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Abstract: Based on recent findings from the field of human similarity perception, we propose a dual process model
(DPM) of taxonomic and thematic similarity assessment which can be utilised in machine learning applica-
tions. Taxonomic reasoning is related to predicate based measures (counting) whereas thematic reasoning is
mostly associated with metric distances (measuring). We suggest a procedure that combines both processes
into a single similarity kernel. For each feature dimension of the observational data, an optimal measure is
selected by a Greedy algorithm: A set of possible measures is tested, and the one that leads to improved clas-
sification performance of the whole model is denoted. These measures are combined into a single SVM kernel
by means of generalisation (converting distances into similarities) and quantisation (applying predicate based
measures to interval scale data). We then demonstrate how to apply our model to a classification problem
of MPEG-7 features from a test set of images. Evaluation shows that the performance of the DPM kernel is
superior to those of the standard SVM kernels. This supports our theory that the DPM comes closer to human
similarity judgment than any singular measure, and it motivates our suggestion to employ the DPM not only
in image retrieval but also in related tasks.

1 INTRODUCTION

We suggest an SVM kernel function for image re-
trieval that is based on the latest findings of psycho-
logical research on human similarity measurement.
Humans appear to derive their similarity judgments
from a mixture of thematic and taxonomic stimuli,
called a dual process model of similarity (DPM)
(Wisniewski and Bassok, 1999). Thematic stimuli
(e.g.general appearance in form of a global color his-
togram) are typically measured by distance functions,
taxonomic ones (e.g.co-existing properties such as
”person visible”) by similarity functions. The first re-
quire the transformation from distance to similarity by
a so-called generalisation function. The latter require
the quantisation of numbers into predicates.

This paper provides the DPM kernel as well as
the necessary components, partly taken from earlier
work of the authors. The kernel is applied on a set
of MPEG-7 features computed for a test set of im-
ages. Evaluation shows that for the present task the
DPM kernel is superior to the standard SVM kernels
which proofs the concept as well as supports the men-
tioned psychological findings. We suggest to employ

the DPM kernel also on related tasks.
The next section introduces the model compo-

nents, including the generalisation model and the
quantisation model employed in the DPM kernel.
Section 3 explains the similarity model itself, eval-
uated and discussed in Section 4.

2 BACKGROUND

2.1 Measuring vs. Counting

Traditional mathematical models of human similarity
perception are often geometric ones (e.g.(Torgerson,
1952)): Observational data is mapped into some psy-
chological or mathematical space (usually a vector
space) in such a way that similar observations are pro-
jected into the same regions, thus constituting a metric
on that space.

In his 1977 paper (Tversky, 1977), psychologist
Amos Tversky proposed a different approach towards
similarity. After demonstrating that the metric axioms
are in fact violated in human similarity judgment, he

Klauninger, B. and Eidenberger, H.
Similarity Assessment as a Dual Process Model of Counting and Measuring.
DOI: 10.5220/0005655801410147
In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), pages 141-147
ISBN: 978-989-758-173-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

141



developed a set-theoretical framework that operates
in terms of matching and mismatching features rather
than metric distances. Observations are represented
as collection of features, and similarity is computed
by counting common and distinct features. Figure 1
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Figure 1: Feature Contrast Model.

defines the building blocks of all predicate based sim-
ilarity measures: For two stimuli X ,Y : a = |X ∩Y |,
b = |X \Y |, c = |Y \X |, and d = |M \ (X ∪Y )|. The
concept of similarity as counting gave birth to a vari-
ety of predicate based measures, as for example Tver-
sky’s Feature Contrast Model (FCM) itself, Jaccard’s
coefficient, Kulczynski distance and many others.
Other existing measures were integrated in the model
(e.g.the Hamming distance). Both metric distances
and predicate-based measures are essential building
blocks of the DPM kernel defined in Section 3.

2.2 Quantisation Model

In order to be able to apply predicate-based measures
to quantities, the set theoretical definition of predi-
cates has to be extended to the interval scale, i.e. each
feature dimension indicates that a property is more
or less present (0 means “not at all”, 1 means “fully
present”). One candidate would be the Fuzzy Feature
Contrast Model (see (Santini and Jain, 1999)) which
arguably suffers from some shortcomings. So, for our
purposes, we utilized the Quantisation Model (QM)
as described in (Eidenberger, 2003). This QM re-
places set theoretical predicate measures with statis-
tical functions in the following way:

a = |X ∩Y | := ∑
i

si,si =

{
xi+yi

2 if M− xi+yi
2 <= ε1

0 else
(1)

b = |X \Y | := ∑
i

si,si =

{
xi− yi if M− (xi− yi)<= ε2
0 else

(2)

c = |Y \X | := ∑
i

si,si =

{
yi− xi if M− (yi− xi)<= ε2
0 else

(3)

with: ε1,ε2 being two thresholds and M = 1 for
xi ∈ [0,1]. Depending on the thresholds, two quanti-
ties are considered co-existing predicates if they are
both sufficiently large. Below, we employ this model
for the transformation of image features into count-
able taxonomic properties.

2.3 From Distance to Similarity:
Generalisation

Intuitively, one would define similarity as some kind
of “inverse distance”: The more similar two stimuli
are, the smaller their distance in an appropriate psy-
chological space should be. A function that estimates
similarities from distances is called a generalisation
function.

In (Shepard, 1987), Shepard carefully examined
different candidates and came to the conclusion that
the probability P(Rx|Sy) that a stimulus Sy is associ-
ated with a response Rx is proportional to e−δx,y , δ be-
ing the distance between representations x and y in an
appropriate space (Shepard, 1987). This relation is
known as the Universal Law of Generalisation.

Figure 2: Three Generalisation Functions.

While Shepard’s law holds on some classes of data
sets, there are others that violate it (Chater and Vitnyi,
2003, p.349). In some cases, a Gaussian density func-
tion, where P(Rx|Sy) is proportional to e−δx,y

2
, has

been applied more successful. Another generalisation
function has been proposed by Tenenbaum and Grif-
fiths (Tenenbaum and Griffiths, 2001) as an extension
of the Universal Law to generalising from multiple
consequential stimuli. In the DPM kernel, we employ
a generalisation function to transform distance values
into thematic similarities that can be combined with
taxonomic properties.
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2.4 General Dual Process Model

For the definition of our DPM kernel function, we
employ the simple model suggested in (Eidenberger,
2012, p.540):

md pm = α.mtax +(1−α)g(mthem) (4)

Here, mtax stands for taxonomic measures which
are usually similarities (e.g.co-occurrences, cosine
similarity); mthem stands for the thematic aspects
expressed in image features which are usually dis-
tances (e.g.Hamming distance, city block metric); g
is the generalisation function (Gaussian, Tenenbaum
or Shepard).

Linear combinations with α are capable of repre-
senting any other similarity measurement. α itself is
defined by the user’s preference toward taxonomic vs.
thematic reasoning which could be estimated in psy-
chological tests.

3 MATERIALS AND METHODS

3.1 An Integrative Image of Similarity

Our hypothesis is that, in order to construct an ideal
global similarity measure for a given dataset, differ-
ent feature dimensions may require different similar-
ity functions. The list of possible kernel functions can
be aligned at two dimensions (see Figure 3), reflecting
current findings from psychology on human similar-
ity perception: the continuum from similarities (sep-
arable stimuli) to distances (integral stimuli) on one
hand, and the continuum from predicate-based (tax-
onomic) to quantitative (thematic) reasoning on the
other hand.

separable integral

similarity distance

thematic quantities

taxonomic predicates

similarity measurement

Figure 3: Axes of Similarity Assessment.

3.2 Greedy Algorithm

If we accept the model described above, the question
arises how to determine which feature dimensions are
best compared by which measure. For a pair of im-
ages, we could use some a-priori knowledge about the
semantic meaning of the dimension, e.g.the feature
“global color histogram” would most likely be com-
pared using a quantitative measure (e.g.earth mover’s
distance), whereas for the taxonomic feature “face
visible” it would make sense to use some predicate-
based measure.

In absence of such a-priori knowledge, we could
try out several measures for each dimension, evalu-
ate the model and denote the measure that yields the
best global result during the evaluation process. Such
a heuristic is known as Greedy algorithm: We are
able to approximate the globally optimal solution by
making locally optimal choices (Cormen et al., 2009,
p.424f). In contrast to Dynamic Programming where
each sub-problem is optimised separately and then
combined, our algorithm evaluates the whole problem
in each step.

Ideally, the dimensions should be uncorrelated. In
practice, this is usually not the case. Hence the or-
der in which the dimensions were processed had been
randomised.

3.3 Our Model

There is a vast variety of similarities, distances, corre-
lations and divergences that have been proposed in lit-
erature. A classification into thematic and taxonomic
measures can be established in the following way: If
the formula contains a contrast term in the formula
(x− y, x

y , a
. , .
−a , .

b or .
c ), then it is considered the-

matic, otherwise taxonomic.
In order to capture the two-dimensional frame-

work of similarities vs. distances and predicates vs.
quantities, we focused on four candidates that repre-
sent extremes in the continuum of possible measures
(see figure 4):

1. Dot Product: separable stimuli, thematic reason-
ing

2. Number of co-occurrences: separable stimuli,
taxonomic reasoning

3. L1 distance: integral stimuli, thematic reasoning

4. Hamming distance: integral stimuli, taxonomic
reasoning

The inner product or dot product of two vectors is
equivalent to applying the cosine similarity measure
on [0,1] normalised data. It compares two vectors in
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Figure 4: Chosen Measures.

respect of the angle between them: identical vectors
result in a score of 1, orthogonal vectors (θ = 90◦)
give a score of 0. This measure has successfully
been applied to fields like document retrieval and data
mining (e.g.(Salton et al., 1975), (Faloutsos and Lin,
1995)).

In counting the co-occurrences, only those predi-
cates which are present in both sets X and Y are taken
into account. Applied to the Quantisation Model (2),
this means that those vector components contribute
more to the result that have high values in both vec-
tors.

Minkowski distances Ln are appropriate for ob-
servations in the form of numeric measurements
(e.g.measures of geometrical or physical properties).
They have been used in models of similarity assess-
ment for a very long time (e.g.(Torgerson, 1952)).
The city block distance L1 was chosen for its com-
putational effectiveness.

The Hamming distance is defined as the number
of different bits in two binary vectors, or set theoreti-
cally, as the number of elements that are either present
in X or in Y , but not in both of them. Quantisation
of this measure leads to a distance where large dif-
ferences in vector components contribute more to the
result than small ones.

The dual process Model can now be written as:

md pm(X ,Y ) =
α
2
(m1(X1,Y1)+m2(X2,Y2))+

1−α
2

g(m3(X3,Y3)+m4(X4,Y4))
(5)

with:
m1(~x,~y) =~x ·~y
m2(~x,~y) = a(~x,~y)

m3(~x,~y) = L1(~x,~y) =
k

∑
i=1
|xi− yi|

m4(~x,~y) = b(~x,~y)+ c(~x,~y)

Xn and Yn being the sub-vectors consisting of those
components that had been determined to go best with
measure mn by the Greedy algorithm. For general-
isation g, the Gaussian function g(x) = e−0.5x2

was
selected empirically. a, b and c are computed using
the QM (Equations 1, 2 and 3).

Three parameters go into the model: The param-
eter α ∈ [0,1] is used to move bias from taxonomic
to thematic stimuli, and the parameters εi determine
the “hardness” of quantisation of the predicate-based
measures. In our experiments, α was set to k1

k , k1
being the number of feature dimensions that are re-
garded rather separable than integral (by the Greedy
algorithm), and k being the total number of dimen-
sions. The quantisation thresholds were tuned heuris-
tically.

4 TESTS AND RESULTS

4.1 Test Set

Our test set consists of 426 instances of MPEG-7 de-
scriptions from images depicting coats of arms. The
images are described by 314 dimensions from CL,
CSD, DC, EH, HT, RS, SC and TB descriptors. All
components were normalised to [0, 1] beforehand.
Ground truth has been provided by manual annota-
tion. Each instance falls into one of five highly seman-
tic categories (e.g.”Bavarian city arms”) with vastly
different sizes (table 1) – to make the machine learn-
ing problem harder.

Table 1: Class Sizes.

Class 1 1 instance
Class 2 20 instances
Class 3 34 instances
Class 4 51 instances
Class 5 320 instances

Hence this can be considered a difficult set for
training classifiers in general. Another reason for
choosing this dataset was the hope that, by de-
sign, some features would be more likely to fit into
predicate-based than in quantitative measurement.
Figure 5 shows some examples of value distributions
for different features. The numbers above the his-
tograms denote the corresponding feature dimension.
We suspected that features with a continuous spec-
trum are best compared using quantitative measures
whereas features with a small number of sharp peaks
can be interpreted as sets of predicates, one for each
peak.
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Figure 5: Example of Feature Dimensions with Different
Distributions.

4.2 Test Pipeline

In our experiment, classifiers should be trained that
predict the class label of an input vector with high
confidence. Support Vector Machines (SVM) were
chosen because similarity measures can be directly
applied as kernels, and because they are fairly effi-
cient in respect to computational cost. In order to ex-
tend the SVM concept to a multi-class problem, the
approach of one-vs-one (Milgram et al., 2006) was
implemented.

Usually, one would reduce the dimensionality,
e.g.by means of PCA or SVD, but for our experiment,
we decided to omit this step in order to keep full
diagnosticity for each dimension.

The experimental setting was as follows:
1. Input data (observation vectors and ground truth)

is read in and randomly divided into training and
test set (using a holdout of 50%).

2. From the training set, for each feature dimension
in random order, m1, m2, m3 and m4 is tried out by
the Greedy algorithm: At each step, a set of SVMs
is trained one-by-one, using DPM similarity as
kernel. The resulting classifier is cross-validated
on the test set. From the four possibilities, that
measure which yields the best classification result
(maximal global F1 score) is kept for this dimen-
sion.

3. In the end, a DPM similarity kernel is obtained
that is approximately optimal.

4. The performance of this DPM kernel is compared
to single kernels (linear, quadratic, polynomial,
Radial Base Function) in terms of precision, re-
call, fallout and F1 score, per class and averaged.

Evaluation was performed in terms of precision,
recall, fallout and F1 score, per class and globally.
For global performance estimation of a model, macro-
averaging of the per-class results was used as pro-

posed by Yang and Liu, albeit in the context of text
categorisation (Yang and Liu, 1999):

Fglobal
1 =

∑k
i=1 F1(i)

k
, k is the number of classes (6)

4.3 Results

Figure 6 shows the precision-recall curves for each
class, collected from ten test runs. One figure is given
per kernel type. As can be seen, the DPM kernel and
the linear kernel come closest to the optimal recall and
precision (upper right corner of the figures).

Tables 2 contain the performance indicators,
macro-averaged over all classes, hence equally penal-
ising classification error rates among classes of differ-
ent size.

Table 2: Averaged Global Performance.

linear quadratic polynomial
avg. precision 0.4598 0.4132 0.3043

avg. recall 0.3914 0.2688 0.2173
avg. fallout 0.1370 0.1704 0.1933

avg. F1 score 0.4131 0.2829 0.2058
RBF DPM

avg. precision 0.1509 0.5823
avg. recall 0.2000 0.4446
avg. fallout 0.2000 0.1112

avg. F1 score 0.1720 0.4836

4.4 Discussion

Our experiments demonstrate that, for our data set of
MPEG-7 features, the Dual Process Model as trained
by the Greedy algorithm performs always better that
the best singular kernel (which was the linear kernel
in all cases). In numbers, global average precision
of the DPM kernel is 26.66% higher than for the lin-
ear kernel, recall is 13.58% higher, fallout is 12.41%
lower, and F1 score is 17.07% higher.

Quadratic and polynomial kernels performed a lit-
tle worse than the linear one, and RBF had the prob-
lem of always associating all instances to the same
class, namely the largest one. This is an interesting
finding per se. Arguably, RBF by design works well
in classification problems where class sizes are in the
same order of magnitude, but cannot cope with very
unequally sized classes.

In terms of classes, it is obvious that class 1 (only
one class member) failed in all models, whereas class
5 (the largest one) performed best with precision, re-
call and F1 values close to 1.0. Regarding the smaller
classes 2 to 4, the discriminative power of the DPM
kernel comes into play. Here the DPM has always per-
formed better in terms of recall, precision and fallout
than all other kernels under consideration.
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Figure 6: Performance of Different Kernels per Class.

5 CONCLUSIONS AND FUTURE
WORK

The experimental results presented in section 4 sup-
port the hypothesis that a dual process model of sep-
arable and integral stimuli, comprising both geomet-
ric and quantised predicate based similarity measures,
comes closer to human judgment (ground truth) than
the best single measures. The validity of our sim-
ple DPM (equation 4) has been demonstrated and
thus provided the motivation to direct future research

activity towards developing a universal DPM frame-
work for similarity assessment.

For future work, we expect that the value distri-
bution of a feature can give important clues about the
kind of similarity measure best applied to it. We will
endeavor to identify feature dimensions automatically
with histograms consisting only of a small number of
peaks, break them up into pseudo-predicates and em-
ploy predicate-based measures directly (i.e. without
quantisation) on them. Our hope is that a DPM kernel
using this approach will come even closer to human
similarity assessment while avoiding the costly pro-
cess of the Greedy algorithm.

The next step will be to apply the DPM to data
from different domains in order to proof its universal-
ity. We are positive that the development of a univer-
sal DPM framework is at reach and will ultimately
lead to improved performance in similarity assess-
ment which provides the basis for classification, clus-
tering and information retrieval.
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