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Abstract: Model Driven Development (MDD) has emerged as a new road to software development industrialization. 
The most well-known realization of MDD is the Model Driven Architecture (MDA). The essence of MDA is 
the metamodel MOF (Meta Object Facility) allowing interoperability of different kind of artifacts from 
multiple technologies. It is important to formalize and reason about MOF metamodels properly. In this paper, 
we propose a rigorous framework for reasoning about “correctness” of metamodels. Our main contribution is 
the integration of MOF metalanguage with formal specification languages based on the algebraic formalism. 
We define NEREUS, a formal metamodeling language, and processes for reasoning about MOF-like 
metamodels such as ECORE metamodels. The paper describes a set of tools developed to make formal 
metamodeling feasible in practice. 

1 INTRODUCTION 

In the last decade, Model Driven Development 
(MDD) has emerged as a new road to the software 
development industrialization (Brambilla et al., 
2012). MDD refers to a range of development 
approaches based on the use of models as first class 
entities. The most well-known is the Object 
Management Group standard Model Driven 
Architecture (MDA), i.e., MDA is a realization of 
MDD (OMG, 2015) (MDA, 2014). Among the 
benefits provided by MDA, it can be remarked the 
improvement of interoperability, productivity, code 
and processes quality and, software evolution costs. 

The key idea behind MDA is to separate the 
specification of the system functionality from its 
implementation on specific platforms, increasing the 
degree of automation and achieving interoperability 
with multiple platforms. Any artifact in MDA is a 
model and any MDA process is carried out as a 
sequence of model transformations. Model and model 
transformations need to be expressed in some 
notation and the MDA standard to express them is the 
MOF (Meta Object Facility) metamodel. It can be 
considered the essence of MDA allowing different 
kinds of artifacts from multiple technologies to be 
used together in an interoperable way (MOF, 2015) 
(MOF, 2006). MOF provides two metamodel: EMOF 
(Essential MOF) and CMOF (Complete MOF). The 

former favors simplicity of implementation over 
expressiveness, while the latter is more expressive, 
but more complex. Based on MOF transformations, 
the MDA unifies every step of software development. 

The Eclipse Modeling Framework (EMF) has 
become the reference platform for developing MDD 
tools. Particularly, its meta-metamodel ECORE is an 
implementation of MOF (Steinberg et al., 2008).  

It is important to formalize and reason about MOF 
metamodels and we propose to exploit the strong 
background achieved by the community of formal 
methods. In previous work, we presented NEREUS, 
a formal language for metamodeling that combines 
the most successful features of algebraic languages 
explored in different contexts (Favre, 2009). It can be 
viewed as a concrete syntax for MOF extended with 
additional properties expressed by axioms. Besides, 
NEREUS is an intermediate notation that can be 
integrated with property-oriented formal approaches. 
Particularly, we integrate NEREUS with the 
Common Algebraic Specification Language (CASL) 
as target algebraic language (Bidoit and Mosses, 
2004).  

Our current contribution can be viewed as an 
evolution of the previous results. We describe 
practical and theoretical advances. From the 
theoretical point of view, we describe the current 
syntax of NEREUS and its semantics that was given 
by translating it to CASL. On the practical point of 
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view, the current version of an analyzer of NEREUS 
and a translator from NEREUS to CASL will be 
described. 

The rest of the paper has the following structure. 
Section 2 introduces related work and Section 3 
presents motivation remarking our contribution. 
Section 4 introduces the features of the NEREUS 
language. Section 5 describes tools developed to 
assist in formal metamodeling processes. Finally, in 
Section 6 we present conclusions. 

2 RELATED WORK 

We describe related work to formalization of MOF-
like metamodels. 

The state of the art and emerging research 
challenges for metamodeling are described in 
(Sprinkle et al., 2010). Authors review approaches, 
abstractions, and tools for metamodeling, evaluate 
them with respect to their expressive power, 
investigate what role(s) metamodels may play at run-
time and how semantics can be assigned to 
metamodels and the domain-specific modeling 
languages they could define. They also highlight 
emerging challenges regarding the management of 
complexity, consistency, and evolution of 
metamodels, and how the semantics of metamodels 
will impact on each of them. 

The MetaModeling Language (MML) is a subset 
of UML that was proposed as a core language to 
define UML (Clark et al., 2001). It has a formal 
semantic based on a small language called MML 
calculus. It is an imperative object-oriented calculus, 
which captures the essential operational features of 
MML and is inspired in the calculus proposed by 
(Cardelli and Abadi, 1991). 

Varró and Pataricza (2003) presented a visual and 
formally precise metamodeling (VPM) framework 
that is capable of uniformly handling arbitrary models 
from engineering and mathematical domains. They 
propose a multilevel metamodeling technique with 
precise static and dynamic semantics (based on a 
refinement calculus and graph transformation) where 
the structure and operational semantics of 
mathematical models can be defined in a UML 
notation. 

A graph grammar to generate instances of 
metamodels, one of the limitations of metamodel 
implementations, for instance in Eclipse Modeling 
Framework is described in (Erigh et al., 2006). An 
instance generating graph grammars for creating 
instances of a metamodel was introduced in (Karsten 
et al., 2006).  

The correspondence semantic between UML class 
diagrams and Alloy is described in (Anastasakis et al., 
2007). Alloy is a modeling language based on first 
order relational logic. Its analyzer is equipped with a 
SAT-based engine that can be used to generate valid 
system configurations or counterexamples to a 
property. 

Boronat and Messeguer (2010) describe an 
algebraic, reflexive and executable framework for 
metamodeling in MDD. The framework provides a 
formal semantic of the notions of metamodel, model 
and conformance relation between a model and a 
metamodel. The semantic is integrated to EMF as a 
plugin called MOMENT (MOdelmanageMENT). 
The underlying formalism of MOMENT is MAUDE. 
Bridges between technological spaces MAUDE and 
EMF that provide interoperability were defined. 

The problem of identifying, predicting and 
evaluating the significance of the metamodel change 
impact over the existing artifacts is described in 
(Iovino, Pieroantonio and Malavolta, 2012). The 
approach is based on the concept of megamodel. In 
this context a megamodel is considered a model of 
which at least some elements represent and /or refer 
to models and metamodels. This approach allows 
developers both, to establish relationships between 
the metamodel and its related artifacts, and to 
automatically identify those elements within the 
various artifacts affected by the metamodel changes. 

Barbier et al., (2013) describe how to construct 
metamodels based on the constructive logic, along 
with inherent proofs. The key contribution is a 
generative approach to construct new metaclasses 
from existing ones. Authors propose to define the 
entire MOF in this way and implement it in Coq Proof 
Assistant (https://coq.inria.fr/). They do not target 
automatic transformation from Coq to MOF-like 
metamodels. 

An approach to the metamodel formalization 
based on algebraic data types and constraint logic 
programming (CLP) is described in (Jackson et al., 
2011). Proofs and test-case generation are encoded as 
CLP satisfiability problems to automatically be 
solved. Authors describe the framework Formula to 
solve proofs to verify properties of the metamodels 
that are viewed as instances of CLP. The Eclipse 
plugin CD2FORMULA that implements in a way 
aligned with MDA the translation of UML class 
diagrams to FORMULA is described in (Perez and 
Porres, 2014). The proposed framework can be used 
to reason, validate and verify UML software designs 
by checking correctness properties and generating 
model instances by using a model exploration tool 
based on Formula.  
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3 MOTIVATION 

MOF metamodels are specified by using restricted 
UML class diagrams and annotations OCL. On the 
one hand, UML has the advantage of visualizing 
language constructs. On the other hand, OCL has a 
denotational semantics that has been implemented in 
tools allowing dynamic validation of snapshots.  

It is important to formalize and reason about MOF 
metamodels properly. Instantiating a metamodel 
produces models, which in turn are instantiated. 
Having errors in a metamodel leads to having errors 
in its model instances. Besides, a model can be well-
formed but still be incorrect. A combination of MOF 
metamodeling and formal specification can help 
metadesigners to address these issues. 

 A formal specification technique must at least 
provide syntax, some semantics and an inference 
system. The syntax defines the structure of the text of 
a formal specification including properties that are 
expressed as axioms (formulas of some logic). The 
semantics describes the models linked to a given 
specification; in the formal specification context, a 
model is a mathematical object that defines behavior 
of the realizations of the specification. The inference 
system allows defining deductions that can be made 
from a formal specification. These deductions allow 
new formulas to be derived and checked. So, the 
inference system can help to automate testing, 
prototyping or verification. 

Current metamodeling tools enable code 
generation and detect invalid constraints however, 
they do not find instances of the metalanguage 
(models). This is a limitation for certain applications 
related with MDA. For instance, to have enough valid 
instances available is a requisite to test model 
transformations.  

Our main contribution is related to the integration 
of specifications expressed in MOF metalanguage 
with formal specification languages, based on the 
algebraic formalism. We define the NEREUS 
language, in particular. It is a formal notation closed 
to MOF metamodels that allows metadesigners who 
must manipulate metamodels to understand their 
formal specification. The semantic of MOF 
metamodels (that is specified in OCL) can be 
enriched and refined by integrating it with NEREUS. 
This integration facilitates proofs and test of models 
and model transformations via the formal 
specification of metamodels. 

 

Figure 1: Our contribution: Typical flow with formal tools. 

Figure 1 summarizes our approach. First, a 
specification of a MOF metamodel is transformed 
into a NEREUS specification. A system of 
transformation rules to automatically transform MOF 
into NEREUS was previously described (Favre, 
2009). Next, the formal specification is analyzed by 
using the analyzer of NEREUS and is modified 
according to the results of the translation process with 
the goal of obtaining a syntactically correct 
specification. Subsequently, the NEREUS 
specification is translated to a CASL specification by 
using a NEREUS-to-CASL Translator. NEREUS 
could be linked through CASL with Automatic 
Theorem Provers (ATP) provided by the 
Heterogeneous Tool SET (HETS) (Hets, 2015) 
(Mossakowski et al., 2014). ATPs allow performing 
a consistency analysis of the metamodel and 
achieving an analyzed specification. The initial MOF 
specification can be improved by reinjecting the 
changes introduced in the latter NEREUS 
specification. 
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In this paper, the emphasis is given to the 
NEREUS formalization of MOF metamodels and the 
tool support for it. 

4 FORMALIZING 
METAMODELS 

The MOF modeling concepts are “classes, which 
model MOF meta-objects; associations, which model 
binary relations between meta-objects; Data Types, 
which model other data; and Packages, which 
modularize the models” (MOF, 2006 pp. 2-6). OCL 
can be used to attach consistency rules to metamodel 
components.  

The MOF model is self-describing, that is to say 
it is formally defined using its own metamodeling 
constructs. This provides a uniform semantic 
treatment between artifacts that represent models and 
metamodels in MDA. 

In this section we provide a general background 
of the NEREUS language that allows specifying 
MOF and ECORE metamodels. NEREUS provides 
modeling concepts that are supported by MOF and 
the UML Infrastructure, including classes, 
associations and packages and, mechanisms for 
structuring them. First, we describe the syntax of 
classes, associations and packages. Next, we present 
examples of NEREUS specifications (section 4.2). 
Finally, in 4.3 we analyze why to use NEREUS. 

4.1 NEREUS Syntax 

4.1.1 Defining Classes 

Classes may declare types, attributes, operations and 
axioms which are formulas of first-order logic. They 
are structured by different kinds of relations: 
importing, inheritance, subtyping and associations. 
Next, we show the syntax of a class in NEREUS: 
 

CLASS className [<parameterList>] 
IMPORTS <importsList> 
IS-SUBTYPE-OF <subtypeList> 
INHERITS <inheritsList> 
ASSOCIATES <associatesList>> 
BASIC CONSTRUCTOR(S) <constructorList> 
DEFERRED 
TYPE(S) <sortList> 
ATTRIBUTE(S) <attributeList> 
OPERATION(S) <operationList> 
EFFECTIVE 
TYPE(S) <sortList> 
ATTRIBUTE(S) <attributeList> 
OPERATION(S) <operationList> 

AXIOMS <varList>  
<axiomList> 
END-CLASS 
 

NEREUS distinguishes variable parts in a 
specification by means of explicit parameterization. 
The elements of <parameterList> are pairs C1:C2 
where C1 is the formal generic parameter constrained 
by an existing class C2 (only subclasses of C2 will be 
actual parameters). In particular, the binding C1:ANY 
expresses a parameterization without restrictions and 
can be denoted by C1. The IMPORTS clause 
expresses client relations. The specification of the 
new class is based on the imported specifications 
declared in <importList> and their public operations 
may be used in the new specification. 

NEREUS distinguishes inheritance from 
subtyping. Subtyping is like inheritance of behavior, 
while inheritance relies on the module viewpoint of 
classes. Inheritance is expressed in the INHERITS 
clause; the specification of the class is built from the 
union of the specifications of the classes appearing in 
the <inheritsList>. Subtypings are declared in the IS-
SUBTYPE-OF clause. A notion closely related with 
subtyping is polymorphism. NEREUS allows us to 
define local instances of a class by the following 
syntax ClassName [rename <bindingList>] where 
the elements of <bindingList> can be pairs of 
identifiers nameTo as nameFrom separated by 
comma. 

The BASIC CONSTRUCTORS clause lists the 
operations that are basic constructors of the interest 
type. NEREUS distinguishes deferred and effective 
parts. The DEFERRED clause declares new types, 
attributes or operations that are incompletely defined. 
The EFFECTIVE clause declares types, attributes and 
operations completely defined.  

The ATTRIBUTES clause introduces, like MOF, 
an attribute with the following properties: name, type, 
multiplicity specification and “isDerived” flag. 
OPERATIONS clause introduces the operation 
signatures, the list of their arguments and result types. 
An attribute or parameter may be optional-value, 
single value, or multi-valued depending on its 
multiplicity specification. The multiplicity syntax is 
aligned with the MOF syntax. 

 Operations can be declared as total or partial. 
Partial functions must specify its domain by means of 
the PRE clause that indicates what conditions the 
function´s arguments must satisfy to belong to the 
function’s domain. NEREUS allows us to specify 
operation signatures in an incomplete way. NEREUS 
supports higher-order operations (a function f is 
higher-order if functional sorts appear in a parameter 
sort or the result sort of f). In the context of OCL 
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Collection formalization, second-order operations are 
required but NEREUS support higher-order.  

In NEREUS it is possible to specify any of the 
three levels of visibility for operations (public, 
protected and private) and incomplete functionalities 
denoted by underscore in the operation signature.  

4.1.2 Defining Associations 

NEREUS provides a component Association, a 
taxonomy of constructor types, that classifies binary 
associations according to kind (aggregation, 
composition, ordinary association), degree (unary, 
binary), navigability (unidirectional, bidirectional) 
and, connectivity (one-to-one, one-to-many, many-
to-many) (Favre, 2009). 

The component Association provides Relation 
Schemes that can be used in the definition of concrete 
associations by instantiating classes, roles, visibility, 
and multiplicity. Associations can be restricted by 
using static constraints in first order logic. New 
associations can be defined by the ASSOCIATION 
construction. The IS clause expresses the instantiation 
of <typeConstructorName> with classes, roles, 
visibility, and multiplicity. The CONSTRAINED-BY 
clause allows the specification of static constraints in 
first order logic. Next, we show the association 
syntax:  

 
ASSOCIATION <relationName> 
IS <typeConstructorName> 
[…:class1;…:class2;…:role1;…:role2;…:mult1;…:mult2;
…:visibility1;…:visibility2] 
CONSTRAINED-BY <constraintList> 
END-ASSOCIATION 
Associations are defined in a class by means of the 
ASSOCIATES clause: 
 

CLASS className… 
ASSOCIATES <<associationName>> 

4.1.3 Defining Packages 

The package is the mechanism provided by NEREUS 
for grouping related model elements together in order 
to manage complexity and facilitate reuse. Like MOF, 
NEREUS provides mechanisms for metamodel 
composition and reuse. The IMPORTING clause lists 
the imported packages; the GENERALIZATION 
clause lists the inherited packages; NESTING clause 
lists the nested packages and CLUSTERING clause 
list the clustering ones. Classes, associations and 
packages can be <elements> of a package. The 
package has the following NEREUS syntax: 
 

PACKAGE packageName 
IMPORTING <importsList> 
GENERALIZATION <inheritsList> 
NESTING <nestingList> 
CLUSTERING <clusteringList> 
<elements> 
END-PACKAGE 

4.1.4 Examples 

Following, we show by examples the syntax of 
NEREUS. First, we show partially a Collection 
specification.  
 

CLASS Collection [Elem] 
BASIC CONSTRUCTORS create, add 
DEFERRED 
TYPE Collection 
OPERATIONS 
create :-> Collection; 
add : Collection * Elem -> Collection; 
count : Collection * Elem ->Integer; 
collect : Collection * (Elem ->Elem1: ANY)-> Collection; 
EFFECTIVE 
OPERATIONS 
isEmpty : Collection ->Boolean; 
size: Collection ->Integer; 
includes : Collection * Elem ->Boolean; 
excludes : Collection * Elem ->Boolean; 
includesAll : Collection * Collection ->Boolean; 
excludesAll : Collection * Collection ->Boolean; 
forAll : Collection * (Elem ->Boolean) -> Boolean; 
exists : Collection * (Elem ->Boolean) ->Boolean; 
select : Collection * (Elem ->Boolean) ->Collection; 
reject : Collection * (Elem ->Boolean) ->Collection; 
iterate : Collection *  
((Elem * Acc: ANY )->Acc: ANY ) *  
(->Acc:ANY ) ->Acc: ANY ; 
 

AXIOMS c, c1: Collection; e,e1: Elem;  
f: Elem ->Boolean; 
g: Elem * Acc -> Acc;  
base: -> Acc; 
isEmpty(c) = (size(c) = 0); 
iterate (create(), g, base()) = base(); 
iterate (add (c, e), g, base()) =  
g(e, iterate(c, g, base())); 
size(create()) = 0; 
size(add(c, e)) = 1 + size(c); 
includes(create(), e) = False; 
includes(add(c, e), e1) =  
if e = e1 then True else includes(c, e1) endif ; 
forall(create(), f) = True; 
forall(add(c, e), f) = f(e) and forAll(c, f); 
exists (create(), f) = False; 
exists (add (c, e), f) = f(e) or exists(c, f); 
select(create(), f) = create(); 
select (add (c, e), f) = if f(e) then add(select(c, f), e) else 
select(c, f) endif ; 
… 
END-CLASS 
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Next, we show the formalization of a simplified 
package: StateMachineMetamodel. Figure 2 depicts a 
simplified diagram. A behavior StateMachine 
comprises one or more Regions, each Region 
containing a graph (possibly hierarchical) comprising 
a set of Vertex interconnected by arcs representing 
Transitions. StateMachine execution is triggered by 
appropriate Event occurrences. OCL can be used to 
constraint components of the metamodel.  
 

PACKAGE StateDiagramMetamodel 
IMPORTING TransitionKind, PseudoStateKind 
 

CLASS StateMachine 
IS-SUBTYPE-OF 
UML::CommonBehaviors::BasicBehaviors:: 
Behavior 
ASSOCIATES 
 <<StateMachine-State>> 
 <<StateMachine-PseudoState>> 
 <<StateMachine-Region>> 
 

AXIOMS a: <<StateMachine-PseudoState>>; 
sm: StateMachine; 

 

 

Figure 2: The StateMachine Metamodel. 

/* The connection points of a state machine are 
pseudostates of kind entry point or exit point*/ 
forAll ( c ) (get_connectionPoint (a, sm), [(kind( c ) = 
PseudoState:: entryPoint or (kind(c) = PseudoState:: 
exitPoint] ); 
END-CLASS 
 

CLASS Region 
IS-SUBTYPE-OF UML::Classes::Kernel::Namespace 
ASSOCIATES 
 <<State-Region>> 
 <<StateMachine-Region>> 
 <<Region-Vertex >>… 
 AXIOMS a: <<Region-Vertex>>; r: Region; 
/*A region can have at most one initial vertex*/ 
size (select (p) (select (v) (get_subvertex (a, r), 
[oclIsKinfOf (v, PseudoState)]) 
[kind(p) = PseudoState::initial()] ) ) <= 1; 
END-CLASS 
 

CLASS PseudoState 
IMPORTS PseudoStateKind 
IS-SUBTYPE-OF Vertex, 
UML::Classes::Kernel::NameElement 
ASSOCIATES 
 <<Vertex-Transition_1>> 
 <<Vertex-Transition_2>> 
 <<StateMachine-PseudoState>> ... 
EFFECTIVE 
OPERATION 
kind: PseudoState -> PseudoStateKind; 
AXIOMS ps: PseudoState; a: Vertex-Transition-1 
/*An initial vertex can have at most one ongoing 
transition*/ 
kind (ps) = Pseudostate::initial implies 
 size (get_outgoing (a,ps)) <=1; 
END-CLASS 
 

ASSOCIATION stateMachine-PseudoState 
IS Composition_2 [StateMachine: class1; PseudoState: 
class2; stateMachine: role1; conectionPoint: role2; 0..1: 
mult1; *: mult2; +: visibility1;+: visibility2] 
CONSTRAINED-BY StateMachine: subsets namespace, 
PseudoState: subsets ownedMember 
END-ASSOCIATION 
 

ASSOCIATION Vertex-Transition-1 
IS Bidirectional [Vertex: class1; transition: class2; source: 
role1; outgoing: role2; 1: mult1; *: mult2; +: visibility1; +: 
visibility2] 
END-ASSOCIATION 
 

ASSOCIATION Region-Vertex 
IS Composition_2 [Region: class1; Vertex: class2; 
container: role1; subvertex: role2; 0..1: mult1; *: mult2; +: 
visibility1; +: visibility2] 
END-ASSOCIATION 
 ... 
END-PACKAGE 
 

Context Statemachine 
conectionPoint-> 
 forAll (c | c.kind = Pseudostate::entryPoint or  
 c.kind = Pseudostate::exitPoint) 
Context PseudoState 
 (self.kind = Pseudostate::initial) implies  
 (self.outgoing->size <= 1) 
Context Region 
self.subvertex-> select (v| v.oclIsKindOf 
(Pseudostate))- >  
select (p: Pseudostate|p.kind = Pseudostate::initial)-> 
size () <= 1 
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4.2 NEREUS Semantic 

The semantics of NEREUS was constructively given 
by translation to CASL. CASL is an algebraic 
language based on a critical selection of known 
constructs such as subsorts, partial functions, first-
order logic, and structured and architectural 
specifications.  

We select CASL due to it is at the center of a 
family of specification languages, is supported by 
tools and facilitates interoperability of prototyping 
and verification tools. CASL is linked to ATP through 
HETS. It is worth considering that HETS is a parsing, 
static analysis and proof management tool combining 
various such tools for individual specification 
languages, thus providing a tool for heterogeneous 
multi-logic specification. HETS is based on a graph 
of logics and languages (formalized as so-called 
institutions), their tools, and their translations. This 
provides a clean semantics of heterogeneous 
specification, as well as a corresponding proof 
calculus. However, CASL syntax is far from the way 
of specifying of metadesigners.  

We define a way to automatically translate each 
NEREUS construct into CASL, including classes, 
different kinds of relations and packages (Favre, 
2009).  

Next, we describe the most interesting problem in 
the translation, how to translate associations due to 
algebraic languages do not follow the MOF 

structuring mechanisms. The graph structure of a 
class diagram involves cycles such as those created 
by bidirectional associations. However, the algebraic 
specifications are structured hierarchically and cyclic 
import structures between two specifications are 
avoided. An association in UML can be viewed as a 
local part of an object and this interpretation cannot 
be mapped to classical algebraic specifications which 
do not admit cyclic import relations. 1 

We propose an algebraic specification that 
considers associations belonging to the environment 
in which an actual instance of the class is embedded. 
Let Assoc be a bidirectional association between two 
classes called Asource and Bsource the following 
steps can be distinguished in the translation process: 

Step1: Regroup the operations of classes Asource 
and Bsource distinguishing operations local to 
Asource, local to Bsource and, local to Asource and 
Bsource and Assoc.  

Step 2: Construct the specifications A and B from 
Asource and Bsource where A and B include local 
operations to Asource and Bsource respectively. 

Step 3: Construct specifications Collection[A] and 
Collection [B] by instantiating reusable schemes. 

Step 4: Construct a specification Assoc (with A 
and B) by instantiating reusable schemes in the 
component Association. 

Step 5: Construct the specification A&B by 
extending Assoc with A, B and the operations local to 
A, B and Assoc.

 

Figure 3: From NEREUS to CASL: Translating Associations. 
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Another interesting problem is how to translate higher 
order operations into first-order in CASL. The classes 
that include higher order operations are translated 
inside parameterized first-order specifications. The 
main difference between higher order specifications 
and parameterized ones is that, in the first approach, 
several function-calls can be done with the same 
specification and parameterized specifications 
require the construction of several instantiations. 

Next, we show the translation of the Collection 
specification shown in 4.1.4 to CASL. Take into 
account that there are as much functions f1, f2, f3, and 
f4 as functions select, reject, forAll and exists. There 
are as much functions base and g as functions iterate 
too. 

 

spec Operation [ sort X] =  
Z1 and Z2 and ... Zr  
then 
preds 
f1j : X; | 1 ≤ j ≤ m 
f2j : X ; | 1 ≤ j ≤ n 
f3j : X; | 1 ≤ j ≤ k 
f4j : X | 1 ≤ j ≤ l 
ops 
basej: -> Zj ; | 1 ≤ j ≤ r 
gj: Zj x X -> Zj | 1 ≤ j ≤ r 
end 
 

spec Collection [sort elem]  
given NATURAL-ARITHMETIC=  
Operation [elem] 
then 
generated type  
Collection ::= create | add (Collection ; elem) 
preds 
isEmpty : Collection; 
includes: Collection * elem; 
includesAll: Collection * Collection; 
forAlli : Collection; |1 ≤ i ≤ k 
existsi: Collection |1 ≤ i ≤ l 
ops 
size: Collection -> Nat; 
iteratei: Collection -> Zj ; | 1≤ i ≤ r 
selecti: Collection -> Collection; |1≤i ≤ m 
rejecti: Collection -> Collection; |1≤i ≤ n 
… 
forall c, c1: Collection; e,e1: elem 

 isEmpty (create)  
 includes (add (c, e), e1) < = >  

(e = e1) \/ includes(c,e1)) 
 includesAll (c, add (c1, e)) =  

includes(c, e) /\ includesAll (c, c1) 
 forAlli (add(c,e)) < = >  

f3i (e) /\ forAlli ( c ) |1 ≤ i ≤ k 
 existsi (add(c,e) < = > 

f4i(e ) \/ existsi ( c) |1 ≤ i ≤ l 
 selecti (create) = create 
 f1i(e) = > selecti (add (c, e)) =  

add ( selecti (c), e) ; | 1 ≤ j ≤ m 
 ¬ f1i (e) = > 

 selecti (add (c, e)) = selecti (c) |1≤i ≤ m 
 … 

4.3 Why to Use NEREUS? 

Such as MOF is a DSL (Domain Specific Language) 
to define semi-formal metamodels, NEREUS can be 
viewed as a DSL for defining formal metamodels. 

Advantage of our approach is linked to pragmatic 
aspects. NEREUS is a formal notation closed to core 
concepts of MOF metamodels that allows 
metadesigners who must manipulate metamodels to 
understand their formal specification.  

NEREUS is a metamodeling formal language 
with strong abstraction from details of the classical 
mathematical notation of algebraic languages. In 
comparison to CASL (or other formal languages) it 
may use metamodel constructs, be easier to use and 
may automate significant issues of the metamodel 
specification (e.g. association specification) making 
the process of developing a formal specification 
simpler and more understandable relative to “lower 
level” formal languages. The mathematics of 
NEREUS specification is easily learned and used 
supporting other way of expressing metamodels 
giving metadesigners a better understanding early on 
them.  

A metadesigner can reflect exactly the MOF 
constructs in NEREUS delegating the translation of 
them to a translator that automatize the process. For 
instance NEREUS-to-CASL translator translates 
automatically NEREUS associations into CASL 
starting from the bases described in section 4.2. 

Another important issue is that NEREUS, like 
MOF, provides mechanisms to structure large 
specifications in order to be legible and 
understandable. NEREUS provides a set of features 
which allow the modularization of specifications. 
However, a minimum knowledge about algebraic 
specifications or about the semantics of NEREUS 
expressions is a requisite for metadesigners. 

5 TOOLS FOR NEREUS 

Our approach provides an appropriate set of tools to 
make formal metamodeling feasible in practice. In 
this section we describe them:  

 A parser for NEREUS which includes lexical, 
syntactic and semantic analysis. It was developed 
in ANTLR 4 for Java. ANTLR (Another Tool for 
Language Recognition) is a powerful parser 
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generator for reading, processing, executing, or 
translating structured text or binary files. It is 
widely used to build languages, tools, and 
frameworks. From an additional grammar, 
ANTLR generates a parser that can build and walk 
parse trees (Parr, 2013). 

 A translator of NEREUS specifications into 
CASL specifications, developed in Java, that uses 
tree walkers generated automatically by ANTLR 
4. It can be used to visit their nodes to execute 
application-specific code. It is worth considering 
that ANTLR 4 allows writing grammars specially 
designed for searching and processing syntax 
trees “on the fly”, separating the parsing, search 
and process of structures. The translator from 
NEREUS to CASL is based on the constructive 
semantic described previously in 4.2. 

 An application that provides the ability to write 
specifications NEREUS, integrating the analyzer 
and translator. The application is an IDE-style 
where the metadesigner is not only able to enter 
NEREUS text but see the result of its syntactic 
and semantic analysis. Another important output 
is the CASL text. 

 

With regard to the generation of Java code for 
analyzers, it is sufficient to use ANTLR, however we 
decide to integrate it with the ANTLRWorks 
application that makes use of ANTLR and provides a 
comfortable and appropriate interface for writing and 
debugging grammars through an intuitive and easy 
graphical interface. 

Both the Java language and the tool ANTLR are 
open source, providing the ability to use them without 
major technological or economic constraints, 
allowing access to details of their implementations. 
The fact that ANTLR was implemented in Java 
provides easy integration with the application 
developed to achieve the final product that provides 
reusable applications across multiple desktop 
platforms, which are usually used by members of the 
development or design teams. 

The development process for generating the 
lexical analyzer, parser and semantic analyzer was 
TDD (Test Driven Development). It is a software 
development process that relies on the repetition of 
small steps: first the developer writes an (initially 
failing) automated test case that defines a desired 
improvement or new function, then produces the 
minimum amount of code to pass that test, and finally 
refactors the new code to acceptable standards. 

Another aspect to note is that while the automatic 
testing was based on the JUnit tool for Java, a proper 
testing engine was implemented. In this engine, each 
test is an example of NEREUS text and a set of 

directives that indicate what are the results expected 
from the analyzer. 

Figure 4 shows two screenshot. The first one 
shows the translation from NEREUS to CASL of a 
simple class; the second one is a screenshot of the 
main application screen depicting the main panels.  

In the main part of the screen (Figure 4), we can 
see the edition panel of NEREUS specifications. It 
has the common characteristics of code editors, i.e., 
syntax highlighting, line numbers and highlighting of 
the current line among others.  

Immediately below, the panel of errors can be 
seen. It indicates errors showing their type (lexical 
errors, syntactic, semantic errors, or general errors), 
its location in the text (line number and column) and 
the corresponding messages. Additionally it is 
possible to position the cursor on errors, making 
double-click on them. This panel has also a checkbox 
"Automatic Analysis" which, if marked, enables re-
analyze the text of each new edition of NEREUS 
showing the updated results.  

At the top of the application there is a menu bar 
and a toolbar with buttons, both with general 
functionality of NEREUS files (new file, existing 
open, save). In particular, it included the option for 
the classpath edition of the NEREUS specification, 
which is located in the Options menu. Similar to the 
way in which Java performs the search of classes, the 
analyzer will seek NEREUS specifications (Classes, 
packages, association, relation scheme) that are 
referenced within the directories in the classpath. 

On the right, there is a panel of multiple functions 
with different tabs. They provide information about 
the test result: general information (General), the 
syntax tree (Syntax Tree ), the tree of items 
(NEREUS Tree), detail of the statements found 
during the edition of a class (declarations that are only 
available for classes and relation schemes) and CASL 
text generated from the specification NEREUS 
(CASL). 

6 CONCLUSIONS 

We have provided a metamodeling framework based 
on MOF and the algebraic formalism that focus on 
automatic proofs and tests. The central components 
of our approach are the definition of the algebraic 
language NEREUS and the development of tools for 
formal metamodeling: the NEREUS analyzer and the 
NEREUS-to-CASL translator. 

With respect to NEREUS, our approach focuses 
on interoperability of formal languages. Considering 
that there exist many formal algebraic languages, 
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Figure 4: The NEREUS Analyzer. 
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NEREUS allows any number of source languages 
such as different Domain Specific Language (DSLs) 
and target languages (different formal language) 
could be connected. Such as MOF is a DSL to define 
semi-formal metamodels, NEREUS can be viewed as 
a DSL for defining formal metamodels. Another 
advantage of our approach is linked to pragmatic 
aspects. NEREUS is a formal notation closed to MOF 
metamodels.  

With respect to the NEREUS-to-CASL translator, 
due to the NEREUS semantics was given for 
translation to CASL, we develop a translator that 
could be integrated with HETS and different ATP.  

Other work shows the integration of NEREUS 
with MOF (Favre, 2009). MOF metamodels can be 
transformed into NEREUS specifications to be 
validate and verify and changes reinjected into MOF 
metamodels. A system of transformation rules to 
automatically transform MOF into NEREUS, was 
previously described in (Favre, 2009). Our approach 
allows translating MOF into NEREUS integrating 
OCL with NEREUS and facilitating the translation 
process from MOF. 

Rather than requiring developers to manipulate 
formal specifications, the idea is to provide rigorous 
foundations for MOF-like metamodels in order to 
develop tools that, on the one hand, take advantage of 
the power of formal languages and, on the other hand, 
allow developers directly manipulating MDA 
models.  

How to perform testing and verification on a large 
scale is still a challenge. We also consider interesting 
another challenge: to analyze issues related to 
evolution models driven by metamodel evolution in 
an incremental verification way. 
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