
Streamlining Extraction and Analysis of Android RAM Images

Simon Broenner, Hans Höfken and Marko Schuba
Department of Electrical Engineering and Information Technology,

Aachen University of Applied Sciences, Aachen, Germany

Keywords: Digital Forensics, Android, Smartphone, LiME, Memory, RAM Forensics.

Abstract: The Android operating system powers the majority of the world’s mobile devices and has been becoming
increasingly important in day-to-day digital forensics. Therefore, technicians and analysts are in need of
reliable methods for extracting and analyzing memory images from live Android systems. This paper takes
different existing, extraction methods and derives a universal, reproducible, reliably documented method for
both extraction and analysis. In addition the VOLIX II front-end for the Volatility Framework is extended
with additional functionality to make the analysis of Android memory images easier for technically non-adept
users.

1 INTRODUCTION

Extraction of information from smartphones is
becoming progressively more important as the
ubiquity of mobile devices, such as smartphones and
tablets, increases ever further. Law enforcement
agencies, technicians and even end users are in need
of reliable methods for extracting data from mobile
devices when extraction of data from nonvolatile
memory is not possible or insufficient. One possible
source for data is the RAM (Random Access
Memory) of such devices.

Possible scenarios for the analysis of RAM
extracted from an Android device include typical law
enforcement situations, such as the forensic analysis
of devices seized during the course of investigations,
as well as situations often encountered by IT support
technicians, such as a first response analysis of a
malware infestation. The potential applications are
similar to those of live memory analysis for
traditional desktop (Windows, Mac, or Linux)
systems and are important due to the sheer amount of
personal information stored on a smartphone or
tablet.

Android is, in essence, a Linux-based system
(Begun, 2011). It runs a Linux kernel, generally
compiled for the mobile processors usually found in
smartphones, tablets and other low-power devices.
The lion’s share of mobile processing for Android
devices takes place on the ARM microprocessor
architecture, which necessitates cross-compilation of

any native code for use on these devices.
The common core with modern Linux distributions

ensures the existence of software tools for extraction
and analysis of Android memory images, such as the
LiME (Linux Memory Extractor) kernel module
(Sylve, 2015) and the Volatility Framework for
analysis of memory images from multiple operating
systems (Hale, 2013a).

This paper describes the leverage of the
aforementioned tools LiME and Volatility resulting
in a reproducible, reliable approach for the extraction
and analysis of memory images from Android
devices.

2 TECHNICAL CHALLENGES
PRESENTED BY ANDROID

The Android operating system, while based on a
Linux core, presents multiple new challenges for
forensic analysis when compared to traditional
desktop operating systems. The analysis of data
stored in RAM on a target device can be very
beneficial in addressing these problems.

2.1 Encryption of Non-volatile Storage
Devices

The first of these challenges is FDE (Full Disk
Encryption) as well as general encryption of storage

Broenner, S., Höfken, H. and Schuba, M.
Streamlining Extraction and Analysis of Android RAM Images.
DOI: 10.5220/0005652802550264
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 255-264
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

255

devices on Android systems (cf. Android Open
Source Project). Starting with Android 4.0 ICS (Ice
Cream Sandwich), Android has offered an option for
complete encryption of the device’s file system.
Activating FDE is a matter of ticking a single
checkbox in the Android security settings menu:

Figure 1: Activation of FDE on a smartphone running
Android 5.0 Lollipop.

After the user has activated FDE, the device
automatically encrypts internal storage devices using
128-bit AES (Advanced Encryption Standard) with
cipher-block chaining (CBC) and an ESSIV
(Encrypted salt-sector initialization vector) using
SHA256. Starting from Android 5.0, this encryption
can optionally be limited to the data partition in order
to reduce performance penalties during the boot
process (Android Open Source Project).

RAM, on the other hand, is generally not
encrypted, as this is ill-advised from a performance
standpoint. Therefore, if the data from an encrypted
device’s RAM were available, it would likely be
possible to ascertain the encryption type and
parameters of both standard and user-implemented
encryption methods (such as LUKS). In some cases it
may even be possible to circumvent encryption
measures and decrypt the data on the device’s
encrypted volumes by obtaining the decryption key
from within RAM.

Proofs of concept for the decryption of Android
devices with storage encrypted by both dm-crypt
(Elatov, 2015), the default device encryption solution
used by Android starting from version 4.0, and LUKS
have been published (Elatov, 2015; Müller and

Spreitzenbarth, 2013). Both proofs of concept hinge
upon the extraction of encryption parameters from a
running device’s RAM.

2.2 Locker/Vault Apps

The second challenge presented by Android is the
ubiquity of locker/vault type apps (short: locker
apps), which offer password-secured protection of
sensitive data placed within them. These apps,
ranging from simple and easy to circumvent to
absolute state-of-the-art, are easily available from the
Google Play Store or as downloadable APK files for
manual installation (Begun, 2011) In addition, ADB
and terminal emulators make it easy for advanced
users to script their own security measures for
sensitive data to be stored on the phone.

Similarly to attacks on FDE, analysis of RAM from
devices running Android locker apps can provide
valuable information as to the type and parameters of
data protection methods used. In many cases, due to
the simplicity of the methods used and an unhealthy
reliance on security through obscurity, extracting data
protected by locker apps is a simple matter of
knowing where to look. The locker app’s data in
RAM often provides hints as to locations of files
hidden by the app.

2.3 Android Malware

For support technicians and first responders, malware
represents an additional problem in the Android
ecosystem. Due to the sandboxing of Android
applications (i.e., by the Dalvik VM used by Android
for running its Java-based apps (Android
Developers)) it is difficult to build malware scanning
and protection apps which are able to analyze running
code as well as any data apps may write to the
device’s internal storage.

Analysis of RAM from devices infected with
malware can aid in detection, identification and even
determining the origin of certain malware.

3 EXTRACTION OF MEMORY
IMAGES

Multiple well-documented approaches for the
extraction of memory images from Linux system
exist (Caban, 2014). However, these approaches all
present additional challenges when confronted with
an Android system.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

256

3.1 Android Kernel Version
Fragmentation

Unlike desktop Linux distributions, which consist of
known, largely homogenous quantities (i.e., large
blocks of users of a single Linux distribution, such as
Ubuntu LTS (Long Term Support) releases or Debian
Stable), Android devices are very heterogeneous in
terms of the kernel versions they run (Linux Profiles,
2012).

Android devices are generally updated OTA (Over
The Air) by their manufacturers or software providers
(these may include creators of custom ROMs, which
are customized versions of the Android operating
system for advanced end users). Any one of these
updates can bring a minor kernel version change.
Major kernel version changes, on the other hand, are
generally reserved for major Android version
updates, i.e., from Android 4.4 KitKat to Android 5.0
Lollipop.

This has led to large levels of fragmentation of the
Android software ecosystem, due to nearly every
device running its own custom compiled version of
the Android kernel. Even two kernels with the same
version number may not be alike due to custom
compile flags used by the manufacturer to enable or
disable functions and tweak the kernel towards the
System on a Chip (SoC) and other hardware
components in the device for performance and
efficiency reasons.

3.2 Loadable Kernel Modules
for Memory Extraction

Most Linux memory extraction strategies, including
the approach presented here, are implemented
through the use of LKMs (Loadable Kernel Modules
(Caban, 2014)). The extraction of RAM from a Linux
system requires compilation of an LKM specifically
for the device in question. The LKM version number
needs to match the kernel version number, the
toolchain and compiler used to create the LKM need
to be compatible with those used to compile the
kernel, and the running kernel’s source code is
required for compilation of the LKM.

On desktop Linux systems, this is generally not an
issue – one would simply install the same distribution,
running the same kernel, on separate hardware, and
then use that system to compile an LKM (Tilbury,
2013). Using the same distribution and kernel version
as the target device makes compilation simple and
generally rules out any compatibility issues. If a
compromise in the level of forensic purity on the target
system is acceptable, it is also possible to compile the

LKM directly on the target system, ensuring
compatibility. Tools which implement this for desktop
systems automatically already exist – a prime
example1 is Linux Memory Grabber by Hal Pomeranz
(Hale, 2013b; Pomeranz, 2014).

Unfortunately, due to hardware constraints as well
as a lack of software tools for the compilation
process, this is not possible on Android devices.

Instead, when compiling an LKM for Android,
compilation takes place on a separate system running
a desktop Linux operating system. The compiler uses
a cross compilation toolchain for CPU architecture
compatibility (Hale, 2013a). Due to the availability of
multiple toolchains and multiple compilers, the
possibility of building incompatible LKMs exists. In
general, using the toolchain and compiler used for
compilation of the running device’s kernel will likely
lead to a working kernel module.

Multiple LKMs for the extraction of memory
images are available, including fmem, pmem and
LiME. In most cases, these LKMs work by creating a
device such as /dev/fmem as a parsable entry point for
memory extraction (Hale, 2013b).

3.3 General LKM Compilation Process
for Android Devices

Summarily, the compilation process consists of the
following steps:

1. Initialization of the build environment: This
step consists of the installation of prerequisites
such as the required Java version and various
libraries required for the Android build
process, as well as the setting of required
environment variables. ADB (Android Debug
Bridge) access to devices via USB from within
a Linux system also requires additional steps.

2. Procurement of a toolchain, such as the linux-
arm-androideabi-toolchain included in the
Android NDK.

3. Procurement of the target device’s kernel
source code.

4. Procurement of the LKM source code
5. Editing the Makefile included in the LKM

source code to compile against the target
device’s kernel source code and use the correct
toolchain

6. Issuing the make command

3.4 Linux Memory Extractor Lkm

LiME (Linux Memory Extractor) is a loadable kernel
module used to extract memory from Linux-based
systems. It has previously been used to successfully

Streamlining Extraction and Analysis of Android RAM Images

257

extract the contents of RAM from Android devices
and generates memory dumps compatible with the
Volatility Framework (Sylve, 2011).

LiME was chosen as extraction tool due to the fact
that it represents the most viable approach for
Android devices. LiME is a well-documented project
which is well-known to the developers of the
Volatility Framework and hence provides a good
starting point for the extraction of Android RAM
images (Hale, 2013a).

During the course of this work, LiME was
successfully used to extract memory dumps from both
simulated and physical Android devices running
Android versions up to 5.1 (Android Lollipop second
release).

3.5 Extracting Memory with Lime

The use of LiME in order to extract memory from
Android devices is much simpler than the compilation
of the corresponding kernel module.

First, the LKM, in form of a .ko file, is copied to
the device’s internal memory or SD card. Then, from
a terminal emulator app or an active ADB connection,
the user executes the insmod command to inject the
LKM into the running kernel and extract the device’s
memory to either a local file or over TCP. An
example insmod command is the following:

insmod /sdcard/lime.ko
“path=/sdcard/lime.dump format=lime”

Here the lime.ko LiME LKM file was placed on the
device’s internal memory (due to historical reasons,
the mount point /sdcard/ is used for the user-
accessible part of the internal memory on Android
devices). The additional parameters path and format
determine the location of the newly generated
memory image and its structure, respectively (Sylve,
2015).

The process of dumping memory can take
anywhere between a few seconds and multiple
minutes, depending on the size of the device’s RAM
and the speed of the storage device being written to.
After the memory dump has been generated, it can be
transferred to the forensic workstation for analysis.

4 ANALYSIS OF PREVIOUSLY
EXTRACTED MEMORY
IMAGES

The analysis of memory images using Volatility
requires a Volatility profile. The profile contains

information about both the memory image as well as
the system the image was extracted from. This
includes information about the location of kernel
debug symbols and the kernel’s data structures (Hale,
2013b).

The Volatility Framework includes several
precompiled profiles for popular operating systems
(Linux Profiles, 2012) However, these are mostly
limited to common major versions of Windows. The
Volatility foundation also provides several optional
profiles for Mac and Linux systems, available for
download and manual installation. These optional
profiles come in the form of a ZIP archive containing
a precompiled Dwarfdump file, which contains the
kernel data structure information, and the system.map
file, which contains the kernel debug symbol
information. The list of available profiles is small,
including only a small number of the available Linux
distributions and only a limited subset of each
distribution’s recent releases (Linux Profiles, 2012).

Precompiled profiles for Android devices may be
listed in the future. However, the fragmentation of the
Android software ecosystem will likely necessitate
the custom compilation of a profile for each target
device due to the sheer amount of possible
combinations. The 10 most popular Android devices
alone each run multiple different kernel versions over
the course of multiple manufacturer updates, already
offering up an incredible number of permutations.

4.1 Generating a Volatility Profile

Generating the Volatility profile requires the
compilation of a module against the target device’s
kernel source to create the vtypes (kernel data
structures). The Makefile included in the Volatility
framework uses DwarfDump to pack the vtypes in a
format which is readable by Volatility, generating a
module.dwarf file (Hale, 2013b).

The resulting file is then packed in a ZIP archive
together with the target device kernel’s system.map
file (Sylve, 2015). For Android devices the
system.map is generally supplied along with the
kernel source code, or can be manually assembled
from information extracted from /proc/kallsyms/
using a cat command. The latter requires advanced
knowledge of Linux kernel structures.

The following steps are necessary to generate a
Volatility profile for an Android target device:

1. Procurement of the Volatility source code
2. Editing the included Makefile to use the target

device’s kernel source code as well as the
correct toolchain for cross compilation

3. Issuing the make command

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

258

4. Procurement of the system.map file
5. Adding both the module.dwarf file generated

by make and the system.map file to a ZIP
archive

The newly created ZIP file can then either be placed
in the volatility/plugins/overlays/linux directory of
the Volatility package root directory or referenced via
the –plugins flag during execution of Volatility from
the command line (Raman, 2014).

4.2 Using Volatility to Analyze Android
Memory Images

The Volatility framework is a simple command-line
based tool. The plugins to be run are passed as
parameters, i.e.:

python ~/android-volatility/vol.py
--profile=Android_Profile -f
~/lime.dump
linux_pslist >> results_pslist.txt

This command analyzes a memory image
(lime.dump) using the linux_pslist plugin and outputs
the generated list of running processes to a text file
(results_pslist.txt).

Some plugins, such as linux_volshell, require
additional parameters and input from the user.

5 THE VOLIX II VOLATILITY
FRONTEND

In essence, the Volatility framework consists of a
collection of Python scripts which are executed from
the command line using a compatible version of the
Python (a high-level object-oriented programming
language with an on-the-fly interpreter) software
package. The Volatility Foundation also provides
standalone executable versions of Volatility for
Windows, which are also run from the command line.

In an effort to simplify the operation of the
Volatility framework, especially for less experienced
users, the VOLIX Volatility frontend was developed
(Logen et al., 2012). The latest version VOLIX II is
built with a standard Windows Forms GUI, which
should be familiar to most users of standard Windows
software (VOLIX II, 2014).

As part of this work, the software of VOLIX II was
extended to include functions pertaining to the
analysis of Android memory images, as well as
making the analysis of general Linux memory images
simpler and more accessible to novice users. Changes
include the addition of a Volatility profile selection

mechanism for Linux and Android, additional
Android-specific automated extraction routines for
common tasks and an overhaul of the English
language interface.

The user supplies the extracted memory image
from the target device along with the Volatility
profile. VOLIX II can then be used for execution of
specific Volatility commands from within the GUI, or
to execute automatic routines such as finding hidden
processes or installed locker apps.

6 PRACTICAL
CONSIDERATIONS FOR
PHYSICAL ANDROID DEVICES

Due to the nature of the extraction methods presented
here, target devices must fulfill certain prerequisites
in order to be considered for successful extraction of
an accurate memory image.

First and foremost, the injection of a kernel module
such as LiME requires root access to the device. This
means that unless the device has already been rooted
for general use by its owner, the forensic investigator
needs to find a viable root method and execute it on
the device (Sylve, 2011).

Second, access to a console/command line is
necessary for execution of the insmod command.
There are two possible ways to access a command
line: An ADB session or an app installed on the
device (such as a terminal emulator or a remote
command line app e.g. SSH server or similar).

Being able to open an ADB session requires either
a USB or WiFi connection to the target device, the
former of which is generally trivial unless there is
physical damage to the device’s USB port. However,
in order to successfully connect to the device via
ADB, the device must be set up to allow ADB
connections in the developer options. In addition,
recent Android versions have an ADB fingerprinting
feature which requires the manual authorization of the
connected PC on the target device itself.

Third, the injection of kernel modules via insmod
requires that the kernel be configured to load modules
at runtime. This requires three specific compilation
flags (Hale, 2013b):

CONFIG_MODULES=y
CONFIG_MODULES_UNLOAD=y
CONFIG_MODULES_FORCE_UNLOAD=y

These flags are enabled by default for kernels
running on many developer systems, as well as those
included in many custom ROMs for Android devices.

Streamlining Extraction and Analysis of Android RAM Images

259

This is not the norm, however, for factory standard
devices sold to the general public.

Ideally, a target device would be previously rooted,
have an insmod-friendly kernel configuration, and be
unlocked for ADB connections from new PCs. In the
real world, this is generally not the case. In order to
root the device and allow ADB connections from a
workstation, the forensic investigator must first gain
access to the physical device, bypassing the device’s
PIN or pattern lock. Modifying the kernel to allow the
injection of kernel modules generally requires a
reboot, which may compromise system integrity
(Ligh et al., 2014).

7 FORENSIC CONSIDERATIONS

Due to the nature of the extraction approach put
forward here, a certain measure of forensic
contamination of the target system is inevitable. Most
devices encountered in the wild will not correspond
to the ideal scenario introduced in Section 6, meaning
they will need to be modified (root access, kernel
modification, command line access) in order to
extract memory images.

These modifications, in some cases, require a
reboot of the system. This makes it difficult to
preserve the exact memory state of the Android
device for extraction and may lead to loss of useful
data. Running applications and open files relevant to
the investigation may not automatically run/open
again after a reboot, and many caches and temporary
files are purged during boot.

When applying the methods presented here, it is
important to keep in mind that any extracted data may
be incomplete and/or inaccurate.

In many cases, though, these shortcomings are
irrelevant. Many Android applications start
automatically at launch, as is the case for a lot of
malware applications such as malicious RAT
(Remote Administration Tool) apps.

8 EXTRACTION AND ANALYSIS
OF MEMORY IMAGES FROM
ANDROID DEVICES

As part of the research project memory images were
extracted from multiple hardware devices including a
Samsung Galaxy Nexus running Android 4.3 and 4.4,
an AVD (Android Virtual Device) running Android
5.1, and a Google (LG) Nexus 5 running Android 5.1.
While the Galaxy Nexus running Android 4.3 or 4.4

realistically represents a large portion of the currently
available Android devices, extraction of a memory
image from Android 5.1 running on Google’s AVD
emulator is largely a measure to ascertain that
Android 5.1, as the most recent Android release at this
time, contains no changes which would prevent the
extraction method from working.

8.1 Android 5.1 Android Virtual
Device

Building the LiME LKM, a Volatility profile and a
compatible kernel for the standard version of Android
5.1 running on the AVD emulator is a straightforward
affair. The kernel source code for the Android 5.1
version running on the emulator is easily obtainable
directly from Google’s code repository, and the
Android system images included with the Android
SDK (which contains the AVD emulator) are highly
compatible with the arm-linux-androideabi-
toolchains included in the Android NDK.

Cross-compilation of the LiME LKM required
only small modifications to the Makefile included in
the LiME source code, such as modification of the
path to the Android NDK arm-linux-androideabi-
toolchain and the path to the previously downloaded
Android kernel source code.

Compilation of a kernel with the compilation flags
needed for the use of insmod required the generation
of a .config kernel configuration file using make
goldfish_armv7_defconfig. The flags were then added
to the kernel configuration file by hand before the
kernel was compiled.

Generation of the Volatility profile for the Android
5.1 AVD was similarly simple, as was extraction
using insmod, due to AVD system images providing
root access by default.

After a successful extraction and transfer of the
memory image to a forensic workstation via adb pull,
the Volatility framework was successfully used to
extract data from the image. Plugins used to extract
data include linux_pslist, which provides a list of
processes running at the time of extraction,
linux_dmesg, which outputs the kernel message
buffer, and linux_lsof, which lists open files at the
time of extraction (cf. figure 2).

8.2 Samsung Galaxy Nexus

Both compilation of the LiME LKM and generation
of the Volatility profile for Android 4.3 and 4.4 on the
Galaxy Nexus proved more difficult.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

260

8.2.1 CyanogenMod 11 (Android 4.4)

The first attempt to extract memory from this device
was made using a nightly build of the CyanogenMod
11 custom ROM (based on Android 4.4), due to the
fact that these systems present an easy target for the
extraction methods detailed here. They offer enabled
USB debugging (which means the device is ready for
ADB connections), the ability to inject kernel
modules and root access by default (see 6).

Figure 2: Excerpt from the output of linux_pslist on an
AVD Android 5.1 memory image.

Two problems were encountered during this
approach: 1. The use of a nonstandard toolchain to
build CyanogenMod and 2. the fact that
CyanogenMod strips its kernel debug symbols to save
space. The toolchain problem was solved by
switching to a toolchain included in the
CyanogenMod source code for full compatibility with
the CyanogenMod custom ROM, enabling the
successful extraction of a memory image from the
Galaxy Nexus.

Obtaining the kernel debug symbols for the
Volatility profile was possible only by using cat to
extract a list of debug symbols from /proc/kallsyms
on the running system. After modification of the
extracted list before integrating it in a Volatility
profile, only rudimentary analysis of the extracted
memory image proved possible.

Due to missing debug symbols, many important
Volatility plugins, such as linux_pslist or
linux_dmesg would output only empty files or a short
string unrelated to the usual output of these plugins.
Other plugins, such as linux_check_syscall, run
without issue (cf. figure 3).

8.2.2 Galaxy Nexus Factory Image
(Android 4.3)

In a more standard approach, the extraction and
analysis method was also tested on the Galaxy Nexus
running the standard Android 4.3 factory image. In
this case, recompilation of the kernel with the
compilation flags necessary for injection of kernel
modules was required, but was otherwise
straightforward.

Figure 3: Excerpt from the output of linux_check_syscall
on a Galaxy Nexus CyanogenMod 11 memory image.

Similar to the approach for the Google AVD
emulator, the kernel source code for the Galaxy
Nexus factory image is readily available, as the
Galaxy Nexus was part of the Google Nexus
developer device program. For this reason, the
Galaxy Nexus factory image is also highly
compatible with the toolchains supplied by Google’s
NDK. Cross-compilation of the LiME LKM as well
as the module.dwarf file for the Volatility profile
were completed without any problems.

Extraction of the memory image from the device
additionally required gaining root access on the
device, which was accomplished using the Nexus
Root Toolkit.

After the successful extraction of the memory
image and transfer to the forensic workstation via
ADB, analysis of the image with Volatility proved
successful, allowing the recovery of information with
most of the Linux plugins included with Volatility.

8.3 Google (LG) Nexus 5

The Nexus 5 is part of Google’s current Nexus lineup
of developer smartphones (soon to be replaced by a

Streamlining Extraction and Analysis of Android RAM Images

261

successor known as the Nexus 5 2015), and has, at
time of publication, received an update to the latest
Android release: Lollipop 5.1.1.

Like the Galaxy Nexus, it runs a standard factory
image. Hence, cross-compilation of the LiME LKM
as well as creation of the corresponding Volatility
profile were straightforward and analogous to the
process for the Google AVD emulator. Gaining root
access was also possible using the same Nexus Root
Toolkit used for the Galaxy Nexus.

After successful extraction of the memory image
from the Nexus 5 device and transfer to the forensic
workstation via adb pull over a USB connection,
nearly all of the Volatility framework’s Linux plugins
were found to be useable, even with this very latest
version of Android.

8.4 Simplifying Memory Extraction
and Analysis

Successful extraction of a memory image using the
LKM approach, as well as subsequent analysis using
the Volatility Framework, depends on a number of
factors which may vary according to the
manufacturer, the version of the installed operating
system, user settings, and the device’s security and
root status.

While the extraction and analysis of memory
images from standard developer devices such as the
Google Nexus series or the Google AVD Emulator
follows a standard, documented routine, extracting
and analyzing memory from any of the myriad
available consumer devices requires a more
specialized approach with time-consuming
experimentation.

8.4.1 LKM and Volatility Profile Repository

At the lowest level, it is the generation of the LKM as
well as the Volatility profile that differs from device
to device. Since both the LKM and the Volatility
profile only need to be generated once for a given
device running a given Android version, a repository
of kernel modules and ready-to-use Volatility profiles
could greatly simplify the extraction of memory
images from popular devices.

While the creation of a repository would require
physical access to all the devices in question and, in
some cases, multiple hours of work per device,
crowdsourcing the modules and profiles is a
possibility.

The Volatility Foundation already provides a basic
set of Linux and Mac OS profiles for use with the
Volatility Framework on Github at

https://github.com/volatilityfoundation/profiles. This
repository could be extended to include profiles for
Android devices, preferably bundled with the
corresponding LiME kernel modules. The kernel
modules and profiles generated for the purposes of
this research will be submitted shortly.

The availability of a LKM and Volatility profile for
a given device would not guarantee a successful
extraction – it would, however, greatly accelerate the
process.

8.4.2 Different Versions of Android on the
Same Device

While the generation of the LKM and the Volatility
profile is a process that differs greatly from device to
device, the process is generally very similar when the
device is the same, but a different Android version is
used.

In many cases, the only difference is the kernel
source code that the LKM and Volatility profile
vTypes are compiled against – simply replacing the
source code directory with the appropriate version for
the kernel now running on the device is often
sufficient to generate a working LKM and Volatility
profile.

In part, this is due to the significant changes
manufacturers make to the kernels shipped on their
devices (which generally do not change as heavily
when the OS version is simply upgraded), but also
simply due to differing kernel source code folder
structures and incompatbile cross-compilation
toolchains.

9 MALWARE ANALYSIS USING
MEMORY IMAGES

The Linux plugins for the Volatility Framework
provide multiple possible methods for the detection
and analysis of malware in Android memory images.
These range from the simple detection of a running
process known to be associated with malware (using
linux_pslist, for instance) to more complex methods
such as using linux_yarascan for pattern matching
malware detection (Luttgens et al., 2014), as well as
ways to ascertain the addresses of remote
communication servers if in use.

Well known Android malware such as the Remote
Administration tool AndroRAT, for instance, was
easy to detect running in memory even with the
simplest detection routines, showing up in
linux_pslist without any attempt at hiding itself (cf.
figure 4)

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

262

While it is relatively simple for a malware
developer to hide a malware application from the
Android task switcher or DDMS (Dalvik Debug
Monitor Service), hiding the application process so
that it is not detectable in pslist is very difficult.
Therefore, many malware apps rely on simple
security by obscurity to avoid detection – such as the
process name chosen by the developers of AndroRAT
as seen in Figure 5.

Figure 4: Excerpt from the output of linux_pslist from a
system with a running AndroRAT installation – the process
name chosen by the developers of AndroRAT is very
generic and could correspond to any number of applications
a user has installed.

After detection, it may be useful to ascertain the
servers and/or nodes the malware communicated with
– this can be achieved by reading the data in the
routing table cache using linux_route_cache (Pryor,
2013). The routing table cache can contain a record
of systems a Linux machine has communicated with
in the past:

If the malware was transmitting at the time the
memory image was extracted, it may also be useful to
extract packets stored in the send and receive queues

Figure 5: Excerpt from the output of linux_route_cache
from a Google Nexus 5 running Android 5.1.1 - note the
destination IP addresses accessed through gateways
192.168.0.1 and 192.168.0.43 for access via WiFi and
mobile data respectively.

at the time of extraction. This can be achieved using
linux_pkt_queues, which recovers packets from the
queues and can save them directly to disk (Pryor,
2013).

Additionally, linux_sk_buff_cache can be used to
recover and save packets which were in kernel
memory at the time of extraction, but is currently
incompatible with SLUB (Unqueued Slab Allocator
– a memory management mechanism which allows
the retention of certain allocated data objects for later
reuse (Cinar, 2015)), the current default allocator in
Linux since kernel 2.6.23 (Case, 2012).

Last but not least, the Volatility framework also
provides Linux plugins which allow the detection of
active rootkits, such as linux_check_creds, which can
detect rootkits piggypacking on the credentials of
processes with root privileges (often PID 1),
linux_check_idt, which lists the addresses and
symbols contained within the IDT (Interrupt
Descriptor Table), including those hooked by
rootkits, and linux_check_syscall, which lists the
system call tables and checks them for functions
hooked by rootkits (Linux Profiles, 2012).

Rootkits may also inject kernel modules which are
hidden in the loaded module list (as called by lsmod).
The Volatility plugin linux_check_modules can
detect these modules, as long as they are still present
under /sys/modules/ (Pryor, 2013).

10 CONCLUSION

The extraction and analysis of RAM images from
Android devices remains a relatively young field.
While possibilities for both extraction and analysis
exist for a multitude of Android device and software
constellations, the application of the currently known
and documented methods generally require extensive
knowledge of both Linux systems and the use of
Make for the compilation of kernel modules. In
addition, many of the existing approaches are
documented only for specific devices running
specific versions of Android, making it difficult to
apply them to other devices which a forensic
investigator may encounter during investigations.

The methods described here provide a universal
approach for the extraction of RAM images from
Android devices, as well as the generation of a
corresponding Volatility profile for subsequent
analysis using the Volatility framework. In addition,
the extension of the VOLIX II Volatility frontend for
Android memory images greatly simplifies the
analysis of these memory images with the previously
generated Volatility profiles.

Streamlining Extraction and Analysis of Android RAM Images

263

In the future, automatic (scripted) generation of
LiME LKMs and Volatility profiles for a given
device would greatly simplify the process of memory
extraction and analysis. This could, for instance, be
achieved via distribution of a Linux VM (virtual
machine) containing the required scripts, to be
launched on the investigator’s forensic workstation.

With a target device that fulfills the requirements
set forth in section 6, the investigator would need to
supply only the source code for the kernel running on
the device and quickly be able to compile a working
LiME LKM for the device, as well as generate a
Volatility profile for memory extracted from the
device with the LKM.

A cleaner forensic approach for memory extraction
from Android devices, free from the limitations
shown in section 7, would require a completely new
approach which does not hinge upon the injection of
a kernel module. This would, however, require the
discovery of a vulnerability in Android which can be
triggered without modification of the running system.
Even if such a vulnerability were located, it would
only be a matter of time until Android was patched to
remove the vulnerability.

REFERENCES

Android Developers, Security Tips, [Online], Available:
http://developer.android.com/training/articles/security-
tips.html [4 Sep 2015].

Android Open Source Project, Encryption, [Online],
Available: https://source.android.com/devices/tech/
security/encryption/index.html [4 Sep 2015].

Begun, D., A., 2011, Amazing Android Apps for Dummies,
Wiley & Sons.

Caban, D., 2014, Acquiring Linux Memory from a Server
Far Far Away, [Online], Available: http://blog.
opensecurityresearch.com/2014/05/acquiring-linux-
memory-from-server-far.html [4 Sep 2015].

Case, A., 2012, Phalanx 2 Revealed: Using Volatility to
Analyze an Advanced Linux Rootkit, [Online], Available:
http://volatility-labs.blogspot.de/2012/10/ phalanx-2-
revealed-using-volatility-to.html [4 Sep 2015].

Cinar, O., 2015, Android quick APIs reference, Apress.
Elatov, K., 2015, Recover LUKS Password from Android

Phone, [Online], Available: http://elatov.github.io/
2015/03/recover-luks-password-from-android-phone/
[4 Sep 2015].

Hale, M., 2013a, AndroidMemoryForensics - Instructions
on how access and use the Android support, [Online],
Available: https://code.google.com/p/volatility/wiki/
AndroidMemoryForensics [4 Sep 2015].

Hale, M., 2013b, LinuxMemoryForensics - Instructions on
how to access and use the Linux support, [Online],
Available: https://code.google.com/p/volatility/wiki/
LinuxMemoryForensics [4 Sep 2015].

Ligh, M., H., Case, A., Levy J., Walters, A., 2014, The Art
of Memory Forensics: Detecting Malware and Threats
in Windows, Linux, and Mac Memory, Wiley.

Linux Profiles, 2012, LinuxProfiles - Linux Profile
Reference, [Online], Available: https://code.google.
com/p/volatility/wiki/LinuxProfiles [4 Sep 2015].

Logen, S., Höfken, H., Schuba, M., 2012, Simplifying RAM
Forensics - A GUI and Extensions for the Volatility
Framework, Proceedings of 5th International
Workshop on Digital Forensics, Prague, Czech
Republic.

Luttgens, J., T., Pepe, M., Mandia, K, 2014, Incident
Response & Computer Forensics, 3rd edition,
McGraw-Hill Education.

Müller, T., Spreitzenbarth, M., 2013, FROST – Forensic
Recovery of Scrambled Telephones, in Applied
Cryptography and Network Security, 2013, Eds.
Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R., Springer.

Pomeranz, H., 2014, Linux Memory Grabber - A script for
dumping Linux memory and creating Volatility(TM)
profiles, [Online], Available: https://github.com/halpo
meranz/lmg/blob/master/README [4 Sep 2015].

Pryor, K., 2013, Volatility Linux Profiles, [Online],
Available: http://digiforensics.blogspot.de/2013/12/
volatility-linux-profiles.html [4 Sep 2015].

Raman, S., 2014, Installing Linux Profile in Volatility,
[Online], Available: https://shankaraman.wordpress.
com/2014/05/23/installing-linux-profile-in-volatility/
[4 Sep 2015].

Sylve, J., T., 2011, Android Memory Capture and
Applications for Security and Privacy, M.S. Thesis,
University of New Orleans, New Orleans.

Sylve, J., T, 2015, LiME ~ Linux Memory Extractor,
[Online], Available: https://github.com/504ensicsLabs
/LiME/blob/master/README.md [4 Sep 2015].

Tilbury, C., 2013, Getting Started with Linux Memory
Forensics, [Online], Available: http://forensicmethods.
com/linux-memory-forensics [4 Sep 2015].

VOLIX II, 2014, Volatility Interface and Extensions,
[Online], Available: http://www.it-forensik.fh-
aachen.de/projekte/volixe, [4 Sep 2015].

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

264

