
Towards Distributed Ecore Models

Jesús M. Perera Aracil and Diego Sevilla Ruiz
DITEC, University of Murcia, Campus Universitario de Espinardo, 30100, Espinardo, Murcia, Spain

Keywords: MDE, REST, Cloud, Ecore.

Abstract: Models are the cornerstone of Model-Driven Engineering (MDE). Their size is constantly growing, becoming
one of the main problems when it comes to manipulating them, via model-to-model transformations, model-
to-text transformations or simply parsing them. In this paper we propose a way of distributing Ecore models
representing them as JSON and URLs as identifiers, since HTTP is one of the most successful distributed
protocols ever created. An implementation of distributed Ecore models using a RESTful-like service is also
presented and and is publicly available.

1 INTRODUCTION

Models are a digital representation of reality, and as
such they are used as a software artifact and manip-
ulated by transformations to generate other artifacts.
Models are becoming more complicated and larger in
size, making it difficult for a single computer to parse,
transform or handle them.

Some new tools and mechanisms have been de-
signed and implemented, such as paralellization of
transformations (Tisi et al., 2013), which enables
the execution of rules in parallel by distributing
the load on different cores. The use of continu-
ations (Cuadrado and Aracil, 2014) has also been
implemented. This continuations enable the auto-
matic scheduling of transformation rules by suspend-
ing transformation rules whenever a needed element
is not yet transformed or available.

There has been advances in data storage facili-
ties (Benelallam et al., 2014) (Espinazo-Pagán et al.,
2015), using databases in a way that queries for mod-
els can be performed in a faster way. Even apply-
ing big data techniques on models (Scheidgen and
Zubow, 2012) (Barmpis and Kolovos, 2014) have
been studied, such as using MapReduce algorithms.

Even though these have alliviated the problem,
it is certain that an implementation which supports
natively a distribution framework must be designed.
This implementation would allow transformations to
scale transparently for both the user and programmer.

One of the main challenges comes from the rep-
resentation of references between model elements.
In XML Metadata Interchange (XMI)(OMG, 2015),

the standar serialization format for Ecore models,
these are implemented fragment-like depending on
the position of the target element in the graph (e.g.,
#//EClass refers to metaclass EClass from Ecore).
Cross-references between elements from different
models are prepended by the path to the XMI file of
the other model. Thus, this strong connection hinders
the ability to split a model into smaller pieces for dis-
tribution or even changes in the location of files might
break them.

This paper is structured as follows. Section 2
introduces the concepts of distributed models which
are used in our proposal. Section 3 introduces and
describes our approach of distributing Ecore mod-
els using URLs and JSON representation. Section
4 presents our implementation of distributed Ecore
models. Section 5 discusses related work and Section
6 summarizes conclusions and future work.

2 BACKGROUND

Software industry, and more concretely, Model-
Driven Engineering (MDE), is constantly growing.
In the case of models, these are becoming more and
more complicated as well as bigger in size, up to a
point in which using a single computer for handling
models is not viable.

It is clear that a step forward must be taken in
order to cope with this increase to still be able to
use MDE technologies as a valid option. Distribut-
ing Ecore models would allow to better parallelize ac-
cesses to a model, since querying different pieces of

Aracil, J. and Ruiz, D.
Towards Distributed Ecore Models.
DOI: 10.5220/0005685002090216
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 209-216
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

209



the model would be independent from others. In ad-
dition, it would enable collaboration on models, since
different groups could work on different pieces of the
same model.

We are now going to explain the concepts on
which this paper and our proposal of distributed Ecore
models heavily rely on.

2.1 REST

Representational State Transfer (REST) (Fielding,
2000) is an architecture for building web applications.
It is based on the idea of offering collections of re-
sources through, mostly, HTTP.

RESTful web applications use HTTP methods as
a means of accessing, modifying or deleting resources
uniquely identified by URLs. These methods operate
in a different way if the URL to which it is applied is
a resource or a collection.

• GET method: Retreives the resource or collection
as a response.

• POST method: Creates a new element in a collec-
tion.

• PUT method: Replaces a collection or resource
with other.

• DELETE method: Deletes the resource or collec-
tion.

RESTful applications rely heavily on hypermedia,
in which resources are named and referenced by their
respective URL. A resource is identified by its URL
and can link (and be linked) to other resources by
these URLs.

2.2 JSON

JavaScript Object Notation (JSON)(JSON, 2015)
is a lightweight data-interchange format based on
JavaScript. It is a human readable format which
makes it easy for humans to understand and write and
for computers to parse and serialize.

In recent years, with the blooming interest in web
applications, JSON has seen a rise in popularity at the
expense of the other big serialization format, XML.
JSON has a small but rich data values:

• Strings: a sequence of characters.

• Number: integers, floats, scientific notation.

• Booleans.

• Null: no value.

• Array: a collection of values.

• Object: a collection of key-value pairs, in which
the keys are Strings naming the value it binds to.

JSON, on the contrary of XML, does not have a
mechanism to extend the language with more com-
plex values or a description of its structure, such as
XMLSchema (W3C, 2001). This is overcome by the
fact that the language is simple and structured without
ambiguity.

3 DISTRIBUTED ECORE
MODELS

Ecore models are traditionally stored by means of
XMI(OMG, 2015), which is a file-based storage. Ref-
erences (and cross-references between different mod-
els) are also file-based, which makes splitting a model
difficult, since it would now need to handle more files
and keep them synchronized.

A roadmap (Clasen et al., 2012) has been pro-
posed for distributing models and performing trans-
formations in the cloud, but still no implementation
has been designed to fulfill this challenge.

We propose to store Ecore models on the cloud as
JSON objects, which would allow for a distributed ac-
cess using REST web applications. Model elements
are transformed into a JSON representation of them-
selves by a process which will be defined later de-
pending on their metaclass.

Unique URLs are generated for all model ele-
ments based on containment of instances. These
URLs are created by the URL of its parent prepended
to the name of the containment EReference which
holds the elements and, if it is the case, its nu-
meric position (i.e., if an element B is contained
in a EReference named ref of A, with URL
http://www.example.com/A, its URL would be
http://www.example.com/A/ref). Root elements
of models are given a “base URL” from which the rest
of the URLs of that model are derived.

For illustration purposes, we are going to explain
this approach with 3 models:
• Subset of Ecore meta-meta-model (shown in Fig-

ure 1)
• Bag meta-model (shown in Figure 2).
• Bag model (shown in Figure 3).

The base URL for Ecore EPackage will be
http://www.example.com/repo/0, that for the Bag
metamodel will be http://www.other.com/repo/1
and finally, that for the Bag model will be
http://www.example.com/repo/2.

We are now going to explain in detail the pro-
cess of generating both JSON and URLs for some
metaclasses of Ecore, EClassifier, EPackage and
EStructuralFeature.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

210



Figure 1: Ecore subset.

Figure 2: Bag metamodel.

Figure 3: A simple Bag model.

3.1 EClassifiers

Instances of EClassifiers will be transformed by
collecting all their EStructuralFeatures and cre-
ating a JSON object which binds the names of
these EStructuralFeatures to their correspond-
ing URLs. These new URLs will be the con-
catenation of the URL for the EClassifier be-
ing transformed concatenating the name of their
EStructuralFeatures.

Code Example 1 shows a snippet of how both
EClassifier and EClass are transformed into
JSON. We assume that their relative positions in their
containment reference are 0 and 1, respectively. It
should be noted that an EClassifier is an EClass
instance due to Ecore being its own metamodel.
EStructuralFeatures conversion to JSON will be
explained in Subsection 3.3.

Code example 2 shows how EClasses our
Bag metamodel example are transformed into
JSON. The base URL for the Bag EPackage is
http://www.other.com/repo/1.

Code example 3 shows our Bag model trans-
formed into JSON. The root element of this model
is a BagModel instance, whose base URL is
http://www.example.com/repo/2.

3.2 EPackages

EPackages are transformed as if they were
EClassifiers: all their EStructuralReferences
are given a name and an URL (based on the URL of
the instance), then a JSON Object is created pairing

// EClassifier
// URL: http://www.example.com/repo/0/
// eClassifiers/0
{
"name":"http://www.example.com/repo/0/

eClassifiers/0/name",
"abstract":"http://www.example.com/repo/0/

eClassifiers/0/abstract",
"eClass":"http://www.example.com/repo/0/

eClassifiers/0/eClass",
...
}

// EClass
// URL: http://www.example.com/repo/0/
// eClassifiers/1
{
"eClass":"http://www.example.com/repo/0/

eClassifiers/1/eClass",
...
}

Code Example 1: Ecore subset as JSON.

// BagModel
// URL: http://www.other.com/repo/1/
// eClassifiers/0
{
"name":"http://www.other.com/repo/1/

eClassifiers/0/name",
"abstract":"http://www.other.com/repo/1/

eClassifiers/0/abstract",
"eClass":"http://www.other.com/repo/1/

eClassifiers/0/eClass",
...
}

// Element
// URL: http://www.other.com/repo/1/
// eClassifiers/1
{
"name":"http://www.other.com/repo/1/

eClassifiers/1/name",
"abstract":"http://www.other.com/repo/1/

eClassifiers/1/abstract",
"eClass":"http://www.other.com/repo/1/

eClassifiers/1/eClass",
...
}

Code Example 2: Bag metamodel.

these names to the URLs. Code example 4 shows
how the EPackage for Ecore is transformed. The base
URL for it is http://www.example.com/repo/0.

3.3 EStructuralFeatures

The main challenge of distributing Ecore models is
how to represent EReferences of model instances. In

Towards Distributed Ecore Models

211



// instance of BagModel
// URL: http://www.example.com/repo/2
{
"elements":"http://www.example.com/repo/2/

elements",
"eClass":"http://www.example.com/repo/2/

eClass",
...
}

// Element A (instance of Element)
// URL: http://www.example.com/repo/2/
// elements/0
{
"name":"http://www.example.com/repo/2/

elements/0/name",
"eClass":"http://www.example.com/repo/2/

elements/0/eClass",
...
}

// Element B (instance of Element)
// URL: http://www.example.com/repo/2/
// elements/1
{
"name":"http://www.example.com/repo/2/

elements/1/name",
"eClass":"http://www.example.com/repo/2/

elements/1/eClass",
...
}

Code Example 3: A Bag model.

// EPackage for Ecore
// URL: http://www.example.com/repo/0
{
"name":"http://www.example.com/repo/0/

name",
"nsURI":"http://www.example.com/repo/0/

nsUri",
"eClassifiers":"http://www.example.com/repo/0/

eClassifiers",
"eClass":"http://www.example.com/repo/0/

eClass",
...
}

Code Example 4: Ecore subset.

an XMI file, these are based on the target metaclass
position inside the model graph. Cross-references
between instances of different models are file-based,
which hinders the ability to split a model into several
parts without breaking these references.

Thus, a mechanism that could enable
EReferences to be uniquely, globally identifi-
able and not be dependent on its physical position
would allow for splitting and distributing a model
easier.

We propose that EStructuralFeatures are given
a full and valid URL constructed based on the URL of
the metaclass it belongs and its name. For example,
the EAttribute nsURI of the Ecore EPackage would
be http://www.example.com/repo/0/nsUri.
Then, if we GET that URL, we would receive the
JSON value which represents it. This JSON value
depends on the subclass it is (i.e., EAttribute or
EReference) and on whether it is multi-valued or
not.

Multi-valued features will be transformed into
a JSON Array of values, while single-valued fea-
tures will be the JSON representation of the fea-
ture. EAttributes will map directly into JSON val-
ues (i.e., a EInt will be a JSON Double, EBoolean
will be a JSON Boolean. . . ). On the other hand,
EReferences will contain the URL of the target el-
ement.

Recalling our subset of Ecore, EPackage has a
eClassifiers EReference of type EClassifier,
which is multi-valued. As it was seen pre-
viosly on code example 1, the URL placeholder
for this is http://www.example.com/repo/0/
eClassifiers. If we query this URL, we would get
a JSON Array of URLs, one for each EClassifier
that the Ecore EPackage contains. On the other hand,
the single-valued name EAttribute would point to
a URL which would give its name. Code example 5
illustrates these features. First, the Ecore EPackage
is shown to remember the URLs of its features. Then,
the result of an HTTP GET request to its name URL
is shown, followed by that of its eClassifiers
feature.

Finally, EStructuralFeatures from metamodel
instances are also generated in the same way, this
can be seen in code example 6. In this ex-
ample, the Elements instances contained by the
BagModel instance can be queried through the URL
http://www.example.com/repo/2/elements. It
is worth noting that in this case, a BagModel is not
an EPackage but it is the root of our example model,
so it is given a base URL.

4 PROPOSED
IMPLEMENTATION

Our implementation for distributed Ecore models is
based on a RESTful-like web application and JSON,
but no restrictions apply to the storage database
or facility to be used. Thus, any implementation
conforming to the generation of JSON for meta-
classes or instances and creating URLs for the
EStructuralFeatures of all model elements could

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

212



// EPackage for Ecore
// URL: http://www.example.com/repo/0
{
"name":"http://www.example.com/repo/0/

name",
"eClassifiers":"http://www.example.com/repo/0/

eClassifiers",
...
}

---

// EPackage name EAttribute
// URL: http://www.example.com/repo/0/

name
"EPackage"

---

// EPackage eClassifiers EReference
// URL: http://www.example.com/repo/0/

eClassifiers
["http://www.example.com/repo/0/

eClassifiers/0",
"http://www.example.com/repo/0/

eClassifiers/1",
...

]

Code Example 5: An example of EStructuralFeatures.

// BagModel instance
// URL: http://www.example.com/repo/2
{
"elements":"http://www.example.com/repo/2/

elements",
"eClass":"http://www.example.com/repo/2/

eClass",
...
}

---

// BagModel elements EReference
// URL: http://www.example.com/repo/2/
// elements
["http://www.example.com/repo/2/

elements/0",
"http://www.example.com/repo/2/

elements/1"]

Code Example 6: An example of EStructuralFeatures.

be designed and would be interoperable.
We have already implemented a complete Ecore

meta-meta-model following this proposal, which is
available at http://www.cloudecore.com:8080/repo/0.
Our implementation is written in Scala (Typesafe,
2015d) using the Cake Pattern (Hunt, 2013), Play!
Framework (Typesafe, 2015c) and Akka (Typesafe,

2015b) library. As our data storage facility, we have
used MongoDB (MongoDB, 2015). A simplified
overview of the design can be seen in Figure 4. This
simple architecture enables an easy development of
new plugin-like drivers for other databases or ways of
storaging and querying elements. This way, any new
plugin for a database or storage facility (even using
the filesystem) would be trivial to add, allowing for
a faster growing list of supported ways of storaging
models.

Figure 4: Implementation overview.

Akka allows to deploy on remote machines and
sending messages in a transparent way, while also
managing failures on actors, which can be automat-
ically restarted. This framework also handles replica-
tion of actors as well as being able to deploy actors
remotely. These features enable our implementation
to be itself distributed in case it is needed and be flex-
ible and elastic transparently. These actors implement
a message passing mechanism to execute code. Mes-
sages received are first enqueued and then processed
in order to guarantee that no race condition exist.

Model elements are stored and queried by their id,
which is the URL on which they are located, overrid-
ing the id field of MongoDB. This NoSQL database
takes as value a JSON document, so we define a
value field to store the model element in its JSON

format directly.
We have a simple API to access the storage fa-

cilities. Using the Cake pattern, we can simulate de-
pendency injection (Fowler, 2004) and configure the
concrete storage facility to be used. Code example 7
shows the methods from the API that need to be im-
plemented for a new storage facility to be recognized.
This is a simple design allows implementations to be
developed rapidly, allowing for increasing the number
of storage facilities that can be used; the Scala Option
monad is used for null-safety.

class PersistentFacilityInterface{
save(id: String, value: JSONValue):

Option[JSONValue]
load(id: String): Option[JSONValue]

}

Code Example 7: Methods to be implemented for a new
database.

Towards Distributed Ecore Models

213



The REST layer provides HTTP verbs for actions
such as creating new model elements (POST) or ob-
taining them (GET). A persistence layer has been de-
signed to abstract the details of the actual database or
filesystem used to store the models.

Figure 5 illustrates the process of retreiving an el-
ement. A client would make an HTTP GET request
to the URL of the model element needed. The REST
application would then, based on this URL, ask the
storage facility to retreive its JSON representation; fi-
nally, this JSON would be sent to the client.

Figure 5: Activity diagram for GETing an element.

Figure 6 shows the process of uploading an
element. As it can be seen, the client would gen-
erate the corresponding JSON of the element to be
uploaded, together with the JSON corresponding to
its EStructuralFeatures, and upload them to the
server by an HTTP POST request on their URLs.
The server would then obtain the data and save it
in the storage linking the JSON to its URL. This
process requires the base URL to have been asked
for beforehand, which would require an additional
HTTP GET request to obtain it to a special URL:
http://www.cloudecore.com:8080/nextModelURL;
any GET request will obtain a unique one.

Figure 6: Activity diagram for POSTing an element.

These processes described are executed concur-
rently but no race condition is present, thanks to the
message passing mechanism offered by actors. This

means that to requests of nextModelURL will be en-
queued and delivered in a first-in first-out order. This
also implies that two successive HTTP POST requests
will result in the last one overwriting the first one.

Finally, EPackages need an additional
POST request to link their URI to its URL
(i.e., Ecore in our implementation is located at
http://www.cloudecore.com:8080/repo/0,
so we link its URI
http://www.eclipse.org/emf/2002/Ecore
to its URL). This is done by a POST request to
http://www.cloudecore.com:8080/metamodels
with both the URI and URL as a JSON object as
shown in code example 8.

{
"uri":"http://www.eclipse.org/emf/2002/
Ecore",

"url":"http://www.cloudecore.com:8080/
repo/0"

}

Code Example 8: JSON to be posted to add a new EPack-
age.

4.1 Benchmarks

We have tested our implementation by taking the
Ecore meta-meta-model and uploading it as a dis-
tributed Ecore model, following the proposal de-
scribed in this paper. We conduct our benchmarks as
indicated in (IBM, 2008a) and (IBM, 2008b).

The following computer setups have been used:
Our client PC setup is as follows:
• Intel i7 3770K 3.90GHz.

• 16 GB RAM.

• 10 Mbps downstream internet connection.

• 600 Kbps upstream internet connection.

• Windows 10 Pro 64 bit.

• Eclipse 4.4.2 Luna.

• JDK 1.8.0 45 (with parameters -Xms512m
-Xmx2048m).

Our server PC setup is as follows:
• Intel Atom N2800 1.86GHz.

• 2 GB RAM.

• 100 Mbps symmetric internet connection.

• ArchLinux Kernel 3.14.32 64 bit.

• JDK 1.8.0 51 (with parameters -Xmx1024m).

• Play! Framework 2.
We have performed tests in three different configura-
tions:

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

214



• Client-Server in localhost.

• Client-Server in same network.

• Client-Server in different networks over the inter-
net.

Table 1 shows the results of these benchmarks in
milliseconds. From the data we can observe that even
though our implementation performs well on local-
host, the overhead of connecting over the internet is
really high, as the average ping from the client to the
server is 72 milliseconds, meanwhile the average ping
in the same network is 3 milliseconds. These delays
are the clear explanation of the decrease in perfor-
mance, since all the requests are now being slowed
down by the net. The theorical best average of el-
ements per second for 72 milliseconds is 13.8 (i.e.,
1000 milliseconds / 72 milliseconds, which are the
most connections that can be achieved per second
with that network lag). On the other hand, a ping of 3
milliseconds implies that 333 elements per second is
the theorical maximum that can be achieved.

Table 1: Average elements per second for each benchmark.

POST GET
Localhost 5500 9000

Same Network 250 252
Internet 11 12

As previously mentioned, these benchmarks
clearly indicate that the most important factor in per-
formance for distributed Ecore models is network la-
tency. It would also imply that it can handle multi-
ple different connections, since each petition is not
overloading the server. Any improvement on network
connectivity would imply a better performance with
the same hardware configuration.

5 RELATED WORK

The interest in being able to cope with huge models
is an important and difficult challenge which has not
been yet solved. Many propositions and tools have
been developed to help on this task.

Emfjson (Hillairet, 2011) replaces XMI as the
serialization standard for models with JSON. It
can store models on .json files or use docu-
ment databases such as MongoDB or CouchDB
as storage. It does not split a model into dif-
ferent pieces or elements, saving it as a single
JSON document. References are implemented us-
ing URIs as in the XMI format, and fragment-like
(e.g., http://www.eclipse.org/emf/2002/Ecore
#//EClass refers to Ecore EClass)

EMF-REST (Ed-Douibi et al., 2013) generates a
REST interface to access and modify Ecore models.
This generation must be done per metamodel, so two
different metamodels generate two different applica-
tions. Interestingly, URLs are used to name elements
in the model, but these elements need to have an id or
name attribute or any attribute with unique activated.

A roadmap (Clasen et al., 2012) has been pro-
posed for the transformation of Very Large Models
(VLM), in which they discuss the importance of dis-
tributing models and strategies for partitioning them.
They discuss some benefits of bringing Ecore models
to the cloud such as being able to support VLM, offer
better scalability than file-based models and enabling
collaboration for teams by sharing models easily.

Finally, the Mondo Project (Kolovos et al., 2015)
aims to tackle the increasingly important challenge of
scalability in MDE in a comprehensive manner.

6 CONCLUSION AND FUTURE
WORK

In this paper we have presented a proposal and im-
plementation for distributing Ecore models based on
JSON and REST applications. We have shown that
using URLs as references between models grants the
ability to distribute and partition with ease any model.

We have presented a implementation of our pro-
posed representation, in which he have success-
fully uploaded the complete Ecore meta-meta-model,
demonstrating that it can manage non-trivial models
and metamodels.

We plan to add a configurable pagination sup-
port by default to EStructuralFeatures which are
ELists, so that the the client can ask for a number of
elements at a time.

We also want to study the use of Akka clus-
ters(Typesafe, 2015a) so that we can transparently
handle redundancy and fail-over recuperations, as
well as being able to make a distributed implemen-
tation using this technology.

We are currently studying adding a batch-mode
for adding elements, so network overhead can be re-
duced by reducing the necessary HTTP connections.
Finally, we plan to pretty-print JSON answers son
they can be more user-friendly and human readables
if the web client is not capable of doing it. We would
also like to study the use of using Big Data tools as
storage facility, such as Hadoop.

Using automatic HTTP redirect rules might
prove useful when dealing with complicated
structures and relations between model elements.
For instance, it would be easier for the user that

Towards Distributed Ecore Models

215



a redirect is performed whenever they access
http://www.cloudecore.com:8080/repo/0/
eClass/name (i.e., the name of the EClass for
the Ecore EPackage). This would redirect to
http://www.cloudecore.com:8080/repo/0/
eClassifiers/12/name instead of giving a Not
Found error for the original URL. This would
imply that a processing be done before querying the
databases with the given URL to look for cases in
which a redirect must be performed.

A Java implementation for EMF Resource would
be helpful, so it would allow to transparently access
distributed Ecore models in a familiar way. This
would allow other tools to natively be able to use dis-
tributed Ecore models.

A versioning system would be interesting to be in-
cluded as a transparent feature in the implementation,
so that it could allow different versions of the same
model or metamodel to coexist with newer ones, as
well as allow comparing changes made from one ver-
sion to other.

Finally, we are also developing a model-to-model
transformation language that is aware of distributed
Ecore models and will exploit the inherent parallelism
that they offer. A preliminary metamodel which im-
plements this transformation language can be found
at http://cloudecore.com:8080/repo/1.

The code for our distributed Ecore model imple-
mentation will be available soon, as well as the code
for the transformation model whenever it is com-
pleted. Also, any new feature added will be also pub-
lished and its code made available.

REFERENCES

Barmpis, K. and Kolovos, D. (2014). Towards scalable
querying of large-scale models. In Cabot, J. and Ru-
bin, J., editors, Modelling Foundations and Applica-
tions, volume 8569 of Lecture Notes in Computer Sci-
ence, pages 35–50. Springer International Publishing.

Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., and Lau-
nay, D. (2014). Neo4EMF, a Scalable Persistence
Layer for EMF Models. In Cabot, J. and Rubin, J.,
editors, ECMFA- European conference on Modeling
Foundations and applications, volume 8569, pages
230–241, York, UK, United Kingdom. University of
York, Springer International Publishing.

Clasen, C., Didonet Del Fabro, M., and Tisi, M. (2012).
Transforming Very Large Models in the Cloud: a Re-
search Roadmap. In First International Workshop
on Model-Driven Engineering on and for the Cloud,
Copenhagen, Denmark. Springer.

Cuadrado, J. S. and Aracil, J. P. (2014). Scheduling model-
to-model transformations with continuations. Softw.,
Pract. Exper., 44(11):1351–1378.

Ed-Douibi, H., Alvarez, C., Cánovas, J., and
Cabot, J. (2013). Emf-rest. http://som-
research.uoc.edu/tools/emf-rest/.

Espinazo-Pagán, J., Cuadrado, J. S., and Molina, J. G.
(2015). A repository for scalable model management.
Software and System Modeling, 14(1):219–239.

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures. PhD thesis,
University of California, Irvine.

Fowler, M. (2004). Inversion of control containers and the
dependency injection pattern.

Hillairet, G. (2011). emfjson. http://emfjson.org/.
Hunt, J. (2013). Cake pattern. pages 115–119.
IBM (2008a). Robust java benchmarking, part 1: Issues.

http://www.ibm.com/developerworks/java/library/j-
benchmark1/index.html.

IBM (2008b). Robust java benchmark-
ing, part 2: Statistics and solutions.
https://www.ibm.com/developerworks/java/library/j-
benchmark2/.

JSON (2015). Json. http://json.org/.
Kolovos, D. S., Rose, L. M., Paige, R. F., Guerra, E.,

Cuadrado, J. S., de Lara, J., Ráth, I., Varró, D., Sunyé,
G., and Tisi, M. (2015). MONDO: scalable modelling
and model management on the cloud. In Proceedings
of the Projects Showcase, part of the Software Tech-
nologies: Applications and Foundations 2015 federa-
tion of conferences (STAF 2015), L’Aquila, Italy, July
22, 2015., pages 44–53.

MongoDB (2015). Mongodb website.
https://www.mongodb.org/.

OMG (2015). XML metadata interchange (xmi).
http://www.omg.org/spec/XMI/.

Scheidgen, M. and Zubow, A. (2012). Map/reduce on emf
models. In Proceedings of the 1st International Work-
shop on Model-Driven Engineering for High Perfor-
mance and CLoud Computing, MDHPCL ’12, pages
7:1–7:5, New York, NY, USA. ACM.

Tisi, M., Martinez, S., and Choura, H. (2013). Parallel Ex-
ecution of ATL Transformation Rules. In MoDELS,
pages 656–672, Miami, United States.

Typesafe (2015a). Akka clusters.
http://doc.akka.io/docs/akka/2.3.12/common/cluster.html/.

Typesafe (2015b). Akka toolkit. https://www.akka.io/.
Typesafe (2015c). Play! framework.

https://www.playframework.com/.
Typesafe (2015d). Scala language. http://www.scala-

lang.org/.
W3C (2001). Xmlschema.

http://www.w3.org/XML/Schema.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

216


