
An Empirical Study on the Impact of Scrumban on Geographically
Distributed Software Development

Ahmad Banijamali, Research Dawadi, Muhammad Ovais Ahmad, Jouni Similä,
 Markku Oivo and Kari Liukkunen

Department of Information Processing Science, University of Oulu, Oulu, Finland

Keywords: Scrumban, Agile, Lean, Kanban, Distributed Software Projects, Coordination, Software Factory.

Abstract: Coordination in software projects is a challenge, particularly when it comes to distributed software
development (DSD). Agile software development is a well-known paradigm for improving software
development; however, there is little understanding of its impact on DSD projects. This paper describes an
empirical study conducted within two Software Factory settings in Finland and Italy to investigate how
Scrumban can impact coordination in geographically distributed software development. It provides the results
from a project case that applied Scrumban to develop a web-based application for Time-banking. This study
shows that aspects of Scrumban, such as iterative development, enhanced visibility, and limited work-in-
progress, would alleviate the challenges of leveraging resources, synchronization between distributed sites,
communication, and culture. It also explains that technical and security issues in the coordination of
distributed projects may demand for solutions other than Scrumban.

1 INTRODUCTION

Schwaber and Sutherland (2012) argue that Agile
projects are successful in the rate of 42% of cases,
which is considerably more than what has been
achieved with waterfall model (14%). Agile methods
are iterative and incremental, in that collaboration
between self-organizing cross-functional teams
provides requirements and solutions (Alam and
Chandra, 2014). We have selected Scrum for this
study, as it is the most frequently used Agile method
in software development (Rodriguez et al., 2012).

On the other hand, Kanban has not been widely
adopted in software development (Mahnic, 2014). In
2004, Kanban entered into the Agile realm when
David Anderson introduced it in practice while
assisting a software development team at Microsoft
(Ahmad et al., 2013). The high expectations for
Kanban are the result of its adaptability toward
changes in requirements, the visualization of project
processes, and its role in increasing communication
and cooperation among team members (Kniberg and
skarin, 2010).

There seems to be a concern regarding the
combination of Kanban and Agile practices.
Scrumban (Scrum and Kanban) applies Scrum as a

prescriptive method, while it encourages process
improvements through Kanban to allow projects to
continuously improve their processes (Khan, 2014).
According to Ladas (2009), Scrumban is appropriate
for teams that are already using Scrum.

Scrum does not consider the organization as a
whole during its implementation (Rodriguez et al.,
2014) and has limitations, such as lack of work
visibility and changing task priorities (Tripathi et al.,
2015). These limitations can be mitigated by using
Kanban alongside Scrum. Scrumban thus inhibits the
characteristic to embrace change and help to establish
better relationships between business and information
technology departments (Auerbach and McCarthy,
2014).

Geographically distributed teams with poorly
planned coordination often end up with unmatched
deadlines, costs overrun, and even cancelled projects
(Smith et al., 2005). There are additional challenges
that can lead to complexities with respect to location,
time, culture, and language in distributed software
development (DSD) (Gupta and Fernandez, 2011).
The idea of utilizing manpower from different
locations is tempting, but it creates excessive
coordination tasks in projects. It needs to be ensured
that everyone has clear idea of the project goals and

Banijamali, A., Dawadi, R., Ahmad, M., Similä, J., Oivo, M. and Liukkunen, K.
An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development.
DOI: 10.5220/0005686405670577
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 567-577
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

567

is committed to achieve them.
Šmite et al. (2010) discuss the concept of applying

Agile methodologies in the context of DSD. They
compare the characteristics of Agile and DSD and
argue that communication in Agile projects is
informal, face-to-face, and synchronous, while DSD
projects require formal, computer-mediated, and
often asynchronous communication. Moreover, Agile
projects apply change-driven and self-managed
coordination and light-weight control; however, DSD
settings need plan-driven and standardized
coordination among sites, which is achieved through
several command and controls. Despite their opposite
characteristics, the combination of Agile and
distributed development is of high interest to
companies (Šmite et al., 2010).

Geographically distributed development, in itself,
is a vague term because there can be different types
of distributed teams based on the time difference
between the involved teams (Carmel and Espinosa,
2011). Two configurations of distributed teams that
can be taken into consideration are North-South and
East-West. North-South distributed teams are a
combination in which teams do not have a
considerable difference in time zones, while the East-
West configuration involves a significant time zone
difference (Carmel and Espinosa, 2011). Our
investigated software factories (described in section
3.1) were distributed from the north to south of the
Europe; hence the East-West setting is beyond the
scope of this research.

According to Šmite et al. (2010), there is limited
research and understanding about the application of
Agile methodologies in DSD. In addition, Scrumban
is a new development approach in the software
engineering domain, and existing literature provides
little information on Scrumban’s impact on DSD
projects. Increasing interest in globally distributed
software development practices has motivated us to
investigate the following question: “What is the
impact of Scrumban methodology on geographically
distributed software development projects?” As
coordination among developers is the critical issue
within those environments, we have mainly discussed
Scrumban from this perspective.

The remainder of this paper is structured as
follows: Chapter 2 presents an overview of previous
research on Scrumban and its impact on software
project environments. Further, it elaborates
geographically distributed software development.
Chapter 3 introduces the Software Factory settings
and project case used for this research, the project
coordination model, and the applied research
approach. Chapter 4 presents findings of our study,

the limitations, and direction for future studies.
Chapter 5 concludes the paper and highlights the
main contribution of our work.

2 RELATED WORKS

This section summarizes the literature with respect to
the Scrumban and DSD practices.

2.1 Scrumban

Scrum is an incremental Agile software development
methodology. It operates through a series of iterations
that require continuous planning, defined roles, and
project artefacts (Schwaber and Beedle, 2002;
Schwaber, 2004). Scrum is the most frequently
applied Agile software development method
(Rodriguez et al., 2012) to achieve small but
continuous deliverables. It facilitates regular
feedback after each iterative development process,
called a “sprint” (Nikitina and Kajko-Mattsson,
2014). Rising and Janoff (2000) have pointed out that
Scrum is beneficial, particularly for projects in which
all the requirements are not clear in advance and some
type of chaos is expected during the project.

Kanban is a relatively new concept in the field of
software engineering that was originally applied in
Lean manufacturing (Ahmad et al., 2013). While
Scrum focuses on one iteration (called a sprint) at a
time, Kanban supports a continuous workflow
(Mahnic, 2014). Kanban provides the flexibility of
managing the workflow within teams. It limits the
work in progress (WIP) in each activity to a
maximum number of tasks or items at any given time.
Moreover, it does not suggest strictly defined roles
and sprints (Nikitina et al., 2012). It provides a clear
visualization of the phases in the project lifecycle.

By combining Lean and Agile methodologies,
project members can receive fast and iterative
feedback while they have the ability to implement the
necessary changes and respond to the feedback. The
combination of Agile and Lean in co-located projects
enhances coordination among team members,
increases team morale, and produces better outcomes
(Auerbach and McCarthy, 2014). Lean increases the
scale of the development process and makes it
efficient, while Agile principles help to make the
process flexible (Rodriguez et al., 2014).

Both Scrum and Kanban are similar in the sense
that both improve transparency, aim to release
software as soon as possible, work on the principle of
breaking work into pieces, and continuously optimize
the project plan (Barash, 2013). Ladas (2008) has

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

568

argued that if Kanban is used alongside Scrum, they
both can complement each other. Scrumban
incorporates the iterative planning of Scrum but is
more responsive and adaptive to changes in user
requirements. Project members who have had good
experience with Scrum can benefit from Scrumban,
as it improves their knowledge and capabilities
(Ladas, 2008). By combining Scrum and Kanban,
researchers hope to create more flexibility in projects
as well as iterative paces that Scrum has provided
(Ladas, 2009).

Table 1 reflects the key points of using Scrum and
Kanban in the same project by showing several
examples. In section 4.1, we will use these points for
our analysis in the context of distributed software
development.

Table 1: Scrum and Kanban methodological elements.

Ref. Study Place Key Points

Nikitina
et al.

(2012)

Vietnamese
office of a

Swedish software
development

company

Scrum:
Iterative and incremental

Regular feedback
Strict roles and rules

Kanban:
Visualization
Limiting WIP

Scrumban:
Self-organizing

Collaborative teamwork

Mahnic
(2014)

Faculty of
Computer and
Information

Science,
University of

Ljubljana

Scrum:
Incremental and iterative

Planned project
Regular feedback

Kanban:
Maximize workflow

Visualization
Limiting WIP

Joshi and
Maher

Arrk Group, a
multinational

software
development

company

Scrumban:
Limiting WIP

Optimal resource
utilization

Collaborative teamwork
Quick decisions

Customer satisfaction

Brinker
(2014)

GoGo, a
company that
offers services

such as internet,
entertainment,
text messaging,
voice, etc. in the
aviation market

Scrumban:
Visualization of workflows

Transparency
Increased team

participation

One factor that Scrumban inherits from Kanban is
the visualization of workflows (Khan, 2014). Scrum
completes tasks through sprints that are already
planned, but Scrumban allows more flexibility and
planning only for following sprint. This helps projects
to limit the WIP. When the limit of tasks in a
particular workflow is reached, team members help
each other to complete the tasks in that workflow
rather than starting a new one. This increases the
coordination among team members and also reduces
the possibility of bottleneck (Khan, 2014).

Scrumban, unlike Scrum, has no strict rules and
roles and encourages self-organized teams. As a
result, team members manage their tasks by
themselves and make quicker decisions. Khan (2014)
argues that Scrumban reduces the relevant tasks of
planning for the whole iteration (the same as Scrum),
as meetings are set only when required and tasks are
changed depending on the output of the ongoing
sprint.

The implementation of Scrumban presents several
challenges as well. The flexibility regarding
production changes can cause new challenges in, for
example, assigning resources and project time-tables.
Since Lean methodology calls for considering the
whole organization through implementation
(Karvonen et al., 2012), the combination of Kanban
and Scrumban increases the complexities of planning
for the whole organization activities. Moreover, it is
not always possible to include business personnel or
management executives to develop project backlogs
or receive regular feedback (Rodriguez et al., 2014).

2.2 DSD

DSD that addresses global practices for producing
software is applied through multi-geo, multicultural,
and multi-temporal environments. Distributed
development practices benefit from lower costs,
enhanced performance, and less time to markets
(Sutanto et al., 2011).

Prior studies (Nakamura et al., 1997; Jiménez et
al., 2009; Šmite et al., 2010) have addressed the
significant challenges of distributed environments in
terms of communication gaps between multiple sites,
group awareness, software configuration
management, knowledge management, flexible
coordination, collaboration, project management,
process support, tools support, quality management,
and risk management.

Coordination is a pressing issue in global software
development. People at the research and development
center of Yahoo in Norway mentioned that the time
zone difference was a major cause of problems when

An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development

569

dealing with dislocated teams (Carmel and Espinosa,
2011). Noll et al. (2010) argued that the main barriers
to coordination in distributed projects are geographic,
temporal, cultural, and linguistic differences. They
proposed that project teams should enhance site
visits, use synchronous communication technology,
and apply knowledge-sharing infrastructure to
transform the implicit knowledge to explicit (Noll et
al., 2010). Other scholars (Mak and Kruchten, 2006;
Redmiles et al., 2007; Sidhu and Volberta, 2011) have
argued that coordination issues come from (1) a lack
of flexibility and integration, (2) poor role support,
(3) decreasing informal communication and
workplace transparency, and (4) limitations imposed
on formal communication. Therefore, it is necessary
to apply the most suitable methodologies and tools to
improve the coordination of interdependent tasks in
distributed sites.

There are several instances of the application of
Scrum in distributed development projects
(Sutherland et al., 2009; Šmite et al., 2010; Carmel
and Espinosa, 2011; Schwaber and Sutherland,
2012).

The American software consulting company
Agile Factori implemented a successful software
development project using Agile methodologies. The
project was provided by “Big Oil,” an American
company consisting of 4 teams in which two were
located in America and the other two in Brazil and
Argentina. All four teams had a real-time video
screen with audio that showed activities at the other
sites. In addition, one screen at each site showed a
dashboard of in-process software components. This
allowed other sites visualization, increased
awareness, and better coordination among teams
(Carmel and Espinosa, 2011).

SirsiDynix (U.S) (Sutherland et al., 2007;
Sutherland et al., 2009) has successfully implemented
distributed Scrum since 2005. Using distributed
Scrum, SirsiDynix collaborated with the Russian
company Exigen in 2005 for a large project
(Sutherland et al., 2009) employing more than 50
members in total and producing over one million lines
of code. The output of this distributed team was
estimated to be equivalent to the work of a 350 co-
located-person team working in a waterfall model
(Sutherland et al., 2009).

An international Agile software development
company, Xebia, located in France, India, and the
Netherlands, had also implemented Scrum
successfully during 2006–2008 (Sutherland et al.,
2009). Distributed Scrum was used alongside XP
programming in multiple projects by Xebia, and the
results showed that the distributed teams were as

effective as co-located teams. These instances show
that globally distributed teams can be as productive
as co-located teams effectively applying Scrum
(Sutherland et al., 2007; Paasivaara, 2011).

3 RESEARCH PROCESS

3.1 Project Case and Software Factory
Settings

Software Factory settings provide developers with a
development setting consisting of domain-specific
tools that help to transform abstract models into
implementations (France and Rumpe, 2007;
Abrahamsson et al., 2010; Ahmad et al., 2014).
Through Software Factory settings, reusable
development practices such as patterns, models,
guidelines, and transformations are accessible from
the viewpoint of a specific aspect in the development
context. This enables domain-specific validation and
guidance delivery (Greenfield et al., 2004).

A joint five-month software development project
called T-Bix was initiated between the University of
Oulu, Finland and the University of Bolzano, Italy in
their respective Software Factories. The aim of the
project was to develop a web-based application for
time-banking to be operational in South Tyrol in Italy.
The web application was required to possess the
facilities of searching, posting, and applying for jobs
and skills for unemployed and elderly people who
were interested in being part of the time-banking
community. Since T-Bix project teams were located
in Europe (North-South DSD configuration), they did
not experience drastic temporal differences; however,
the long physical distance and diverse cultures,
languages, and social behaviors remained challenges
in the project.

The Finnish team members were comprised of
one PhD candidate and four master’s degree students
who were working locally in Oulu. The team from
Italy had a Software Factory coordinator with a PhD
degree and four master’s degree students. A member
of the Italian team was working remotely from
Lithuania. There was one student on each team with
industrial experience; however, the rest of the teams
did not have prior experience in industry. Each team
was comprised of one project manager and three
developers. There was an Italian business customer
who was in direct contact with both teams. The
customer communicated his needs through meetings
and emails; teams attempted to interpret the
customer’s requirements into the user stories and

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

570

backlogs. Scrumban was the methodology
implemented in Finland, and Scrum was used in Italy.

Teams communicated frequently via
collaboration tools like Google Hangout and Skype to
discuss and verify project requirements, progress,
deliverables, challenges, and deadlines. After each
sprint, teams presented the respective deliverables
and progress and received feedback from both the
customer and other team members. They also planned
for the next sprint.

Carmel and Espinosa (2011) noted that
identifying the best time for meetings is a major
concern in distributed projects. T-Bix project
meetings were scheduled with respect to the temporal
difference between Italy, Finland, and Lithuania
(there was a developer from the Italian team who was
working from Vilnius). To have other site and
customer involved, the meetings were often held in
the afternoon (Finnish time zone). This is an
advantage provided by North-South collaboration in
that meetings could be held in the daytime and not
much time shifting is required.

The frontend of the application was developed
with direct contact with the customer in Italy. The
backend, including the database development and
integration of the frontend and backend, was
developed in Finland. The codes were shared on
GitHub (https://github.com), where some feedback
and comments were also shared.

An identical Kanban board was created in JIRA
(https://www.atlassian.com/software/JIRA) by the
Oulu team and shared with the team members in
Bolzano. The Kanban board was updated regularly,
providing visibility of the board and tasks across both
teams.

In addition to JIRA boards, the Software Factory
in Oulu was equipped with physical Kanban boards
utilized throughout the project’s lifetime. The boards
were divided into four sections: backlog (features), to
do, in progress (WIP), and done and consisted of user
stories planned in each sprint. Once each sprint was
completed, the Finnish team updated the boards with
new tasks and shifting completed jobs to the “done”
section. Figure 1 shows a snapshot of the board.

3.2 Project Coordination Model

The project was proposed by the customer to the
University of Bolzano with the aim of decreasing the
rate of unemployment in South Tyrol. Subsequently,
the University of Bolzano had the idea of making the
project a distributed Software Factory project
between the two universities.

Figure 1: A physical Kanban Board in Oulu Software
Factory.

The customer was in contact with the teams with
respect to the elicitation of requirements, acceptance
testing, and the validation of artefacts. The user
interface of the website was designed and validated
through regular meetings with the customer. The
codes and designs were continuously uploaded in
GitHub, in which both teams updated their last works.
The next sprint was planned according to the
feedback and suggestions made by the customer and
both teams. The following model (Figure 2) shows
how project was carried out among the teams.

Figure 2: Project coordination model.

3.3 Research Approach

This study exploits empirical software engineering
methods. The authors have applied semi-structured
interviews to collect the empirical data from the
project members. The participants of this empirical
study are members of the Oulu Software Factory who

An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development

571

were interviewed after the project’s completion. Four
rounds of interviews were conducted, which lasted
from 45 minutes to 2 hours. All interviews were
recorded and transcribed, in which authors could
analyze them based on the needs of this study.

A semi-structured interview format was preferred,
as it provides a clear set of instructions for the
interviewer, who usually follows a paper based
interview guide during the interview. The availability
of questions beforehand makes the interviews easier
for the interviewer and the openness of this type of
interview provides the interviewees with the freedom
to express their views using their own terms. In
addition, the comparable qualitative data obtained
from semi-structured interviews is regarded as
reliable for analysis (Cohen and Crabtree, 2006).
Table 2 summarizes the roles, empirical experiences,
and expertise of the interviewees.

Table 2: Interviewees’ backgrounds.

Intervi
-ewee

Role in the
project

Empirical
exp.

Expertise

D1
Project

manager
>10 years

Proj. mgmt.
UI Design

JIRA, GitHub

D2 Programmer ---
PostgreSQL,
JIRA, GitHub

D3 Programmer ---
PostgreSQL,
Java, JIRA,

GitHub

D4 UI Designer ---
UI Design,
Java, JIRA,

GitHub

4 RESULTS

This section summarizes our findings regarding
Scrumban’s impact on the T-Bix project as well as the
limitations and opportunities for future research.

4.1 Findings

Table 3 explains how the impact of Scrumban has
been realized in the coordination between North-
South distributed sites.

For this purpose, we have investigated the top
issues in DSD projects that have been already
introduced by other scholars (Nidiffer and Dolan,
2005; Espinosa et al., 2007; Barcus and Montibeller,
2008; Carmel and Espinosa, 2011). This section
reviews the impact of key aspects of Scrumban
(provided in section 2.1) on DSD issues.

Strategic issues within DSD settings are
concerned with the difficulty in leveraging available
resources. Issues should be identified carefully in
which stakeholders can anticipate and manage risks
(Nidiffer and Dolan, 2005). Since T-Bix was an
evolutionary project done through iterative sprints,
teams were able to find new ways to leverage
available resources and skills. Within the initial
meetings, two teams discussed the experience and
expertise of their members, clarifying how the project
resources were divided between the two sites and how
the project duties should be assigned.

However, the team members mentioned their
increasing responsibility during the later sprints of the
project. The project manager [D1] explained that they
were asked to accomplish some additional work on
coding. Adapting to these workflow changes made it
difficult to complete the project. A developer [D4]
explained that after much discussion, the two teams
decided to assign additional tasks to the Oulu team,
as they had more technical skills:

“After much discussion, we had to accept more
work, as Bolzano was not able to complete it. We
should provide more deliverables at the end of the
project. We had no choice because we wanted the
project done.”

The teams applied JIRA to establish the project’s
structure and define the roles of the two sites. Project
tasks were assigned to the teams members according
to their roles and skills. Furthermore, JIRA created
visibility in the WIP for each role compared to other
developers. The project manager [D1] confirmed this:

“Using JIRA, I could monitor the progress of
different completed tasks with respect to the roles. It
provided me an opportunity to recognize the tasks
that required extra coordination.”

Project and process management in DSD
involves discussing problematic situations in
synchronizing work between distributed sites (Barcus
and Montibeller, 2008). Integrated quality, shared
workspaces for storing files, and engineering tools are
potential enablers of this issue. The complexity also
arises from the fact that there should be sufficient
communication between two teams before they can
prioritize project tasks and decide which one is to be
carried out by which team, as in the case of the T-Bix
project discussed. The teams had agreed upon a
preliminary division of work, but additional tasks
were later added to the project by the customer. The
members mentioned that the added tasks caused
several challenges in managing their ongoing tasks.
To control the scope of project, the involved teams
should manage changes in a planned way. Any
changes in the project scope may affect the priority

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

572

and division of work among the sites. The project
manager [D1] declared the following primary
decision criterion for allocating tasks between sites:

“Consistency between the requested feature and
available skills and knowledge at the sites was our
decision criterion for allocating tasks to sites.”

Using Kanban boards in JIRA improved the
visualization and transparency on the completed,
ongoing, and planned tasks. One developer [D3]
mentioned the following:

“The Kanban board in JIRA was quite helpful
because we could not frequently update the pictures
of the physical Kanban board for the other team. We
applied JIRA’s Kanban board to share the tasks we
had completed and planned to do.”

Using JIRA and GitHub, project members
received feedback on their jobs, for example, for the
codes that were uploaded in GitHub. One of the
developers [D2] stated the following:

“For example, when the scripts in the database
had problems, one of the programmers in Bolzano
was using GitHub to send feedback regarding the

issues and asking for solutions.”
Another developer [D4] also believed the

following:
“JIRA is a tool developed for task management

purposes, but you cannot upload all project
deliverables into it. It is not a shared platform, so we
needed to use other tools, in which we could share
other data.”

Communication issues are related to the lack of
effective communication mechanisms. It is very
important to convey information such as the current
state of the project as well as project challenges,
schedule, and cost. In the case of distributed projects,
communication plays an important role in
collaboratively planning the project stages. Along
with formal communication, informal
communication between team members and with
stakeholders can ease the working environment and
develop coordination among them (Barash, 2013).
Applying Scrumban in DSD projects demands for
both formal and informal styles of communication.

Table 3: Impact of Scrumban on coordination in DSD environments.

Scrumban
aspects

Issues in distributed software development

Strategic
Project and process

management
Communication Cultural Technical Security

Iterative and
incremental
development

Highly improved
toward latest sprints

Highly improved
toward latest sprints

More sprints,
more smooth

More
iterations,

fewer
challenges

Slightly
improved

No
evidence

Predictable
and well-
planned
project

No meaningful
impact on

leveraging resources
at the other site

More iterations,
more improvement

Effective
communication
for the planned

tasks

No
evidence

Slightly
improved

toward
latest

sprints

No
evidence

Transparency
Positively impacted
leveraging resources

at both sites

Positively impacted
task management

within sites
No evidence

Slightly
reduced

challenges

No
evidence

No
evidence

Regular
feedback

Slightly improved
Positively impacted
task management

within sites

Demands of
both formal and

informal
feedback

Improved
toward
latest

sprints

No
evidence

No
evidence

Limiting WIP
Positively impacted

resource
management

Decreased relevant
challenges slightly

No evidence
No

evidence
No

evidence
No

evidence

Self-
organizing

Slightly improved
Positively impacted
task management

within sites

Improved
informal

communication

No
evidence

No
evidence

No
evidence

An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development

573

Informal communication facilitates project
implementation; however, the other type of
communication creates a disciplined environment,
which is necessary for coordination in DSD sites.

Communication was regarded as an important
tool to ensure that the T-Bix teams were placed at the
same level of understanding regarding the project. A
developer [D4] highlighted the following:

“The Bolzano team had their own understanding
of the project and we had ours. We had discussions to
resolve the discrepancies and create balance between
the two teams. Scrumban provoked us to have regular
meetings with team members as well as the customer.
This increased the level of communication in the
project.” However, the project manager [D1]
mentioned that different time zones created little
discomfort for arranging meetings.

Scrumban leads to a great deal of communication.
One developer [D4] argued the following:

“At first, we had many problems in our
communication because the project members
complained that the other site hindered the project’s
progress and was not completing its tasks well.”

However, finding new communication channels
as well as more effective planning in the project led
to a higher level of communication between teams. It
was claimed that:

“We had many challenges in our discussions, but
since people have had more communication and
became increasingly more acquainted with the way
the other team works, communication became
smoother.”[D1]

Cultural issues involve the conflicting behavioral
processes and technologies (Nidiffer and Dolan,
2005). Different socio-cultural backgrounds make
communication more complicated regarding the lack
of understanding about other social behaviors,
cultures, and languages. The T-Bix project shows that
people have different expectations regarding working
in multinational teams; for example, one developer
[D2] explained the following:

“It was quite good for distributed software
development to include multiple cultures. It was
interesting to work with people with different
backgrounds.” However, other people found multi-
cultural settings more difficult than co-located
projects.

Due to the nature of Software Factory projects,
team members were completely new to each other
and they were assigned to this project with no prior
knowledge of the other team members. At the
beginning of the project, they had several challenges
in communicating with each other and establishing a
good organization for their project; however, the

evolutionary development as well as receiving
feedback on the requirements and skills alleviated
cultural barriers when people met for several sprints.

Technical issues in DSD environments are related
to incompatible data formats and exchanges. Creating
standards and web services could be seen as potential
enablers to resolve this issue. T-Bix shows that during
different sprints, teams progressively realized the
technical facilities and needs of other sites. The
iterative nature of Scrumban helped them to meet
those needs and prepare to meet the internal project
standards and agreements.

Security, on the other hand, involves ensuring
electronic transmissions’ confidentiality and privacy
(Nidiffer and Dolan, 2005). It can be improved
through emerging standards for secure messaging.
The T-Bix project did not provide meaningful
evidence of Scrumban’s impact on improving
security issues in DSD settings. However, this study
was conducted with respect to coordination issues and
other project issues are beyond its scope.

4.2 Limitations

Scientific studies on Scrumban are very limited. In
this research, we investigated the impact of Scrumban
on coordination in geographically distributed
development. We believe the results can be
generalized to other distributed projects using
Scrumban, as even though our research was
conducted in Software Factory settings, the results are
based on a real business case with a real customer
outside the university environment.

The coordination among teams might have been
different if the distributed teams had an East-West
configuration. Finding a suitable time for meetings,
on-time responses to emails, and other queries would
have taken more time. With a greater time zone
difference, it is fair to say that teams would have
possessed greater variance in their work cultures; for
example, from India to the U.S. However, East-West
teams could likely work with ease and spend more
time on their decisions and responses to emails and
queries.

The Software Factory project was small with a
limited number of interviewees. However, several
studies have reported the benefits of using students as
the empirical research subjects (Höst et al., 2000;
Madeyski, 2009); we assume the level of impact of
Scrumban may differ in a larger DSD project. In
addition, industrial projects may provide more
evidence on the effect of Scrumban on DSD projects.

To avoid inappropriate interpretations, we have
presented the interviews the same as the project

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

574

members described. However, the authors’ judgment
could not be completely eliminated.

4.3 Future Research

The results of this study could be utilized to predict
Scrumban’s impact on coordination in distributed
projects. However, it would be interesting to see how
Scrumban supports large and industrial distributed
projects.

In this study, we have discussed coordination in
DSD; thus, other issues in these kinds of settings still
remain untouched. Future researchers can investigate
the impact of Scrumban on other aspects of globally
DSD projects. In addition, the impact of age,
education, and years of experience etc. on the use of
Scrumban in DSD projects can be another research
topic.

Software Factory settings is an interesting concept
to test new ideas and methodologies related to
software development. To review the impact of
Scrumban on East-West distributed teams, other
Software Factories from different time zones should
be included in future studies.

5 CONCLUSIONS

Combining the key concepts of successful software
development methodologies (Kanban and Scrum),
Scrumban is iterative as well as responsive to the
changes in requirements of ongoing projects. Along
with that, the fast and efficient approach of Scrumban
makes it a favorable choice in the software
engineering domain. The impact of Scrumban on
software development projects, either co-located or
globally distributed, has not been researched a great
deal. We have investigated the impact of Scrumban
on distributed sites within a Software Factory project.

Distributed sites have to receive changes in
projects at the right time. Achieving this purpose,
collaboration tools are necessary to share updated
information and resolve the challenges. In addition,
creating a defined organizational structure with
specific roles creates visibility in project, which is
necessary for coordination and task management in
projects.

This study could effectively be applied in both
academic and business environments. Academic
studies could investigate other aspects (rather than
coordination) of using Scrumban in DSD projects.
Moreover, industrial projects can be efficient if the
members are well informed about the challenges and
strengths of Scrumban in different project settings.

This will help them with the efficient planning of the
project deliverables and interactions among the teams
involved.

ACKNOWLEDGEMENTS

This research was supported by the DIGILE Need for
Speed program, and partially funded by Tekes (the
Finnish Funding Agency for Technology and
Innovation). We would like to thank DIGILE and
Tekes for their support and the University of Bolzano
for its excellent collaboration.

REFERENCES

Abrahamsson, P., Kettunen, P., and Fagerholm, F. 2010.
The set-up of a software engineering research
infrastructure of the 2010s. In Proceedings of the 11th
International Conference on Product Focused
Software, pages 112–114. ACM.

Ahmad, M. O., Liukkunen, K., and Markkula, J. 2014.
Student perceptions and attitudes towards the software
factory as a learning environment. In Global
Engineering Education Conference (EDUCON), 2014
IEEE, pages 422–428. IEEE.

Ahmad, M. O., Markkula, J., and Oivo, M. 2013. Kanban
in software development: A systematic literature
review. In Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO
Conference on, pages 9–16. IEEE.

Alam, S. S. and Chandra, S. 2014. Agile software
development: Novel approaches for software
engineering.

Auerbach, B. and McCarthy, R. 2014. Does agile+ lean=
effective: An investigative study. Journal of Computer
Science and Information Technology, 2(2):73–86.

Barash, I. 2013. Use of agile with XP and Kanban
methodologies in the same project.

Barcus, A. and Montibeller, G. 2008. Supporting the
allocation of software development work in distributed
teams with multi-criteria decision analysis. Omega,
36(3):464–475.

Brinker, S. 2014. Using Scrumban (Scrum Kanban) for
Agile Marketing - Chief Marketing Technologist,
http://chiefmartec.com/2014/12/using-scrumbanlean-
agile-marketing/.

Carmel, E. and Espinosa, J. A. 2011. I’m working while
they’re sleeping: Time zone separation challenges and
solutions. Nedder Stream Press.

Cohen, D. and Crabtree, B. 2006. Qualitative research
guidelines project.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., and Herbsleb,
J. D. 2007. Team knowledge and coordination in
geographically distributed software development.

An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development

575

Journal of Management Information Systems,
24(1):135–169.

France, R. and Rumpe, B. 2007. Model-driven development
of complex software: A research roadmap. In 2007
Future of Software Engineering, pages 37–54. IEEE
Computer Society.

Greenfield, J., Short, K., Cook, S., Kent, S., and Crupi, J.
2004. Software factories: assembling applications with
patterns, models, frameworks, and tools. Wiley Pub.

Gupta, M. and Fernandez, J. 2011. How globally distributed
software teams can improve their collaboration
effectiveness? In Global Software Engineering
(ICGSE), 2011 6th IEEE International Conference on,
pages 185–189. IEEE.

Höst, M., Regnell, B., and Wohlin, C. 2000. Using students
as subjects a comparative study of students and
professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214.

Jiménez, M., Piattini, M., and Vizcaino, A. 2009.
Challenges and improvements in distributed software
development: A systematic review. Advances in
Software Engineering, 2009:3.

Joshi, A. and Maher, S. Our Journey into Scrumban,
http://www.arrkgroup.com/thoughtleadership/our-
journey-into-scrumban/.

Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., and
Oivo, M. 2012. Adapting the lean enterprise self-
assessment tool for the software development domain.
In Software Engineering and Advanced Applications
(SEAA), 2012 38th EUROMICRO Conference on,
pages 266–273. IEEE.

Khan, Z. 2014. Scrumban-adaptive agile development
process: Using scrumban to improve software
development process.

Kniberg, H. and Skarin, M. 2010. Kanban and
Scrummaking the most of both. Lulu. com.

Ladas, C. 2008. Scrumban. Lean Software Engineering-
Essays on the Continuous Delivery of High Quality
Information Systems.

Ladas, C. 2009. Scrumban-essays on kanban systems for
lean software development. Lulu. com.

Madeyski, L. 2009. Test-driven development: An empirical
evaluation of agile practice. Springer Science &
Business Media.

Mahnic, V. 2014. Improving software development through
combination of scrum and kanban. Recent Advances in
Computer Engineering, Communications and
Information Technology, Espanha.

Mak, D. K. and Kruchten, P. B. 2006. Task coordination in
an agile distributed software development environment.
In Electrical and Computer Engineering, 2006.
CCECE’06. Canadian Conference on, pages 606–611.
IEEE.

Nakamura, K., Fujii, Y., Kiyokane, Y., Nakamura, M.,
Hinenoya, K., Peck, Y. H., and Choon-Lian, S. 1997.
Distributed and concurrent development environment
via sharing design information. In Computer Software
and Applications Conference, 1997. COMPSAC’97.
Proceedings, The Twenty-First Annual International,
pages 274–279. IEEE.

Nidiffer, K. E. and Dolan, D. 2005. Evolving distributed
project management. Software, IEEE, 22(5):63–72.

Nikitina, N. and Kajko-Mattsson, M. 2014. Guiding the
adoption of software development methods. In
Proceedings of the 2014 International Conference on
Software and System Process, pages 109–118. ACM.

Nikitina, N., Kajko-Mattsson, M., and Strale, M. 2012.
From scrum to scrumban: A case study of a process
transition. In Proceedings of the International
Conference on Software and System Process, pages
140–149. IEEE Press.

Noll, J., Beecham, S., and Richardson, I. 2010. Global
software development and collaboration: barriers and
solutions. ACM Inroads, 1(3):66–78.

Paasivaara, M. 2011. Coaching global software
development projects. In Global Software Engineering
(ICGSE), 2011 6th IEEE International Conference on,
pages 84–93. IEEE.

Redmiles, D., Van Der Hoek, A., Al-Ani, B., Hildenbrand,
T., Quirk, S., Sarma, A., Filho, R., de Souza, C., and
Trainer, E. 2007. Continuous coordination-a new
paradigm to support globally distributed software
development projects. Wirtschafts Informatik,
49(1):28.

Rising, L. and Janoff, N. S. 2000. The scrum software
development process for small teams. IEEE software,
(4):26–32.

Rodriguez, P., Markkula, J., Oivo, M., and Turula, K. 2012.
Survey on agile and lean usage in Finnish software
industry. In Proceedings of the ACM-IEEE
international symposium on Empirical software
engineering and measurement, pages 139–148. ACM.

Rodriguez, P., Partanen, J., Kuvaja, P., and Oivo, M. 2014.
Combining lean thinking and agile methods for
software development: a case study of a Finnish
provider of wireless embedded systems detailed. In
System Sciences (HICSS), 2014 47th Hawaii
International Conference on, pages 4770–4779. IEEE.

Schwaber, K. 2004. Agile project management with Scrum.
Microsoft Press.

Schwaber, K. and Beedle, M. 2002. gile software
development with scrum.

Schwaber, K. and Sutherland, J. 2012. Software in 30 days:
how agile managers beat the odds, delight their
customers, and leave competitors in the dust. John
Wiley & Sons.

Sidhu, J. S. and Volberda, H. W. 2011. Coordination of
globally distributed teams: A co-evolution perspective
on offshoring. International Business Review,
20(3):278–290.

Šmite, D., Moe, N. B., and Agerfalk, P. J. 2010a. Agility
across time and space: implementing agile methods in
global software projects. Springer Science& Business
Media.

Šmite, D., Moe, N. B., and Agerfalk, P. J. 2010b.
Fundamentals of agile distributed software
development. In Agility Across Time and Space, pages
3–7. Springer.

Smith, J. L., Bohner, S., McCrickard, D. S. 2005. Toward
introducing notification technology into distributed

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

576

project teams. In Engineering of Computer- Based
Systems, 2005. ECBS’05. 12th IEEE International
Conference and Workshops on the, pages 349–356.
IEEE.

Sutanto, J., Kankanhalli, A., and Tan, B. C. 2011. Deriving
it-mediated task coordination portfolios for global
virtual teams. Professional Communication, IEEE
Transactions on, 54(2):133–151.

Sutherland, J., Schoonheim, G., and Rijk, M. 2009. Fully
distributed scrum: Replicating local productivity and
quality with offshore teams. In System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on,
pages 1–8. IEEE.

Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N.
2007. Distributed scrum: Agile project management
with outsourced development teams. In System
Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on, pages 274a–274a. IEEE.

Tripathi, N., Rodriguez, P., Ahmad, M. O., and Oivo, M.
2015. Scaling kanban for software development in a
multisite organization: Challenges and potential
solutions. In Agile Processes, in Software Engineering,
and Extreme Programming, pages 178–190. Springer.

An Empirical Study on the Impact of Scrumban on Geographically Distributed Software Development

577

