructorList>
DEFERRED
TYPE(S) <sortList>
ATTRIBUTE(S) <attributeList>
OPERATION(S) <operationList>
EFFECTIVE
TYPE(S) <sortList>
ATTRIBUTE(S) <attributeList>
OPERATION(S) <operationList>

AXIOMS <varList>
<axiomList>
END-CLASS

NEREUS distinguishes variable parts in a
specification by means of explicit parameterization.
The elements of <parameterList> are pairs C1:C2
where C1 is the formal generic parameter constrained
by an existing class C2 (only subclasses of C2 will be
actual parameters). In particular, the binding C1:ANY
expresses a parameterization without restrictions and
can be denoted by C1. The IMPORTS clause
expresses client relations. The specification of the
new class is based on the imported specifications
declared in <importList> and their public operations
may be used in the new specification.

NEREUS distinguishes inheritance from
subtyping. Subtyping is like inheritance of behavior,
while inheritance relies on the module viewpoint of
classes. Inheritance is expressed in the INHERITS
clause; the specification of the class is built from the
union of the specifications of the classes appearing in
the <inheritsList>. Subtypings are declared in the IS-
SUBTYPE-OF clause. A notion closely related with
subtyping is polymorphism. NEREUS allows us to
define local instances of a class by the following
syntax ClassName [rename <bindingList>] where
the elements of <bindingList> can be pairs of
identifiers nameTo as nameFrom separated by
comma.

The BASIC CONSTRUCTORS clause lists the
operations that are basic constructors of the interest
type. NEREUS distinguishes deferred and effective
parts. The DEFERRED clause declares new types,
attributes or operations that are incompletely defined.
The EFFECTIVE clause declares types, attributes and
operations completely defined.

The ATTRIBUTES clause introduces, like MOF,
an attribute with the following properties: name, type,
multiplicity specification and “isDerived” flag.
OPERATIONS clause introduces the operation
signatures, the list of their arguments and result types.
An attribute or parameter may be optional-value,
single value, or multi-valued depending on its
multiplicity specification. The multiplicity syntax is
aligned with the MOF syntax.

 Operations can be declared as total or partial.
Partial functions must specify its domain by means of
the PRE clause that indicates what conditions the
function´s arguments must satisfy to belong to the
function’s domain. NEREUS allows us to specify
operation signatures in an incomplete way. NEREUS
supports higher-order operations (a function f is
higher-order if functional sorts appear in a parameter
sort or the result sort of f). In the context of OCL

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

102

Collection formalization, second-order operations are
required but NEREUS support higher-order.

In NEREUS it is possible to specify any of the
three levels of visibility for operations (public,
protected and private) and incomplete functionalities
denoted by underscore in the operation signature.

4.1.2 Defining Associations

NEREUS provides a component Association, a
taxonomy of constructor types, that classifies binary
associations according to kind (aggregation,
composition, ordinary association), degree (unary,
binary), navigability (unidirectional, bidirectional)
and, connectivity (one-to-one, one-to-many, many-
to-many) (Favre, 2009).

The component Association provides Relation
Schemes that can be used in the definition of concrete
associations by instantiating classes, roles, visibility,
and multiplicity. Associations can be restricted by
using static constraints in first order logic. New
associations can be defined by the ASSOCIATION
construction. The IS clause expresses the instantiation
of <typeConstructorName> with classes, roles,
visibility, and multiplicity. The CONSTRAINED-BY
clause allows the specification of static constraints in
first order logic. Next, we show the association
syntax:

ASSOCIATION <relationName>
IS <typeConstructorName>
[…:class1;…:class2;…:role1;…:role2;…:mult1;…:mult2;
…:visibility1;…:visibility2]
CONSTRAINED-BY <constraintList>
END-ASSOCIATION
Associations are defined in a class by means of the
ASSOCIATES clause:

CLASS className…
ASSOCIATES <<associationName>>

4.1.3 Defining Packages

The package is the mechanism provided by NEREUS
for grouping related model elements together in order
to manage complexity and facilitate reuse. Like MOF,
NEREUS provides mechanisms for metamodel
composition and reuse. The IMPORTING clause lists
the imported packages; the GENERALIZATION
clause lists the inherited packages; NESTING clause
lists the nested packages and CLUSTERING clause
list the clustering ones. Classes, associations and
packages can be <elements> of a package. The
package has the following NEREUS syntax:

PACKAGE packageName
IMPORTING <importsList>
GENERALIZATION <inheritsList>
NESTING <nestingList>
CLUSTERING <clusteringList>
<elements>
END-PACKAGE

4.1.4 Examples

Following, we show by examples the syntax of
NEREUS. First, we show partially a Collection
specification.

CLASS Collection [Elem]
BASIC CONSTRUCTORS create, add
DEFERRED
TYPE Collection
OPERATIONS
create :-> Collection;
add : Collection * Elem -> Collection;
count : Collection * Elem ->Integer;
collect : Collection * (Elem ->Elem1: ANY)-> Collection;
EFFECTIVE
OPERATIONS
isEmpty : Collection ->Boolean;
size: Collection ->Integer;
includes : Collection * Elem ->Boolean;
excludes : Collection * Elem ->Boolean;
includesAll : Collection * Collection ->Boolean;
excludesAll : Collection * Collection ->Boolean;
forAll : Collection * (Elem ->Boolean) -> Boolean;
exists : Collection * (Elem ->Boolean) ->Boolean;
select : Collection * (Elem ->Boolean) ->Collection;
reject : Collection * (Elem ->Boolean) ->Collection;
iterate : Collection *
((Elem * Acc: ANY)->Acc: ANY) *
(->Acc:ANY) ->Acc: ANY ;

AXIOMS c, c1: Collection; e,e1: Elem;
f: Elem ->Boolean;
g: Elem * Acc -> Acc;
base: -> Acc;
isEmpty(c) = (size(c) = 0);
iterate (create(), g, base()) = base();
iterate (add (c, e), g, base()) =
g(e, iterate(c, g, base()));
size(create()) = 0;
size(add(c, e)) = 1 + size(c);
includes(create(), e) = False;
includes(add(c, e), e1) =
if e = e1 then True else includes(c, e1) endif ;
forall(create(), f) = True;
forall(add(c, e), f) = f(e) and forAll(c, f);
exists (create(), f) = False;
exists (add (c, e), f) = f(e) or exists(c, f);
select(create(), f) = create();
select (add (c, e), f) = if f(e) then add(select(c, f), e) else
select(c, f) endif ;
…
END-CLASS

Formal MOF Metamodeling and Tool Support

103

Next, we show the formalization of a simplified
package: StateMachineMetamodel. Figure 2 depicts a
simplified diagram. A behavior StateMachine
comprises one or more Regions, each Region
containing a graph (possibly hierarchical) comprising
a set of Vertex interconnected by arcs representing
Transitions. StateMachine execution is triggered by
appropriate Event occurrences. OCL can be used to
constraint components of the metamodel.

PACKAGE StateDiagramMetamodel
IMPORTING TransitionKind, PseudoStateKind

CLASS StateMachine
IS-SUBTYPE-OF
UML::CommonBehaviors::BasicBehaviors::
Behavior
ASSOCIATES
 <<StateMachine-State>>
 <<StateMachine-PseudoState>>
 <<StateMachine-Region>>

AXIOMS a: <<StateMachine-PseudoState>>;
sm: StateMachine;

Figure 2: The StateMachine Metamodel.

/* The connection points of a state machine are
pseudostates of kind entry point or exit point*/
forAll (c) (get_connectionPoint (a, sm), [(kind(c) =
PseudoState:: entryPoint or (kind(c) = PseudoState::
exitPoint]);
END-CLASS

CLASS Region
IS-SUBTYPE-OF UML::Classes::Kernel::Namespace
ASSOCIATES
 <<State-Region>>
 <<StateMachine-Region>>
 <<Region-Vertex >>…
 AXIOMS a: <<Region-Vertex>>; r: Region;
/*A region can have at most one initial vertex*/
size (select (p) (select (v) (get_subvertex (a, r),
[oclIsKinfOf (v, PseudoState)])
[kind(p) = PseudoState::initial()])) <= 1;
END-CLASS

CLASS PseudoState
IMPORTS PseudoStateKind
IS-SUBTYPE-OF Vertex,
UML::Classes::Kernel::NameElement
ASSOCIATES
 <<Vertex-Transition_1>>
 <<Vertex-Transition_2>>
 <<StateMachine-PseudoState>> ...
EFFECTIVE
OPERATION
kind: PseudoState -> PseudoStateKind;
AXIOMS ps: PseudoState; a: Vertex-Transition-1
/*An initial vertex can have at most one ongoing
transition*/
kind (ps) = Pseudostate::initial implies
 size (get_outgoing (a,ps)) <=1;
END-CLASS

ASSOCIATION stateMachine-PseudoState
IS Composition_2 [StateMachine: class1; PseudoState:
class2; stateMachine: role1; conectionPoint: role2; 0..1:
mult1; *: mult2; +: visibility1;+: visibility2]
CONSTRAINED-BY StateMachine: subsets namespace,
PseudoState: subsets ownedMember
END-ASSOCIATION

ASSOCIATION Vertex-Transition-1
IS Bidirectional [Vertex: class1; transition: class2; source:
role1; outgoing: role2; 1: mult1; *: mult2; +: visibility1; +:
visibility2]
END-ASSOCIATION

ASSOCIATION Region-Vertex
IS Composition_2 [Region: class1; Vertex: class2;
container: role1; subvertex: role2; 0..1: mult1; *: mult2; +:
visibility1; +: visibility2]
END-ASSOCIATION
 ...
END-PACKAGE

Context Statemachine
conectionPoint->
 forAll (c | c.kind = Pseudostate::entryPoint or
 c.kind = Pseudostate::exitPoint)
Context PseudoState
 (self.kind = Pseudostate::initial) implies
 (self.outgoing->size <= 1)
Context Region
self.subvertex-> select (v| v.oclIsKindOf
(Pseudostate))- >
select (p: Pseudostate|p.kind = Pseudostate::initial)->
size () <= 1

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

104

4.2 NEREUS Semantic

The semantics of NEREUS was constructively given
by translation to CASL. CASL is an algebraic
language based on a critical selection of known
constructs such as subsorts, partial functions, first-
order logic, and structured and architectural
specifications.

We select CASL due to it is at the center of a
family of specification languages, is supported by
tools and facilitates interoperability of prototyping
and verification tools. CASL is linked to ATP through
HETS. It is worth considering that HETS is a parsing,
static analysis and proof management tool combining
various such tools for individual specification
languages, thus providing a tool for heterogeneous
multi-logic specification. HETS is based on a graph
of logics and languages (formalized as so-called
institutions), their tools, and their translations. This
provides a clean semantics of heterogeneous
specification, as well as a corresponding proof
calculus. However, CASL syntax is far from the way
of specifying of metadesigners.

We define a way to automatically translate each
NEREUS construct into CASL, including classes,
different kinds of relations and packages (Favre,
2009).

Next, we describe the most interesting problem in
the translation, how to translate associations due to
algebraic languages do not follow the MOF

structuring mechanisms. The graph structure of a
class diagram involves cycles such as those created
by bidirectional associations. However, the algebraic
specifications are structured hierarchically and cyclic
import structures between two specifications are
avoided. An association in UML can be viewed as a
local part of an object and this interpretation cannot
be mapped to classical algebraic specifications which
do not admit cyclic import relations. 1

We propose an algebraic specification that
considers associations belonging to the environment
in which an actual instance of the class is embedded.
Let Assoc be a bidirectional association between two
classes called Asource and Bsource the following
steps can be distinguished in the translation process:

Step1: Regroup the operations of classes Asource
and Bsource distinguishing operations local to
Asource, local to Bsource and, local to Asource and
Bsource and Assoc.

Step 2: Construct the specifications A and B from
Asource and Bsource where A and B include local
operations to Asource and Bsource respectively.

Step 3: Construct specifications Collection[A] and
Collection [B] by instantiating reusable schemes.

Step 4: Construct a specification Assoc (with A
and B) by instantiating reusable schemes in the
component Association.

Step 5: Construct the specification A&B by
extending Assoc with A, B and the operations local to
A, B and Assoc.

Figure 3: From NEREUS to CASL: Translating Associations.

Formal MOF Metamodeling and Tool Support

105

Another interesting problem is how to translate higher
order operations into first-order in CASL. The classes
that include higher order operations are translated
inside parameterized first-order specifications. The
main difference between higher order specifications
and parameterized ones is that, in the first approach,
several function-calls can be done with the same
specification and parameterized specifications
require the construction of several instantiations.

Next, we show the translation of the Collection
specification shown in 4.1.4 to CASL. Take into
account that there are as much functions f1, f2, f3, and
f4 as functions select, reject, forAll and exists. There
are as much functions base and g as functions iterate
too.

spec Operation [sort X] =
Z1 and Z2 and ... Zr
then
preds
f1j : X; | 1 ≤ j ≤ m
f2j : X ; | 1 ≤ j ≤ n
f3j : X; | 1 ≤ j ≤ k
f4j : X | 1 ≤ j ≤ l
ops
basej: -> Zj ; | 1 ≤ j ≤ r
gj: Zj x X -> Zj | 1 ≤ j ≤ r
end

spec Collection [sort elem]
given NATURAL-ARITHMETIC=
Operation [elem]
then
generated type
Collection ::= create | add (Collection ; elem)
preds
isEmpty : Collection;
includes: Collection * elem;
includesAll: Collection * Collection;
forAlli : Collection; |1 ≤ i ≤ k
existsi: Collection |1 ≤ i ≤ l
ops
size: Collection -> Nat;
iteratei: Collection -> Zj ; | 1≤ i ≤ r
selecti: Collection -> Collection; |1≤i ≤ m
rejecti: Collection -> Collection; |1≤i ≤ n
…
forall c, c1: Collection; e,e1: elem

 isEmpty (create)
 includes (add (c, e), e1) < = >

(e = e1) \/ includes(c,e1))
 includesAll (c, add (c1, e)) =

includes(c, e) /\ includesAll (c, c1)
 forAlli (add(c,e)) < = >

f3i (e) /\ forAlli (c) |1 ≤ i ≤ k
 existsi (add(c,e) < = >

f4i(e) \/ existsi (c) |1 ≤ i ≤ l
 selecti (create) = create
 f1i(e) = > selecti (add (c, e)) =

add (selecti (c), e) ; | 1 ≤ j ≤ m
 ¬ f1i (e) = >

 selecti (add (c, e)) = selecti (c) |1≤i ≤ m
 …

4.3 Why to Use NEREUS?

Such as MOF is a DSL (Domain Specific Language)
to define semi-formal metamodels, NEREUS can be
viewed as a DSL for defining formal metamodels.

Advantage of our approach is linked to pragmatic
aspects. NEREUS is a formal notation closed to core
concepts of MOF metamodels that allows
metadesigners who must manipulate metamodels to
understand their formal specification.

NEREUS is a metamodeling formal language
with strong abstraction from details of the classical
mathematical notation of algebraic languages. In
comparison to CASL (or other formal languages) it
may use metamodel constructs, be easier to use and
may automate significant issues of the metamodel
specification (e.g. association specification) making
the process of developing a formal specification
simpler and more understandable relative to “lower
level” formal languages. The mathematics of
NEREUS specification is easily learned and used
supporting other way of expressing metamodels
giving metadesigners a better understanding early on
them.

A metadesigner can reflect exactly the MOF
constructs in NEREUS delegating the translation of
them to a translator that automatize the process. For
instance NEREUS-to-CASL translator translates
automatically NEREUS associations into CASL
starting from the bases described in section 4.2.

Another important issue is that NEREUS, like
MOF, provides mechanisms to structure large
specifications in order to be legible and
understandable. NEREUS provides a set of features
which allow the modularization of specifications.
However, a minimum knowledge about algebraic
specifications or about the semantics of NEREUS
expressions is a requisite for metadesigners.

5 TOOLS FOR NEREUS

Our approach provides an appropriate set of tools to
make formal metamodeling feasible in practice. In
this section we describe them:

 A parser for NEREUS which includes lexical,
syntactic and semantic analysis. It was developed
in ANTLR 4 for Java. ANTLR (Another Tool for
Language Recognition) is a powerful parser

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

106

generator for reading, processing, executing, or
translating structured text or binary files. It is
widely used to build languages, tools, and
frameworks. From an additional grammar,
ANTLR generates a parser that can build and walk
parse trees (Parr, 2013).

 A translator of NEREUS specifications into
CASL specifications, developed in Java, that uses
tree walkers generated automatically by ANTLR
4. It can be used to visit their nodes to execute
application-specific code. It is worth considering
that ANTLR 4 allows writing grammars specially
designed for searching and processing syntax
trees “on the fly”, separating the parsing, search
and process of structures. The translator from
NEREUS to CASL is based on the constructive
semantic described previously in 4.2.

 An application that provides the ability to write
specifications NEREUS, integrating the analyzer
and translator. The application is an IDE-style
where the metadesigner is not only able to enter
NEREUS text but see the result of its syntactic
and semantic analysis. Another important output
is the CASL text.

With regard to the generation of Java code for
analyzers, it is sufficient to use ANTLR, however we
decide to integrate it with the ANTLRWorks
application that makes use of ANTLR and provides a
comfortable and appropriate interface for writing and
debugging grammars through an intuitive and easy
graphical interface.

Both the Java language and the tool ANTLR are
open source, providing the ability to use them without
major technological or economic constraints,
allowing access to details of their implementations.
The fact that ANTLR was implemented in Java
provides easy integration with the application
developed to achieve the final product that provides
reusable applications across multiple desktop
platforms, which are usually used by members of the
development or design teams.

The development process for generating the
lexical analyzer, parser and semantic analyzer was
TDD (Test Driven Development). It is a software
development process that relies on the repetition of
small steps: first the developer writes an (initially
failing) automated test case that defines a desired
improvement or new function, then produces the
minimum amount of code to pass that test, and finally
refactors the new code to acceptable standards.

Another aspect to note is that while the automatic
testing was based on the JUnit tool for Java, a proper
testing engine was implemented. In this engine, each
test is an example of NEREUS text and a set of

directives that indicate what are the results expected
from the analyzer.

Figure 4 shows two screenshot. The first one
shows the translation from NEREUS to CASL of a
simple class; the second one is a screenshot of the
main application screen depicting the main panels.

In the main part of the screen (Figure 4), we can
see the edition panel of NEREUS specifications. It
has the common characteristics of code editors, i.e.,
syntax highlighting, line numbers and highlighting of
the current line among others.

Immediately below, the panel of errors can be
seen. It indicates errors showing their type (lexical
errors, syntactic, semantic errors, or general errors),
its location in the text (line number and column) and
the corresponding messages. Additionally it is
possible to position the cursor on errors, making
double-click on them. This panel has also a checkbox
"Automatic Analysis" which, if marked, enables re-
analyze the text of each new edition of NEREUS
showing the updated results.

At the top of the application there is a menu bar
and a toolbar with buttons, both with general
functionality of NEREUS files (new file, existing
open, save). In particular, it included the option for
the classpath edition of the NEREUS specification,
which is located in the Options menu. Similar to the
way in which Java performs the search of classes, the
analyzer will seek NEREUS specifications (Classes,
packages, association, relation scheme) that are
referenced within the directories in the classpath.

On the right, there is a panel of multiple functions
with different tabs. They provide information about
the test result: general information (General), the
syntax tree (Syntax Tree), the tree of items
(NEREUS Tree), detail of the statements found
during the edition of a class (declarations that are only
available for classes and relation schemes) and CASL
text generated from the specification NEREUS
(CASL).

6 CONCLUSIONS

We have provided a metamodeling framework based
on MOF and the algebraic formalism that focus on
automatic proofs and tests. The central components
of our approach are the definition of the algebraic
language NEREUS and the development of tools for
formal metamodeling: the NEREUS analyzer and the
NEREUS-to-CASL translator.

With respect to NEREUS, our approach focuses
on interoperability of formal languages. Considering
that there exist many formal algebraic languages,

Formal MOF Metamodeling and Tool Support

107

Figure 4: The NEREUS Analyzer.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

108

NEREUS allows any number of source languages
such as different Domain Specific Language (DSLs)
and target languages (different formal language)
could be connected. Such as MOF is a DSL to define
semi-formal metamodels, NEREUS can be viewed as
a DSL for defining formal metamodels. Another
advantage of our approach is linked to pragmatic
aspects. NEREUS is a formal notation closed to MOF
metamodels.

With respect to the NEREUS-to-CASL translator,
due to the NEREUS semantics was given for
translation to CASL, we develop a translator that
could be integrated with HETS and different ATP.

Other work shows the integration of NEREUS
with MOF (Favre, 2009). MOF metamodels can be
transformed into NEREUS specifications to be
validate and verify and changes reinjected into MOF
metamodels. A system of transformation rules to
automatically transform MOF into NEREUS, was
previously described in (Favre, 2009). Our approach
allows translating MOF into NEREUS integrating
OCL with NEREUS and facilitating the translation
process from MOF.

Rather than requiring developers to manipulate
formal specifications, the idea is to provide rigorous
foundations for MOF-like metamodels in order to
develop tools that, on the one hand, take advantage of
the power of formal languages and, on the other hand,
allow developers directly manipulating MDA
models.

How to perform testing and verification on a large
scale is still a challenge. We also consider interesting
another challenge: to analyze issues related to
evolution models driven by metamodel evolution in
an incremental verification way.

REFERENCES

Anastasakis, K., Bordbar, B., Georg, G., Ray, I., 2007.
UML2Alloy: A Challenging Model Transformation, In
Proceedings Model Driven Engineering Languages
and Systems (Models 2007), Lecture Notes in Computer
Science 4735, Heidelberg: Springer-Verlag, pp. 436-450.

Barbier, P., Casteran, E., Cariou, E., le Goaer, O., 2013.
Adaptative software based on correct-by construction
metamodels, Chapter 13. In Progressions and
Innovations in Model Driven Software Engineering,
Hershey, PA: IGI Global, pp. 308-325.

Bidoit, M., Mosses, P., 2004. CASL User Manual
Introduction to Using the Common Algebraic
Specification Language. Lecture Notes in Computer
Science 2900, Heidelberg: Springer-Verlag.

Boronat, A., Meseguer, J., 2010. An algebraic semantics for
MOF. Formal Aspect of Computing 22, pp. 269-296.

Brambilla, M., Cabot, J., Wimmer, M., 2012. Model-Driven
Software Engineering in Practice. USA: Morgan &
Claypool.

Cardelli, L., Abadi, M., 1996. A Theory of Objects.
Heidelberg: Springer-Verlag.

Clark, T., Evans,A., Kent, S. 2001. The Metamodeling
Language Calculus: Foundation Semantic for UML, In
Proceedings of FASE 2001, pp.17-31.

Duarte, D., 2015. Development of Formal Metamodeling
Tools. System Engineer Thesis (L. Favre Supervisor).
Universidad Nacional del Centro de la Provincia de
Buenos Aires, Tandil, Argentina.

EMF, 2015. Eclipse Modeling Framework, www.eclipse.org
Erigh, H., Erigh, K., Prange,U., Taentzer, G., 2006.

Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. EATCS
Series. Springer-Verlag.

Karsten, E., Jochen, M., Kuster, G., Taentzer, J., 2006.
Generating Instance Models from MetaModels. In
Winkelmann FMOODS 2006, Lecture Notes in
Computer Science 4037, Heidelberg: Springer-Verlag,
pp. 156-170.

Favre, L., 2009. A Formal Foundation for Metamodeling,
In Ada-Europe 2009: Lecture Notes in Computer
Science 5570, Heidelberg: Springer-Verlag, pp. 177-191.

Hets, 2015. Heterogeneous Tool Set. www.informatik.uni
bremen.de/agbkb/forschung/formal_methods/CoFI/hets/

Iovino, L., Pieroantonio, A., Malavolta, I., 2012. On the
impact significance of metamodel evolution in MDE,
Journal of Object Technology 11 (3), pp.1-33.

Jackson,E.K., Levendovszky, T., Balasubramanian, D.,
2011. Reasoning about Metamodeling with Formal
Specifications and Automatic Proofs, In Proceedings
Model Driven Engineering Languages and Systems
Models 2011, Lecture Notes in Computer Science 6981,
Heidelberg: Springer-Verlag, pp. 653-667.

Jouault, F., Bézivin, J., 2006. KM3: a DSL for Metamodel
Specification, Formal Methods for Open Object-Based
Distributed Systems, Heidelberg: Springer-Verlag, pp.
171-185.

MDA, 2014. Object Management Group Model Driven
Architecture (MDA) MDA Guide rev. 2.0, OMG
Document ormsc/2014-06-01

MOF, 2015. OMG Meta Object Facility Core Specification,
version 2.5, Document formal/2015-06-05 http://www.
omg.org/spec/MOF/2.5

MOF, 2006. OMG Meta Object Facility (MOF) Core
Specification, version 1.0.

Mossakowski, T., Maeder, C., Codescu, M., 2014. Hets User
Guide, version 0.99, http://www.informatik.uni-
bremen.de/agbkb/forschung/formal_methods/CoFI/hets/

OCL, 2014. Omg Object Constraint Language (OCL),
version 2.4,” formal/2014-02-03, www.omg.org/ocl/ 2.4

Parr, T., 2013. The Definitive ANTLR 4 Reference (1st ed.),
Pragmatic Bookshelf.

OMG, 2015. Object Mangement Group, www.omg.org
Pérez, B., Porres, I., 2014. An Overall Framework for

Reasoning about UML/OCL Models Based on
Constraint Logic Programming and MDA.

Formal MOF Metamodeling and Tool Support

109

International Journal on Advances in Software, vol 7
no 1 & 2, http://www.iariajournals.org/software/

Steinberg, D., Budinsky, F., Paternostro , M., and Merks,
E., 2008. EMF: Eclipse Modeling Framework, 2 ed.
Addison-Wesley, Boston, MA

Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G. 2010.
Metamodelling: State of the Art and Research
Challenges. H. Giese et al. (Eds.), Lecture Notes in
Computer Science 6100, Heidelberg, Springer-Verlag,
pp. 57-76.

Varro, V., Pataricza, A., 2003. VPM: A visual, precise and
multilevelmetamodeling framework for describing
mathematical domains and UML. Journal of Software
and System Modeling, 2 (3), pp. 187-210.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

110

