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Abstract: Retrieving information in real time from fringe patterns is a topic of great importance in scientific and 
engineering applications of optical methods. This paper describes an application of neural networks for real 
time pressure measurement using fringe pattern recognition. It is based on the capability of neural networks 
to recognize signals that are similar but not identical to the signals which were used to train the network. In 
this investigation a pressure sensor, which was part of the wall of the wind tunnel, and an optical apparatus 
were used to produce moiré fringes. The fringe patterns generated were analyzed by a back propagation neural 
network at the speed of the recording device, which was a CCD camera with a pixel resolution of 649 (H) x 
491 (V). This method of information retrieval was used to measure the pressure fluctuations in the boundary 
layer flow. A second neural network was used to recognize the pressure patterns and to provide input to a 
control system that was capable to preserve the stability of the flow. 

1 INTRODUCTION 

Determination of frequency in fringe patterns is of 
great importance in many applications of optical 
methods in engineering (Sciammarella and Kim, 
2005).  This paper presents a technique to find fringe 
pattern frequencies in real-time.  Real-time refers to 
timing within the range of frequencies of the 
recording devices such as CCD cameras.  In this 
paper, an optical pressure sensor, which is capable of 
producing moiré fringes, is introduced.  The optical 
pressure sensor was part of the wall of the wind tunnel 
and was used to instantaneously measure the pressure 
fluctuations in the boundary layer flow.  The optical 
apparatus used was a reflection moiré interferometer.  
The Helium-Neon laser light was used to illuminate 
the reflecting surface of the pressure sensor, which 
was displaced due to wall pressure fluctuations by a 
few light wavelengths.  A CCD camera recorded 
instantaneous fringe patterns.  These fringes were 
slope fringes which were used for the pressure 
measurements by a back propagation neural network.  
The wall area observed was approximately 76 mm x 
76 mm.  The flow velocity outside the boundary layer 
was 6.2 m/sec.  Wall pressure was both positive and 

negative and was in the order of ± 5.0 x 10-4 psi 
(Piroozan, 1997). 

In the moiré interferometer developed in the 
present investigation, slope of the deformed 
membrane generated straight and vertical (constant 
slope) moiré fringes, which were linearly 
proportional to the pressure on the membrane, and 
were the source of information used for the wall 
pressure measurement. 

The optical system provided 15 x 15 arrays of 
inputs corresponding to the 15 x 15 array of 
diaphragms of the pressure sensor to a back 
propagation neural network that analyzed the 
received signals and classified them into four pressure 
levels.  The classified pressures were a 15 x 15 array 
of numbers ranging from 1 to 4.  These numbers were 
then input to a second back propagation neural 
network which was used to recognize the pressure 
patterns.  The output from the back propagation 
neural network used for pattern recognition provided 
real-time input to a control system for fluid flow 
control. Figure 1 shows a schematic representation of 
the main components used in the neural network 
reading process. 
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Figure 1: Schematic representation of the neural network 
reading process. 

2 PRESSURE SENSOR 

The optical pressure transducer was based on 
measuring the slopes of an array of diaphragms using 
a moiré interferometer.  The diaphragms were formed 
by stretching an elastic membrane over an array of 
holes drilled on a circular disk, which was set into the 
boundary layer flow (Figure 2) (Piroozan, 1997). 

A 15 x 15 array of holes each with a diameter of 4 
mm and center-to-center distance of 5 mm were 
drilled through the disk.  The diameter and spacing of 
the holes were selected to give a spatial resolution of  

 

φ 6 mm

15 x 15 Array of 4 mm dia. holes, 
center to center 5 mm Beveled edge, 8° 

Static pressure chamber 
wall, 105 mm inner x 
140 mm outer dia. 

φ 4 mm

‘O’ Ring groove 
110 mm inner x 
120 mm outer 
dia. 

Support flange 140 mm 
inner x 170 mm outer dia. 

 
Figure 2: Pressure sensor layout. 

approximately 4 holes per span-wise wavelength of 
the stream-wise vortex mode in the experiment.  The 
holes were spaced evenly in the span-wise and 
stream-wise directions.  These holes collectively 
made a square, 76.5 mm in width and 74 mm in 
height, which was illuminated by a light beam with a 
diameter of 105 mm. 

The measuring (front) surface of the disk was 
covered with a thin layer of cellulose nitrate 

(nitrocellulose) membrane covered with a thin layer 
of aluminum.  It formed an optical quality mirror 
surface, which was part of a moiré interferometer.  
Figure 3 shows a computer generated pressure field 
used for implementing the required software.  This 
Figure shows the moiré fringe patterns for each of the 
15 x 15 array of diaphragms of the pressure sensor 
(Figure 2) for a pressure ranging between ±5.0 x 10-4 
psi. 

3 OPTICAL ARRANGEMENT 

Figure 4 shows the shear interferometer used for the 
wall pressure measurement.  The optical arrangement 
was mounted on a steel structure beside the wind 
tunnel.  A 10.0 milliwatt linearly polarized Helium 
Neon laser was used as the light source.  Diameter of 
the laser beam was expanded from 0.95 mm to 150 
mm by using: a microscope objective with a 
magnification of 63x and focal length of 2.94 mm, a 
5 μm pinhole, 

 
Figure 3: Simulated pressure field used to develop the 
software of the pressure sensing system. 

and a collimating lens with a focal length of 762 mm 
(30 inches) and diameter of 152 mm (6 inches).  
Collimated light passed through a 1000 line/inch 
grating and was reflected by the pressure sensor after 
passing through a non-reflecting, optically flat glass 
with a diameter of 279 mm (11 inches) which was 
mounted on the wind tunnel wall.  Reflected light then 
passed through the non-reflecting glass and then a 
telecentric system of lenses.  The telecentric system 
of lenses consisted of two identical lenses with focal 
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Figure 4: Optical setup used for creating moiré fringes. 

lengths of 600 mm and diameters of 120 mm which 
reproduced the pressure sensor at the focal point of 
the second lens.  The second grating was placed after 
the telecentric system of lenses and was identical with 
the first grating with a frequency of 1000 line/inch.  
This grating was placed at a distance d from the focal 
point of the second lens of the telecentric lens system, 
where the pressure sensor was reproduced.  
Sensitivity was increased by increasing the distance 
d.  The third lens used had a focal length of 128.7 mm 
and diameter of 76 mm which was used to focus the 
fundamental harmonic (order +1 or -1) and order 0 
into the CCD camera.  This was done by slightly 
rotating lens L3 about its vertical axis. 

Figure 5 shows the elastic membrane stretched 
over a pressure sensor.  Slope of the membrane is 
given by (Piroozan, 1997), 

 
Figure 5: Elastic membrane stretched over a pressure 
sensor. 

o2T
Prw =

r∂
∂

 (1)

where P is the pressure differential over the 
membrane, To is the tension in the membrane, and r is 

the distance measured from the center of each sensor.  
Equation (1) shows that fringes are a linear function 
of the pressure differential over the membrane.  
Figure 6 shows the constant slope moiré fringes 
recorded using the optical setup shown in Figure 4 for 
a 3 x 3 version of the pressure sensor (Ligtenberg, 
1955). 

4 PRESSURE LEVELS 
MEASUREMENT: NEURAL 
NETWORKS 

For the complete process of flow control, the sensor 
had to measure the pressure at the 225 points defined 
by the 15 x 15 array of membranes in one cycle, that 
is in 1/30 second (33 milliseconds).  There is no time 
to apply methods of fringe analysis to obtain the 
pressure values.  For this reason a back propagation 
neural network was selected to read the patterns and 
to classify the readings in real time into pressures.  A 
back propagation network can be used for the purpose 
of recognizing signals similar but not totally identical 
to those which have been used for training the 
network.  The architecture of the network is 
illustrated in Figure 7:  there is an input layer, an 
output layer, and a hidden layer, all interconnected.  
The training of a feedback network requires three 
stages:  (a) feed forward of the patterns used for the 
training, (b) determination of error terms at each node 
via the back propagation strategy, and (c) adjustment 
of the weights.  In the recognition phase of the 
network only the forward part is applied, hence the 
results may be very fast (Fausett, 1994).  

 
Figure 6: Constant slope moiré fringes recorded over a 3 x 
3 version of the pressure sensor. 
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-50 x 10--5 psi*     -45 x 10--5 psi       -40 x 10--5 psi       -35 x 10--5 psi      -30 x 10--5 psi 

Pressure Level 1 

 
  -25 x 10--5 psi       -20 x 10--5 psi      -15 x 10--5 psi        -10 x 10--5 psi        -5 x 10--5 psi 

Pressure Level 2 

 
     5 x 10--5 psi           10 x 10--5 psi        15 x 10--5 psi        20 x 10--5 psi       25 x 10--5 psi 

Pressure Level 3 

 
       30 x 10--5 psi        35 x 10--5 psi         40 x 10--5 psi          45 x 10--5 psi        50 x 10--5 psi 

Pressure Level 4 

Figure 8: Simulated pressure patterns (levels 1 and 2 correspond to negative pressures, levels 3 and 4 correspond to positive 
pressures). 

 
Figure 7: Schematic representation of the back propagation 
network utilized to classify and read fringes. 

The accuracy of the obtained results depends on the 
training phase of the network.  The same circuit will 
provide different results with different trainings.  
There are two important goals to fulfill in the design 
of the network: 
a) All expected classes of inputs must be represented 

in the training process.  The separation between 
classes must be adequately represented. 

b) Within each class, all the possible variations must 
be present. 
The size of the required training samples depends 

on the size of the network.  There is a rule of thumb 
of having at least twice as many samples as the 
number of weights present in the network. 

The input to the system is a series of calibration 
patterns.  Two types of calibrations were performed 
in this particular application: static and dynamic 
calibrations.  In the static calibration, pre-selected 
pressures were applied to the sensors, the images 
were recorded and stored in the computer memory.  
The dynamic pressure calibration was utilized to 
verify the static calibration and to see if there is any 
dynamic resonant effect in the patterns.  The static 
calibration patterns were utilized as input for the 
neutral network.  Figure 8 shows a computer-
generated set of calibration pressures used in the 

preliminary developments of the system.  In this 
preliminary work, the whole process was digitally 
simulated.  The levels of pressure were subdivided 
into four levels with the limits indicated in Figure 
8.To analyze the pressure distribution in a given 
region, an array containing a number of equally 
spaced sensors is utilized.  Each sensor gives the 
average pressure in a region (area of the sensor).  This 
area is selected by considerations involving the 
physical size of the structures in the flow that one 
wants to detect, the sensibility of the individual 
sensors, the CCD camera sensor size, the number of 
pixels, and the optical system. 

Figure 3 showed a computer-generated pressure 
field used for implementing the required software.  
Figure 9 shows the output matrix corresponding to the 
patterns of Figure 3. The neural networks software 
used to carry out this operation was NeuralWorks 
Professional II/Plus (NeuralWare Inc.). 

For purposes of comparing experimental (hot 
wire) measurements and numerical computation 
values, pressure measurements were done for a 1 x 7 
array of the pressure sensor.  1,050 fringe patterns  

4    2    2    1    2    1    1    1    1    1    2    1    1    2    2 
3    2    2    2    1    1    2    1    1    1    1    2    2    2    2 
2    1    2    2    1    1    1    2    1    1    1    1    2    1    2 
4    4    4    4    4    3    4    3    4    3    4    4    4    3    4 
4    3    3    4    4    4    4    4    4    4    3    4    4    4    3 
4    4    3    4    3    3    4    4    4    4    4    3    4    4    3 
1    1    2    2    1    1    2    2    2    2    2    2    2    1    1 
1    2    1    2    1    1    1    2    1    1    1    1    1    1    1 
1    1    2    1    2    2    1    1    2    2    1    1    2    1    1 
4    4    4    3    4    4    4    4    3    4    3    4    4    4    4 
4    3    3    2    3    3    4    4    4    4    4    3    4    3    4 
4    4    3    4    3    3    4    3    2    4    3    3    3    4    4 
1    1    2    2    1    1    1    2    1    1    1    1    2    1    1 
1    1    2    1    1    1    1    1    1    1    1    1    2    1    1 
1    1    2    2    1    1    1    1    1    2    1    1    1    1    1 

Figure 9: Output of the neural network corresponding to the 
pressure field shown in Figure 3. 
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1   2    3   4   5   6   7   8   9   10 

from the array with known pressures in the range of 
±0.0005 psi were recorded.  Each record consisted of 
24 positive integers ranging from zero to 255 which 
were the minimum and maximum pixel values in an 
eight-bit frame.  These numbers were input to a back 
propagation neural network with 24 processing 
elements in the input layer.  Figure 10 shows the input 
to the back propagation neural network from each 
individual sensor. 
 

1  2  3  4  5  ..................  22 23 24 

Processing elements 
in the input layer 

1     2     3     4      5    .............................................   22   23   24 

Pixels 

Pixel 

Sensor area

 
Figure 10: Input data from a sensor to the input layer of the 
back propagation neural network for pressure classification. 

Number of samples were doubled by writing the 
input vector in normal {a1, a2, a3, ... , a24} as well as 
in reverse order {a24, a23, a22, ... , a1}, where a 
represents the pixel value.  By doing so, not only the 
number of samples was increased, but also phase 
differences arising from the different sensors and 
possible noise were also included.  These patterns 
were used to train and test the back propagation 
neural network.  1,750 of the records (out of the total 
of 2,100) were used for training while the remaining 
350 records were used to test the performance of the 
network.  The network consisted of an input layer, 
one output layer, and one hidden layer as shown in 
Figure 11. 

 
 

Figure 11: The back propagation neural network used for 
the pressure classification. 

There were 24 processing elements in the input 
layer, ten processing elements in the hidden layer, and 
five processing elements in the output layer which 

were fully interconnected (connections are not shown 
in Figure 11).  The input consisted of positive integers 
ranging from zero to 255.  The input data was first 
mapped to lie between +1 and -1 (bipolar format) by 
selecting the “Bipolar Inputs” and “MinMax Table” 

 
Figure 12: RMS error of the back propagation network used 
for pressure classification. 

options from the neural networks software 
(NeuralWare, 1993).  The “SoftMax Output” option 
was also used to force the components of the desired 
output to add up to one (one of n code).  The tangent 
hyperbolic function was used as the activation 
function while normalized cumulative delta rule was 
used as the learning rule.  Compared to other 
activation functions such as sine or sigmoid 
functions, tangent hyperbolic gave better results.  
Epoch was also set to 350, which was approximately 
the number of training records in each pressure level.  
By doing so, weights were updated after 350 learning 
cycles. This resulted in a better performance by the 
network as compared to selecting 1750 (total number 
of training records) or using the default setting value 
of 16.  Figure 12 shows the Root Mean Square (RMS) 
error during the training session (RMS error is a 
common measure of the performance of a network).  
The RMS error adds up the squares of the errors for 
each processing element in the output layer, divides 
by the number of processing elements in the output 
layer to obtain an average value, and then takes the 
square root of that average value.  The network ceased 
to learn after the RMS error converged to 
approximately 0.10.  This may be in part due to 
inaccuracies in the input data used for training the 
network.  Inaccuracies are mainly due to the pressure 
fluctuations in the air in the lab which is of the same 
order of magnitude as the pressures set for calibration.   
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    (a)            (b)         (c) 

Figure 14: (a) Computer generated pressure field, and the (b) corresponding classified pressure field output from neural 
networks. (c) output signals from pattern recognition neural networks. 

Figure 12 shows that the RMS error has converged 
during the learning session, which means that input 
patterns are learned by the network in spite of the 
inaccuracies in the input data.  In testing, the trained 
network gave 56 mistakes out of the 350 records used 
for testing (testing was done by pressure patterns with 
known pressure levels), that is, 84% correct answers.  
The source code generated from the trained network 
was then used for the real pressure classification. 

To make the operation fast, data from only one 
row of each pressure sensor was used for the pressure 
measurement.  Each row was represented by 24 pixels 
per sensor.  Images were frozen during the data 
acquisition process.  Analysis was done sequentially 
for each sensor.  The output was a 1 x 7 array 
consisting of integers 1 through 5 corresponding to 
the five pressure levels. 

5 PROCESS TO ANALYZE THE 
PRESSURE PATTERNS 

The pressure pattern is characterized by elongated 
features, vortices, in the direction of the flow.  In the 
transversal direction these features are of the order of 
three sensor spacing wide.  Through theoretical and 
experimental results the shape of the features is 
known and only actual dimensions (width and 
position of the longitudinal vortices) are not known.  
Figure 13 shows the expected pressure field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: The expected pressure field. 

The complete process of pressure measurement 
and pattern recognition was done by using computer 
generated and expected pressure fields for the 15 x 15 
array of sensors.  Figure 14 shows a sample of the 
computer generated pressure field with the 
corresponding output from the back propagation 
neural networks for pressure classification and 
pattern recognition.  Pressures were classified into 
four levels.  The back propagation neural network 
used for pressure pattern recognition consisted of an 
input layer with 225 processing elements, a hidden 
layer with 50 processing elements and an output layer 
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with 15 processing elements.  The training patterns 
with the desired output vectors were used to train the 
back propagation neural network.  “Delta-Rule” and 
“Sigmoid” function were used as the learning rule and 
the activation function.  “Bipolar Inputs” was 
deselected and Epoch was selected as 16.  After about 
5,000,000 iterations, the training set converged and 
the network was tested with the patterns that the 
network had not seen before (these patterns were not 
used for training the network).  The 15 outputs from 
the network were exactly the same as the desired 
output vectors as shown in Figure 14 (c). 

6 CONCLUSIONS 

From the obtained patterns it can be concluded that 
the back-propagation neural network used for pattern 
classification and pressure measurement proved to 
work satisfactorily especially for noisy inputs. 

Pressure fluctuations in the boundary layer were 
extremely small in the order of ±5.0 x 10-4 psi.  When 
dealing with small pressures, calibration (gathering 
the training and testing data) proved to be a problem 
due to very small random fluctuations in the 
atmospheric pressure in the laboratory due to external 
causes (wind blowing, opening or closing doors in 
neighboring rooms).  Calibration and data gathering 
must be done with static pressures applied to the 
pressure sensor with no pressure fluctuations present 
in the surrounding air. 

Successful operation of the pressure classification 
and pattern recognition to a large extend depends on 
the quality of the fringe patterns and the signals 
generated by the electro-optical system, in particular, 
the pressure sensor.  Great care must be taken in the 
selection and fabrication of the membrane material. 

The computer code used for the pattern 
recognition of the 15 x 15 array consists of 
approximately 6000 lines of C programming.  
Operating systems such as Windows or DOS and C 
compilers running on these platforms are not 
adequate, or, can handle this job very slowly.  It is 
recommended to operate the image processing system 
and the neural networks on work stations with UNIX 
operating system. 

Determination of fringe pattern frequencies in real 
time has a variety of interesting applications in the 
future as viewed from the recent developments 
(Sciammarella and Kim, 2005).  Neural networks 
proved to be a powerful tool which can be utilized for 
this purpose. 
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