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Abstract: Scoring systems have been used since long in medical practice, but often they are based on experience rather
than a structural approach. In literature, the interval coded scoring index (ICS) has been introduced as an
alternative. It derives a scoring system from data using optimization techniques. This work discusses an
extension, ICS*, that takes variable interactions into account. Furthermore, a study is performed to give
insight into the new model’s sensitivity to noise, the size of the data set and the number of non-informative
variables. The study shows interactions can mostly be discovered robustly, even in the presence of noise and
spurious variables. A final validation on two UCI data sets further indicates the quality of the approach.

1 INTRODUCTION

When working in the medical field, one notices
that applying standard Machine Learning approaches
faces difficult challenges. Generic techniques such as
Support Vector Machines (SVM) and Bayesian clas-
sifiers have been used (Chowriappa et al., 2014), but
they most often offer a black-box solution of a prob-
lem. In order to accept the support of a system, a
medical expert should understand and trust its recom-
mendations. Therefore, interpretability is important.
Looking back at medical practice since the early days,
one can see that one kind of interpretable models has
frequently been used in the medical world itself: scor-
ing systems. Examples include APACHE-II, SIRS,
Glasgow (pancreatitis) (Mounzer et al., 2012), PSI
and CURB-65 (pneumonia) (Jeong et al., 2013). They
are powerful methods, often based on clinical experi-
ence or mathematical models, but their discriminative
power is limited due to their simplicity. Furthermore,
most systems developed so far are not the result of a
standardized or well-founded learning approach. Yet,
studies to validate or compare commonly used scores
have been conducted (Mounzer et al., 2012; Jeong
et al., 2013). There have also been attempts to con-
struct scoring systems with statistical methods (Yang
et al., 2011) or directly from data (Van Belle et al.,
2012), but the proposed models are restricted to the
main effects or involve tuning ad hoc parameters.

Generating a scoring system from data involves

finding a sparse model. This approach is well-known
in fields such as compressed sensing, whereℓ0 or ℓ1
minimization is used to induce this property. Some
example methods include the LASSO or basic pur-
suit (Davenport et al., 2012). Similar approaches have
been used to generate scoring systems (Ustun et al.,
2013) recently, but focus on giving integer coeffi-
cients to previously defined features in general. Yet,
other approaches, such as the Interval Coded Scoring
Index (ICS) (Van Belle et al., 2012), focus rather on
intervals, but are limited to main effects.

The remainder of this paper is structured as fol-
lows: the next section introduces the extension of ICS
that allows for interaction effects: ICS*. Section 3
discusses the sensitivity study carried out on synthetic
data. Finally, the framework is applied on two UCI
data sets after which we conclude with a discussion
and a preview to future work.

2 THE ICS* ALGORITHM

The model can be best explained by expressing it in
an SVM framework as a binary classification prob-
lem. The primal formulation of a (non-linear) SVM
is given by (Vapnik, 1995):

min
w,b,ε

1
2

wTw+ γ
N

∑
i=1

εi (1)
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subject to:

{
yi(wT ϕ(xi)+b)≥ 1− εi, ∀i = 1..N

εi ≥ 0, ∀i = 1..N

In this formulation,(xi ,yi) are pairs of observations
and labels,w and b the coefficients and bias of the
model, respectively, andεi slack variables used for
the regularization controlled byγ.

The original ICS approach (Van Belle et al., 2012)
restricts the feature mapϕ(x). Instead of the original
input vectorsxi with variablesxp

i , it considers binary
variableszp

i,l indicating whether thexp
i are within pre-

defined intervals
[
τp

lp−1,τ
p
lp

]
, lp = 1 :kp+1,τ0 =−∞,

τkp+1 = ∞. Furthermore, the total variation of the co-
efficient vector is minimized instead of its norm. As
a result, a sparse scoring system is automatically ob-
tained. To further improve sparsity, the coefficients
are iteratively reweighted. To allow the inclusion of
interaction, ICS* further expands the binary feature
space as follows.

Mapping to a Binary Feature Space. Assume an
observationxi ∈ Rd. The proposed feature map is
(Rd → RNf ) : zi = ϕ(xi) =

[
ϕgr1(x

gr1)...ϕgrp(x
grp)

]
,

in whichgr ⊂ {1, ...,d} can be any subset of the orig-
inal variables. Hence,zi is the concatenation of fea-
ture maps for every variable and the groups of vari-
ables among which interactions should be considered.
The feature submapsϕgr expand the space spanned by
the variables involved to a multidimensional binary
space. The submap for a groupgr involving variables
{p1, p2..pq} contains the following binary features:

f
p1..pq
i,lp1 ..lpq

= I(τp1
lp1−1 ≤ xp1

i < τp1
lp1
) (2)

& ...

& I(τpq
lpq−1 ≤ x

pq
i < τpq

lpq
)

with lp1 ∈ {1, ..,kp1 +1}, ...
lpq ∈ {1, ..,kpq +1}

fi is a multidimensional array indexed bylp1, .., lpq.
I is a binary indicator using thresholdsτ to split the
range of each variable. In effect, the space spanned
by the original variables is divided into bins based on
the thresholdsτ. These are initially inferred from the
distribution of the data, but thanks to the minimiza-
tion of the variation inw, bins will be merged if pos-
sible during the ICS* procedure. Finally, the multidi-
mensional array can be vectorized to yield the feature
vectorϕgrp(x

grp). These feature vectors are then con-
catenated to yield the full feature vectorzi .

The resulting optimization problem can be ex-
pressed in matrix formulation as:

min
w,b,ε

‖Dw‖1+ γεT1, D ∈RNd f xNf ,w∈ RNf (3)

s.t.:

{
Y(Zw+b)≥ 1− ε, Y ∈RNxN,Z ∈ RNxNf

ε ≥ 0, ε ∈ RN

w is a vector containing the coefficients that will con-
tribute to the score when the corresponding binary
feature inzi equals 1. D is a matrix defining coef-
ficient differences,Z is the data matrix made up of
rowszi in the binary feature space andY is a diagonal
matrix of class labels.N, Nf andNd f are the number
of data observations, binary features and coefficient
differences, respectively.

The matrixD is necessary to minimize the total
variation of the coefficient vectorw. Multiplication
of D with w yields differences between adjacent bins
in the multidimensional representationfi defined in
Equation (2). For example, for the binf

p1..pq
i,lp1 ..lpq

, the

matrixD definesq coefficient differences:

w
p1..pq
i,lp1 ..lpq

−w
p1..pq
i,lp1−1..lpq

, ..,w
p1..pq
i,lp1 ..lpq

−w
p1..pq
i,lp1 ..lpq−1

To make sure that the first coefficient of each group
equals zero, an additional row with only a single 1
corresponding to the first binary feature of that group
is included inD.

Despite sparsity, one can still end up with small
stepsw

p1..pq
i,lp1 ..lpq

− w
p1..pq
i,lp1−1..lpq

. From the point of in-

terpretability, less and larger steps are preferred. For
this reason, one tries to strike a balance between ac-
curacy, induced by small steps corresponding to lo-
cal behavior, and interpretability, which benefits from
less steps. This trade-off can be achieved by iterative
reweighting of the model.

Scoring and Prediction of Probability. To convert
the model to a scoring system, the coefficientsw are
normalized and rounded to obtain integer point values
s. The score can then be obtained by summing across
the binary feature space: score= sTz. Finally, a map-
ping from scores to probabilities is obtained through
application of logistic regression with the scores as
only predictor.

Some Remarks on Solving the ICS* Formulation.
Although the formulation in Equation (3) contains
an absolute value, it can be reformulated as a linear
programming problem and solved by dedicated
solvers. Yet, one should be aware that the size of the
system grows with the number of variables in the
data set, the number of thresholdsτ of each variable
and, particularly, the number of required interactions.
Solving it is possible because of its inherent sparsity
both in the data and in the constraints. This property
not only allows storing the system, but it can also be
exploited by dedicated solvers.
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3 SENSITIVITY STUDY

The sensitivity study performed in this paper is car-
ried out on synthetic data. This allows to know the
correct solution and to insert specific effects. The
model can be expressed as

p= S(7x1x2+4x2
3+3x4−3) (4)

in which S is the standard logistic (sigmoid) function
andp the risk or probability of the data pointxbelong-
ing to the target class. The model includes two main
effects, quadratic inx3 and linear inx4, and one inter-
action involvingx1 andx2. Data generation is done by
randomly generating a pool of independent normally
distributed data. Apart from the four required, addi-
tional non-informative variables can be added. The
basic data set that will be used for the study consists
of 250 observations for each class, involving seven
variables (four required and three additional). This
set will be used in the remainder, unless mentioned
otherwise.

The results of applying ICS* on the basic data set
are presented in Figure 1. Two third of the data was
used for training, one third for testing. The three top
parts of the Figure represent the detected effects. The
τ values are shown at the borders. The top effect in-
volvesx1 andx2. Notice the influence of the multipli-
cation. The quadratic and linear effect were correctly
detected as well, whereas the three spurious variables
were correctly rejected. The bottom part of the Figure
is the Risk Profile. It maps the final score obtained by
summing over all effects to the probability of belong-
ing to the target class. With this model, ICS* is able
to classify the test data with an accuracy of 86.5%, or
an Area Under the ROC Curve (AUC) of 0.94.

The sensitivity study consists of five parts. The
first part is a simple resampling by cross-validation
(CV) of the model data, with and without interac-
tions to investigate the stability of the feature selec-
tion. Secondly, the influence of additive white noise
will be investigated. Furthermore, the influence of the
number of non-informative variables and the training
set size are discussed. These last two in particular
have an effect on the execution time, the last topic of
the study. Unless stated otherwise, the model will be
trained on two third of the data whereas one third will
be used for testing.

Resampling. Resampling is performed to assess the
basic stability of the model. If slightly different data
is used, to what extent do the detected effects change?
The resampling is performed in the structured cross-
validation framework (10 folds) in which each part
of the data is used for testing in one fold, whereas it
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Figure 1: The results of the application of ICS* to the basic
synthetic data set.

is used for training in all other folds. The same 10-
fold cross-validation was carried out twice: once with
the additional restriction that no interactions should
be investigated (basic ICS), and once including the
option for interactions (ICS*).

The discovered effects for the ten folds and corre-
sponding test AUCs are shown in Table 1. Both ICS
and ICS* mostly succeed at keeping the relevant ef-
fects included. Of course, the interaction effect can-
not be discovered by ICS since these effects are not
considered in this method. Secondly, ICS has less ten-
dency to include non-informative effects. This was
expected, since the number of effects to be consid-
ered and the average number of coefficients per effect

Table 1: Resampling results for ICS|ICS*. For each fold,
the detected effects and test AUC (%) are indicated.
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2 |X X|X X|X 0|1 72|90
3 |X X|X X|X 0|0 60|90
4 | X|X X|X 0|0 72|72
5 |X X|X X|X 2|21 65|93
6 |X X|X X|X 0|13 77|82
7 |X X|X X|X 0|2 72|88
8 |X X|X X|X 5|3 71|83
9 |X X|X X|X 0|3 62|83
10 |X X|X X|X 0|3 65|90
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are much larger for ICS*. For both settings, some
overfitting occurs (fold 8 for ICS, folds 5 and 6 for
ICS*). Unexpected selected effects in ICS* often in-
clude main effects of variables 1 and 2. Taking into
account the interaction between these variables, these
effects can actually be informative. In other words,
the main effects could be incorporated into the inter-
action effect. The same holds for some other effects,
e.g. an interaction between variable 1 and variable 4
is considered relevant a few times. This still yields a
good model. This is the result of the non-uniqueness
of the model structure and will be further discussed in
Section 5. Table 1 shows ICS* obtains a better classi-
fier than ICS. Even when overfitting occurs, the vari-
able coefficients are such that the model still yields
good performance. Of course, this comes at the cost
of a more complex model.

In conclusion, one could say that resampling can
be used to improve robustness of model selection. For
the final model, trained on all the (training) data, only
the effects that occurred in more than 7 out of 10 folds
will be included. Applying this principle for the data
presented in Table 1 leads to inclusion of all correct
effects. No spurious detected effects are included in
ICS and one main effect for variable 2 is included for
ICS*. The analyses that follow will only be reported
for ICS*. The resampling scheme presented here will
be used in the remainder of the experiments.

Influence of Noise. The amount of additive white
noise can be characterized by the Signal-to-Noise Ra-

tio (SNR), defined as SNR= σ2
s

σ2
n
, the ratio of the

variances of the signal and the noise. The influ-
ence of noise can be shown by comparing the mod-
els found for various SNRs. In this study, SNR
∈ {∞,50,25,10,5,4,3,2,1.5} will be considered. A
Signal-to-Noise Ratio of∞ corresponds to the noise-
less case. Noise is added toxi after settingyi using
the model described in Equation (4).

The sensitivity to noise is illustrated in Table 2.
For high SNR, all relevant effects are detected,
whereas for lower SNR, the interaction effect is lost.
This is logical, since both variables are affected by
the noise. Although the interaction effect is masked
by the noise, ICS* does not model the noise itself.
The additional spurious detections for high SNR may
seem surprising, but they involve variables 1 and 2,
the variables also involved in the interaction. As such,
they do contribute to the solution. The last column of
the Table highlights the drop in performance when the
noise level increases.

Influence of Non-Informative Variables. ICS* is
able to exclude non-informative variables from the

Table 2: Influence of noise on the detected effects and test
AUC for ICS*.

SNR Eff [1,2] Eff 3 Eff 4 #Other Eff AUC
Inf X X X 2 0.91
50 X X X 1 0.86
25 X X X 2 0.86
10 X X 0.80
5 X X X 0.79
4 X X X 0.76
3 X X 0.63
2 X 0.63

1.5 X X 0.58

model. However, a variable can only be excluded if all
of its bins in the extended binary feature space have
zero coefficients. To quantify the influence of having
a higher number of variables, ICS* was applied for an
additional number of non-informative variables going
from one to ten. The experiments yielded a correct re-
jection of all non-informativevariables whilst keeping
the test AUC around 0.9.

Influence of Training Set Size. One would expect
an improvement in the ability of ICS* to infer a model
from the data when the training set size grows. To
study this, an independent test set of 150 observations
of each class is considered. The training set is en-
larged gradually. Set sizes of 100, 200, 500, 1000,
1500, 2000, 3000 and 5000 with equal contribution
of the two classes will be considered.

The influence of the training set size is presented
in Table 3. Even when only 100 data points are avail-
able, the three effects can be discovered. The one ad-
ditional effect for a set size of 500 is related to vari-
able 1, which is indeed involved in the model. When
one looks in more depth at the generated models for
each case, one observes that when the set size grows,
the number of binary features for some effects in-
creases, particularly for the interaction. This signifies
that although the correct effects are already discov-
ered with less data, the scoring system becomes more
refined when more data is added. This is due to the
choice ofτ (when more data are available, more and

Table 3: Influence of the training set size on the detected
effects and the test AUC for ICS*.

Size Eff [1,2] Eff 3 Eff 4 #Other Eff AUC
100 X X X 0.85
200 X X X 0.87
500 X X X 1 0.95
1k X X X 0.94

1.5k X X X 0.94
2k X X X 0.94
3k X X X 0.94
5k X X X 0.94

ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

36



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

non-weighted
reweighted

100 200 500 1000 1500 2000 3000 5000
0

5

10

15

20

25

non-weighted
reweighted

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

Number of non-informative variables Training set size

Figure 2: Execution time as a function of the number of non-informative variables (left) and training set size (right).

smaller intervals are considered). The impact on per-
formance is shown in the last column of the Table:
the AUC improves with a growing data set, though
even the coarsest model already has an AUC of 0.85.
With the data set used for this study, one notices AUC
saturation for a set size larger than 500 data points.
No information is gained by having a larger data set.
Note that these results depend on the complexity of
the underlying model and the predefined thresholdsτ.

Execution Time. The set size and the number of
non-informative variables both influence not only the
performance of the model in terms of accuracy, but
also the problem size. Depending on the method used
to solve Equation (3), it can have an impact on exe-
cution time. To quantify this, 100 executions of the
optimization problem (3) were performed with the
training sizes and additional variables as described in
the previous subsections. Furthermore, the evolution
for the non-weighted and the reweighted case is com-
pared.

Figure 2 shows an exponential increase in the exe-
cution time for the weighted and unweighted case for
an increasing number of spurious variables, as com-
pared to only a nearly linear increase for the size of
the data set. Hence, the impact of the number of
spurious variables is dominant over the impact of the
training set size. This is due to the combinatorial ex-
pansion of the feature space implied by the mapping
defined in (2), whereas the linear increase is related to
the number of constraints. The issue will be covered
in more depth in Section 5. As mentioned, for appli-
cation purposes this is not a crucial drawback, as long
as the problem still fits in memory.

4 APPLICATIONS

Two data sets from the UCI repository (Lichman,
2013) will be used to validate ICS*. The first one is
the Mushroom Data Set, the second one is the Verte-
bral Column Data Set. For the Mushroom set, 90% of

the data was used for training and 10% for testing, di-
vided by random sampling. For the Vertebral Column
data set, two third of the data was used for training,
also randomly sampled. In both cases, important ef-
fects were selected by 10-fold CV on the training set,
after which the final model was trained on the entire
training set.

Mushroom Data Set. The mushroom set includes
descriptions of 23 species of the Agaricus and Lep-
iota family (Duch et al., 1997). The aim is to clas-
sify them as either edible or poisonous based on 22
nominal attributes. 8124 samples were provided with
a class distribution of 51.8% edible and 48.2% poi-
sonous.

It should be noted that the cross-validation was
unanimous in the choice of effects to be selected for
the final model. The obtained test AUC is 0.993. To
validate the quality of the model even further, it can be
compared to the optimal solution being offered with
the data set (Duch et al., 1997). Perfect separation
can be obtained using a set of four subsequent rules,
given in Table 4. The solution obtained with ICS*
corresponds exactly to the first two rules, which are
responsible for 99.4% accurate classification on the
set as a whole. The reason ICS* does not find all four
rules is a limit imposed on its training AUC to avoid
trivial overfitting. This could be avoided by interac-
tively selecting this threshold based on the ROC char-
acteristics instead of using an automatic procedure.

Vertebral Column Data Set. This data set consists
of 310 observations with 6 real-valued biomechanical

Table 4: The optimal solution rules for the mushroom data
set.

Rule
1. odor = NOT(almond OR anise OR none)
2. spore-print-color = green
3. odor = none AND stalk-surface-below-ring = scaly

AND stalk-color-above-ring = brown
4. habitat = leaves AND cap-color = white

Interval Coded Scoring Index with Interaction Effects - A Sensitivity Study

37



0 1 2 4

-10 10 20 35 

grade of slipping

0 -1 -2 -3

70 115 125 135

pelvic radius

0 -2 -3 -4 -3 -4

15 20 35 40 45 50

sacral slope

0 
  

0.
03

0.
24

0.
78

0.
97 1 

  

-7 -6 -5 -4 -3 -2 -1 0 1 2 
Risk Profile

Score

Risk

Figure 3: Model for the UCI Vertebral Column data set.

attributes (da Rocha Neto et al., 2011). Class labels
distinguish 100 ‘Normal’ from 210 ‘Abnormal’ pa-
tients (disk hernia or spondylolisthesis).

ICS* succeeds in deriving a simple model with
high performance. Three out of six variables are se-
lected as main effects and no interactions are discov-
ered. Two of the discovered effects were selected in
all ten folds of the resampling. The third one was cho-
sen in eight out of ten folds. The final model is visual-
ized in Figure 3. Using ICS*, one obtains a test AUC
of 0.89 and a test accuracy of 81.7%. Earlier work
on this data set showed that performance can be in-
creased using rejection of data (da Rocha Neto et al.,
2011), up to a maximal accuracy of higher than 95%.
However, when not taking data rejection into account,
their result is only slightly higher than ours. They also
report on the classical SVM obtaining an accuracy of
85%. The results are difficult to compare since they
perform multiple evaluations on the dataset using re-
sampling and average the result, whereas this paper
uses only a single train-test split. A more fair compar-
ison can be performed by applying established tech-
niques directly on the specific train-test split being
used here. For that reason, Least-Square Support Vec-
tor Machines (LS-SVM) with embedded hyperparam-
eter selection were trained and evaluated (Suykens
et al., 2002). LS-SVM with a linear kernel obtained a
test AUC of 0.88, whereas the use of an RBF kernel
resulted in a test AUC of 0.90. ICS* obtains a similar
performance as the LS-SVM approaches, whilst at the
same time offering a simple and interpretable model.

5 DISCUSSION

The sensitivity study first showed that resampling can
be applied as a method to increase the robustness of
ICS and ICS*. Both detect the correct effects, includ-
ing the interaction in the case of ICS*, but sometimes,

other effects are included as well. The threshold for
robustness is set arbitrarily for the moment. More
elaborate techniques than thresholding should be used
to give a statistical justification for the inclusion of an
effect. Moreover, there is an additional factor which
increases the complexity of the robustness problem.
Several times during the presentation of the results, it
was mentioned that a spuriously detected effect could
be tolerated since it could be included in an intended
effect, e.g. the interaction. This is due to the nature
of the model. Due to the additive formulation, Equa-
tion (3) is not strictly convex, leading to a non-unique
optimal solution. It might seem unsatisfactory from a
programming point of view, but it leaves space for dis-
cussion with medical practice, where, in the end, the
interpretation will take place. However, if one would
aim at uniqueness e.g. for repeated runs and com-
parisons of the resulting scoring systems, additional
steps should be taken. One possible approach works
by transformation of the problem. According to lit-
erature (Sra, 2006), a problem as (3) can be rewritten
such that the unique optimal solution will be the one
among the solutions of the original problem with the
smallestℓ2-norm.

This transformation might also prove useful to al-
leviate the problems with execution time. An increase
in set size yields a same increase in data constraints
in Equation (3). On the other hand, adding extra
variables yields a combinatorial increase in the di-
mensionality of the feature space. Currently, the lin-
ear programming problem is solved using a standard
primal-dual approach. This explains the exponential
and linear dependencies shown in Figure 2. Yet, when
a dual algorithm could be applied, the dimension of
the feature space would become irrelevant. The use
of the ℓ1 norm and the matrixD defining the differ-
ences lead to a more difficult entirely dual formulation
of the problem. The transformation proposed in (Sra,
2006) yields a standard quadratic program, which is
easier to consider in the dual space.

ICS* proved robust to noise. For low SNR, the
interaction effect was lost since it was obscured by
the noise. However, the noise itself did not influence
the model in the sense that no spurious effects were
introduced to try to include it.

The assessment of sensitivity with regard to set
size and number of spurious variables was positive.
Only in one case, an effect was missed. The cor-
rect detection of the effects for smaller data sets and
the gradual improvement of the model until saturation
when more data is available opens perspectives for
large-size problems. As sometimes applied in other
domains fixed-size approximations could be consid-
ered (Suykens et al., 2002).
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Another aspect to be discussed is the selection of
the thresholdsτ defining the binary feature space. For
this paper, an automated approach was used, selecting
initial thresholds based on the quantiles of the data
distribution. In later stages, adjacent intervals thus
defined are merged if their coefficients are equal.

6 CONCLUSION

In this paper, ICS* was introduced as an extension
of ICS. It allows to infer relevant effects, including
interactions, from given data and construct a scoring
system by solving a minimization problem. After in-
troduction of the changes applied to ICS, ICS* was
subjected to a sensitivity study on synthetic data. The
study showed that resampling can be used to improve
the robustness of the method. Furthermore, it also
indicated robustness to noise, training set size and
the number of additional non-informative variables.
However, both set size and number of variables were
shown to have a large impact on execution time. Fi-
nally, ICS* was applied to two UCI data sets with
good results.

Future work will investigate the formulation of
a more advanced approach to the initial estimation
of the τ thresholds. A better estimation of the final
thresholds from the beginning reduces the complexity
of the problem to be solved, since it relates directly to
the dimensionality of the expanded feature space.

Another goal is the formulation of the quadratic
transformation of ICS*. This would ensure the
uniqueness of the solution for a given data set. Fur-
thermore, row-action methods could be applied to
achieve a reduction of the execution time. More gen-
erally, approaches other than the LP, e.g. sparse inte-
ger solutions, could have interesting characteristics.

Finally, the problem to be solved is essentially
a combination of variable selection (sparsity on the
level of the original variables) and minimization of
the number of steps within each effect (sparsity on
the level of coefficient differences). Such a combined
criterion can be tackled by methods as group sparse
LASSO (Simon et al., 2013) for fast convergence to
the optimal solution.
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