
From Model to Rig – An Automotive Case Study

Josefine Södling1, Rikard Ekbom1, Peter Thorngren2 and Håkan Burden3

1Chalmers University of Technology, Gothenburg, Sweden
2Volvo Group Trucks Technology, Gothenburg, Sweden

3Viktoria Swedish ICT, Gothenburg, Sweden

Keywords: Model-based Testing, Tool Adaptation, Organisational Change, Test Coverage.

Abstract: As the size and complexity of the software in a truck grows, new ways of managing the development are
needed. Numerous reports show how MDE can be successfully applied for automotive software development.
We complement previous research by conducting a case study on the impact of model-based testing for ver-
ifying and validating the behaviour of a truck’s headlights. Our results are three-fold. First, we show how a
model can be transferred from a model-in-the-loop setting to a hardware-in-the-loop via system simulation.
Second, we supply an analysis of the shortcomings of the model that were found as the model was tested in
more and more platform-specific settings. Third, our results show that the introduction of model-based testing
practices will require organisational changes even if the used tools are familiar to the company.

1 INTRODUCTION

The automotive industry is currently in a shift from
being a hardware-centric industry to becoming a
software-intense domain (Bringmann and Kramer,
2008) – soon 90% of automotive functions are de-
veloped as software. Subsequently, the integration,
validation and verification of the code becomes more
and more complex. But it also means that the latency
between specification and testing of new features can
be drastically shortened when functionality, in terms
of software, is decoupled from the hardware develop-
ment.

Model-based testing, MBT, is one way of au-
tomating and scaling software testing in the automo-
tive industry (Han et al., 2013). MBT starts in the
Model-in-the-Loop stage, MiL, where a model with
the sought behaviour is defined. A benefit of start-
ing the testing at this stage is that defects and in-
consistencies require less time and effort to be anal-
ysed and fixed than in a full-fledged mechatronic sys-
tem (Pretschner et al., 2005). The next stage is re-
ferred to as Software-in-the-Loop, SiL, and here the
surrounding system is simulated to validate that the
model behaves as expected in its context (Schiefer-
decker, 2012). When the tests confirm that the model
behaves as expected the model is transferred into the
Hardware-in-the-Loop stage, HiL. Here the model’s
behaviour is validated in relation to a hardware rig.

Including proper mechatronic systems and hardware
into the test environment means that the cost of test-
ing increases, but so does also the probability that
the model will behave as expected on the designated
platform. The different stages and their relations are
shown in Figure 1.

A recommended way of introducing model-based
practices such as MBT is to start with a small and
well-known subsystem whose behaviour can be fully
monitored through the test stages instead of using a
large and complex model that cannot progress fully
through the test environments (Schieferdecker, 2012).
When the smaller subsystem is verified and validated,
the model can be complemented with additional fea-
tures and constructions. Introducing MBT can be a
costly affair considering the amount of licenses, hard-
ware parts and new competencies that the company
has to invest in (Whittle et al., 2013). This can be mit-
igated by reusing existing tools and building on estab-
lished skills within the company (Utting and Legeard,
2010).

Through an exploratory case study (Runeson
et al., 2012) we set out to define a a set of prac-
tices for iteratively refining a model to a more and
more platform-specific context at Volvo Group Trucks
Technology. In this way a broader set of details
and software concepts can be validated and verified.
Based on the findings of our study we set out to an-
swer the following three research questions:

Södling, J., Ekbom, R., Thorngren, P. and Burden, H.
From Model to Rig – An Automotive Case Study.
DOI: 10.5220/0005644506150622
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 615-622
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

615



Figure 1: From MiL to HiL.

RQ1: Which shortcomings of the model are exposed
as the testing is conducted in a simulated system
and in a hardware rig and how can these short-
comings be mitigated?

RQ2: How will the changing test environment im-
pact the test coverage?

RQ3: How can the resulting test practices be imple-
mented in the organisation, making sure that test-
ing is both trustworthy and reusable?

Our results are three-fold. First, we show how a
model can be transferred from a Model-in-the-Loop
setting to a Hardware-in-the-Loop context via a sys-
tem simulation. Our findings include how a model
can be reused as the central test object from the mod-
elling environment to a rig of hardware via system
simulation. Second, we supply an analysis of the test
coverage as the model was tested in more and more
platform-specific settings. Third, our results imply
that the introduction of model-based testing will re-
quire organisational changes even if the used tools are
familiar to the company.

2 RELATED WORK

Two independent studies (Kuhn et al., 2012; Aranda
et al., 2012) report on applying Model-Driven Engi-
neering, MDE (Kent, 2002), at General Motors. The
former publication focuses on the individual percep-
tions of the adoption of MDE at General Motors; the
latter reports on how MDE induced changes at the or-
ganisational level. At the individual level, engineers
experienced both forces and frictions related to MDE
tools and languages – for example, a lack of support
for developing the MDE infrastructure. At the organi-
zational level, Aranda et al. found, for instance, that
software developers were now asked to focus on MDE
infrastructure whereas the domain experts became the
ones who implemented the new functionality.

In a comparison of MDE at three large companies,

Burden et al. conclude that MDE can empower the
domain experts to be the primary software develop-
ers (Burden et al., 2014). A pre-requisite in the case
of the automotive industry is that the engineers are
trained in using the relevant modelling tools during
their university education and that there are other en-
gineers who can develop and maintain the infrastruc-
ture needed to transform the high-level architecture
into the modelling environment and from there on to
the designated target.

In relation to our own study a similar case has
been investigated at Volvo Cars Cooperation. While
the two companies share the same name they are dis-
tinctively separate companies with their own organi-
sations, products and services. In the Volvo Car case
MBT was seen as an enabler to shorten the devel-
opment cycles in combination with an agile way of
working (Eliasson et al., 2014). Furthermore, they
conclude that by developing new functionality in a
virtual test environment the dependencies on hard-
ware and external suppliers can be postponed until a
later occasion when the external deliveries are more
trustworthy.

3 METHOD

We conducted an exploratory case study (Runeson
et al., 2012) regarding the main beam functionality
to better understand how MBT can be implemented
at Volvo Group Trucks Technology.

3.1 Context

The case study was conducted at Volvo Group Truck
Technology’s facilities in Gothenburg, Sweden. To-
day most of the software development is outsourced
while in-house development is spread around the
world, including India and France. The distributed
development has an impact on the overall integration
carried out in Gothenburg since bugs that are found
late are expensive and time consuming to fix.

The incentive behind our case study is that Volvo
wants to manage the complexity of truck development
by finding defects and inconsistencies earlier than to-
day. The existing process at Volvo can be described
as a waterfall with a sequential progression through
analysis, design, implementation, test and integration
before delivery. In the current flow, errors are often
not identified until integration which in turns means
that the corrective actions become expensive and have
a negative impact on the overall progression. In paral-
lel, an average truck consists of 70 or more Electronic

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

616



Control Units, ECU, that are tailored for specific pur-
poses. One way of handling the growing complexity
of the truck is by using fewer, general-purpose ECUs.
This will in turn demand a new way of developing
the features of the truck where the testing is just as
generalised as the new architecture. Here MDE has
been identified as the way forward and subsequently
model-based testing needs to be evaluated before it is
launched full-scale within the organisation.

Testing is not just an activity for validating and
verifying new functionality, testing is carried out on
both new and old truck models as features are im-
proved over time. This means that the test method
has to be adapted for both development of new fea-
tures and for maintenance of old models where the
latter often lack some of the software found in mod-
ern trucks.

3.2 Model-in-the-Loop

The model that was used for the case study was de-
veloped using Simulink. Since the Volvo Group also
owns truck brands such as Terex Trucks, Renault,
Dongfeng and Mack, besides Volvo, it was impor-
tant that the model was platform-independent (Mellor
et al., 2004) in order to be reused across the brands
and platforms. The behaviour of the model was de-
fined through a set of requirements already present
at Volvo. The implementation was based on boolean
logic that specified the possible combinations of the
incoming and outgoing signals. Due to the fact that
the model did not include platform-specific details
and the signals only had a fixed number of values it
was possible to test all possible combinations of in-
coming and outgoing signal values for the model.

The testing of the model was conducted by ap-
plying an additional package to Simulink, the Design
Verifier tool. Design Verifier helps to find anoma-
lies in the model and generates complementary test
cases for the anomalies. Here examples of anoma-
lies would be dead logic or division by zero. We also
used Simulink’s package for code generation to gen-
erate Dynamic-link Library-files, .dll-files.

3.3 Software-in-the-Loop

CAN Open Environment, CANoe, is a tool developed
by Vector which is used for development, testing, sim-
ulation and analysis of software for the automotive
industry. The tool can be used to simulate a network
of ECUs connected through a Controller Area Net-
work (CAN (Etschberger, 2001)). When a physical
network is used the tool also allows for sending a
signal across CAN at the same time as monitoring

the network to record and assess the impact of the
communication. In order to integrate CANoe with
Simulink, the tool vendor Vector has developed their
own Simulink blocks that allow the inclusion of CA-
Noe concepts into the Simulink model. We also used
vTESTstudio to generate tests that cover all possible
combinations of the incoming signal values.

By using the designated CAN-blocks in CANoe
we could configure a virtual CAN for the Simulink
model. The configuration only included the most rel-
evant ECUs for testing the incoming and outgoing
signals of the model. The network was displayed in
a graphical interface in order to monitor the changes
during each test case. To prevent hardcoding the con-
figuration to fit the model we defined our own sys-
tem signals in CANoe that can easily be reused with
a new configuration. The system signals where then
connected to the corresponding incoming and outgo-
ing signals of the model. This enabled us to stimulate
the model with CAN signals, read the results from the
model and validate that the behaviour was consistent
with the requirements. We opted to use vTESTstudio
to define the test cases, again. After each test case has
been executed the outcome from the simulated envi-
ronment is logged together with the result given by
the model. The two values are then compared and
when all test cases have been run CANoe generates
a report, declaring the success or failure for each test
case.

3.4 Hardware-in-the-Loop

The rig used for the HiL stage consisted of relevant
parts from a Volvo truck (physical controls such as
dials, levers and buttons as well as displays) which in
turn were connected to a rig of ECUs, computers and
real-time simulators which in turn relayed the control
commands to two head lights mounted on a board. In
this way it is possible to visually monitor the outcome
of different test cases. The communication in the rig
is implemented as a physical CAN, just as it would
be in a real truck. The inclusion of the computers en-
able the testing to be monitored and controlled. For
instance, signal values can be set from the computer
or the state of the ECUs can be monitored without dis-
turbing or affecting the communication on the CAN.

Besides the tools from Vector and Mathworks a
number of tools developed in-house were used. An
example of such a tool is PNTool that together with
the Truck Control API enable interaction with the rig
through the computers instead of using the dials and
buttons. In order to port the model to the rig it is nec-
essary to have a C compiler that is compatible with the
used MatLab version. The model is then synthesised

From Model to Rig – An Automotive Case Study

617



(Mens and Gorp, 2006) into a dll-file targeted for the
CANoe platform. The generated file is then incorpo-
rated with a simulated ECU and integrated into the
CANoe-environment. Then the CANoe configuration
is updated to accommodate both the simulated sys-
tem and the system signals of the physical rig. This
time we used PNTool for specifying the test cases. A
drawback with PNTool compared to vTESTstudio is
that the first lacks the possibility to compare values
of system signals. It is therefore not possible to auto-
matically compare the values generated by the model
with the values read from the physical rig. Instead a
visual inspection was done for each test case.

3.5 Evaluation

In order to evaluate the implementation of MBT con-
tinuous meetings and discussions were held with a
reference group. The group consisted of one of the
engineers responsible for developing and maintaining
the rig, two engineers responsible for testing and three
employees from the division responsible for integra-
tion. The evaluation covered the current situation at
Volvo in terms of the engineers competence in testing,
the availability of tools and licenses as well as which
components where already in place for the hardware
rig.

4 RESULTS

The results are structured in accordance to our re-
search questions so that the first subsection answers
Which shortcomings of the model are exposed as the
testing is conducted in a simulated system and in a
hardware rig and how can these shortcomings be mit-
igated?; the second subsection highlights the contri-
butions in response to How will the changing test en-
vironment impact the test coverage?; while the ques-
tion How can the resulting test practices be imple-
mented in the organisation, making sure that testing
is both trustworthy and reusable? is answered in the
third subsection.

4.1 From MiL to HiL

The results regarding the transition from model to rig
are broken down in terms of model to simulated sys-
tem, and then simulated system to hardware rig.

In order to fit the model into the simulated system
environment we had to replace the existing Simulink
ports with CANoe blocks, otherwise we could not
monitor the communication on the simulated net-
work. When substituting the incoming ports we

found the first inconsistency, a mismatch regarding
datatypes. The Simulink model assumed that the
incoming system variables should be of the type
integer while they in fact are of the type double.
This was easy to fix by using the converter block sup-
plied by Simulink.

The test cases defined at the MiL stage could
not be reused and we had to manually redefine all
test cases using vTESTstudio. The reason for re-
implementing the tests was that there was no possi-
bility to map the model elements to CAN representa-
tions using Simulink Design Verifier. After executing
a test case we checked that the model and the simu-
lated system generated the same result. Since all test
cases returned the same output for both model and
simulated system we could continue to the next stage,
Hardware-in-the-Loop.

The first thing that happened when transitioning
the model to the hardware rig was a conflict regarding
CANoe versions. This meant that we could not reuse
the test cases from the earlier stage and again had to
manually redefine them. This time we used PNTool
together with the Truck Control API for implement-
ing the test cases. In this way we could use the signals
provided by the API to simulate the physical stimula-
tion, such as turning a dial or pressing a button.

The CANoe configuration used for the simulated
system could be adapted to the hardware rig since
it was not hardcoded for a specific setting. In the
new configuration the model resided on a simulated
ECU. We then ran our test scripts and since PNTool
lacks the ability to compare system variables the re-
sulting graphs were manually compared and analysed.
During the analysis of the graphs it became evident
that the model had some serious shortcomings. In
this case the reason was a combination of human fac-
tors, such as not understanding or taking all require-
ments into consideration during the development of
the model, and lack of information regarding the de-
pendencies in relation to surrounding systems.

One of the most important deviancies originated
from assumptions regarding the logic behind the Ex-
terior Light Control dial, which has an internal vari-
able to keep track of its current state. The model as-
sumed that the dial would submit the current state
when it in fact only signals how many steps it has
moved (anti-)clockwise.

Another finding was that the Main Beam stalk be-
haved differently than the model assumed. The model
requires a constant feed of signal values in order to
determine what the outgoing values should be. When
the stalk is retracted to its end position it generates a
signal value representing head beams on. When the
stalk is released it goes back to its neutral position but

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

618



the lights should still be on. This was how the lights
in the hardware rig behaved. The outgoing values of
the model on the other hand said that the lights were
off. This was due to the signal values changing when
the stalk went into neutral mode.

In order to mitigate these shortcomings of the
model it had to be complemented by code that kept
track of the ELCP’s current state and translated turn-
ing the dial into a new state. It also meant changing
the model to accommodate the logic of the stalk.

During the evaluation it was recognised that the
logical shortcomings of the model were much easier
to expose while testing on the hardware rig than in the
earlier test stages.

4.2 Test Coverage

For MBT to be profitable the model has to be trust-
worthy beyond a certain degree. One way of achiev-
ing this is to scope the model to a specific subsys-
tem, such as the main beams. As mentioned in sec-
tion 3.2, the original test cases where developed us-
ing Simulink Design Verifier which delivered full test
coverage for all the possible combinations regarding
the values of the main beams. It also filtered out test
cases which do not add any extra coverage in order
to save time during batch testing. For the model to
be reliable throughout the testing and all configura-
tions it is important that the right test cases are car-
ried through the transitions as well. The model could
be transferred between stages since the involved tools
provided the necessary transformations for each tar-
get test environment. As we saw in section 4.1 his
was not true for the test cases.

While it was possible to redefine all the test cases
using vTESTstudio for the simulated system at the
SiL stage, it was not possible to automatically filter
out superfluous test cases. In our case this had a lim-
ited impact on the time needed to run the test suite
since the number of combinations to test was limited.
The test coverage was unchanged.

If porting the test cases from MiL to SiL was triv-
ial, transferring the test cases to the hardware rig was
more challenging since neither Simulink nor CANoe
has relevant support. In Simulink the test cases are
defined inside a shared block. After each test case is
executed the internal variables are overwritten with-
out being stored over time. In the end the solution
was to write a script that saved the values in a table us-
ing Microsoft Excel. Just as for the SiL stage, it was
possible to transfer the test cases and achieve full test
coverage. Even if it required more effort than desired
it was therefore possible to retain full test coverage
from the MiL to the HiL stage.

4.3 Organisational Impact

Currently, an engineer needs to know and handle a
number of different tools, know the product and be
a competent tester in order for MBT to be success-
ful. At Volvo the engineer also needs an understand-
ing of how to operate the hardware rig. If MBT is
to be successful at Volvo it is necessary that only a
few engineers who have all the desired skills work
with the development and maintenance of the test en-
vironment since so many unique competencies are re-
quired. Then the designated testers do not need the
full spectra of skills but can instead focus on develop-
ing, executing and analysing the test cases.

For MBT to be successful throughout the organi-
sation, Volvo needs to invest in training the engineers
in the new way of working, acquiring the necessary
tools and licenses that are not present at now but also
a continuous integration of new features into the test
environment as the product to be tested evolves. For
this to happen it is vital to formulate a plan on how
the development is to be managed and and that this
information is successfully spread throughout the or-
ganisation.

Our aim was to automate the testing procedure in
order for it to be reusable. In our case reuse is both
in terms of applying it to the model after it has been
changed as well as for the practices being applicable
to other models. In the case of reusing the method on
a model after it has been changed, it is necessary that
the engineer has knowledge of the modelling and test-
ing tools used at the MiL stage. But the engineer also
needs sufficient knowledge about the requirements re-
garding the new model details. In this setting human
factors is a risk since the models are not automatically
generated from the requirements. And a model in-
cluding many inconsistencies will require more time
and effort to get accepted at the SiL and HiL stages.

In order to reuse the test practices for a new model
it is necessary to create a new configuration to in-
tegrate the model with the system signals. For the
SiL stage this is straightforward while the HiL stage
requires knowledge of how the signals are used in a
physical truck. The configuration gets more complex
as the number of system signals and ECUs grows.

5 DISCUSSION

While the objective of the case study was achieved
the process of getting there could have been more
straight-forward. One area of concern is the poor in-
teroperability of the applied tools. For instance, trans-
ferring the test cases from one test stage to another

From Model to Rig – An Automotive Case Study

619



which had to be done manually. This shows that even
if it requires time and effort, it is possible to create a
Simulink model that is comparable to the test results
of a hardware rig. Thus, the testing at Volvo can be
generalised by model-based testing. Our results also
indicate that the SiL stage had lesser impact on iden-
tifying defects and inconsistencies than testing at the
HiL stage. If the same is true for a more complicated
model is still to be explored. From the point of cost it
would be desirable that the SiL stage became more
influential since it is less expensive to develop and
maintain and the feedback loop to the MiL stage is
shorter. While it was at the HiL stage the most severe
shortcomings of the model were identified, it is worth
remembering that each stage contributed to exposing
errors in the model.

After the test results have been evaluated it is pos-
sible to go back to the MiL stage and add new models,
requirements or features to expand the scope of the
test. At each step knowledge of the intended behav-
ior of the head beams feature and the truck domain in
general was needed to assess the test results. If the
model returns a different verdict than that from the
simulated system or the physical rig it is not given
what is right or wrong. This means that in order
to define relevant corrective actions or to stay with
the model as it stands requires another set of skills
and competencies than those used for developing and
maintaining the test environment.

In our setup the model has been used as a com-
parator for evaluating the test results from the simu-
lated system and the hardware rig with those of the
model itself. Another approach would have been to
use the model as the control logic at each stage, so that
the model would determine the behaviour of the head
beams at each stage. In such a setup the test method
would evaluate to which extent the model represented
the sought behaviour of the truck.

Whittle et al. argue that while there are plenty
of modelling tools around, few of them are mature
enough to be used without costly adaptations (Whittle
et al., 2013). The availability of tools and competen-
cies within the organisation lowers the risk and cost
of introducing a model-based way of working (Bur-
den et al., 2014), but has to be balanced against the
possibility that the tools will not be sufficient for the
new purposes (Whittle et al., 2013). In our case we
found that there was a lack of tools that fitted our pur-
poses which required tools to be developed in-house
or the help of external tool vendors to fit the existing
tools to new practices. A substantial part of the work
has been conducted using CANoe and subsequently
the development of the test cases and test environ-
ment was done in close collaboration with represen-

Figure 2: A subset of the used tools and technologies with
their major dependencies.

tatives from Vector, the tool vendor. On the positive
side of this collaboration is that Vector could develop
new functionality and tailor CANoe to our needs as
new insights were gained regarding the test method.
It also meant that Vector could be close at hand for
additional training in how to best apply their tools
and use their add-ons. On the negative side there is
often a delay when interacting with external develop-
ers. This is due both to the manual handover of the
problems but also to the fact that determining which
tool vendor to address takes time in itself. For in-
stance, if the transformation of test cases from one
tool to the other does not work as wished, should we
ask for the source or target tool to adapt our requests?
Besides, if all the involved tools had been developed
by the same tool vendor they would hopefully allow
for smooth integration of features and automation of
tasks. A subset of the used tools, tool vendors and
their inter-dependencies are shown in Figure 2.

In relation to previous studies we find a lot of
commonalities. Just as Aranda et al. found at Gen-
eral Motors (Aranda et al., 2012), there is an organ-
isational impact from introducing model-based tech-
nologies and ways of working. In our case the test en-
vironment will have to be developed and maintained
by different engineers than those that do the actual
testing. The root cause is that there are not many engi-
neers that have the necessary skills and competencies
to both develop a test infrastructure as well as model
the beahiovur of a truck – the skill sets are too orthog-
onal. And as we have seen, the domain knowledge is
instrumental in getting the model right from the be-
ginning, which supports earlier claims by Burden et
al. (Burden et al., 2014) and Utting and Legeard (Ut-
ting and Legeard, 2010).

As previously shown (Burden et al., 2014; Utting
and Legeard, 2010), the development of the support-
ive infrastructure will have to be synchronised with
the needs of the test engineers as new features and
configurations will place new demands on the test en-
vironments. If this will lead to organisational and so-
cial tensions within the company, as in the case at

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

620



General Motors, is still an open question.
Throughout the process it also became evident that

when the model is done up-front, before a full un-
derstanding of the surrounding system is in place, it
will be based on assumptions on what the context will
look like. This is in line with results from Volvo Cars
(Eliasson et al., 2014). In our case we found inconsis-
tent assumptions regarding the types of signal values
as well as the internal logic of surrounding systems.

Finally, introducing MBT will have a positive ef-
fect on the time it takes to go from concept to pro-
duction since testing can be done much earlier and the
combination of simulations and hardware rigs will ex-
pose defects quicker than the traditional waterfall pro-
cess. In this way model-based ways of working will
promote an agile and iterative development, which in
turn shortens the lead times (Eliasson and Burden,
2013; Burden et al., 2014).

6 CONCLUSIONS

Our study complements and expands previous re-
search by exploring the impact of model-based test-
ing for validating the behaviour of a truck’s head
beams. The study was conducted at Volvo Group
Trucks Technology in Gothenburg, Sweden, and con-
sisted of testing at three different stages. First the
model was tested as is at the Model-in-the-Loop
stage; then it was tested in a simulated system known
as the Software-in-the-Loop stage; before finally be-
ing tested in a hardware rig – the Hardware-in-the-
Loop stage.

Our results are three-fold. First, we show how a
model can be transferred from a Model-in-the-Loop
setting to a Hardware-in-the-Loop context via a sys-
tem simulation; the overall process is shown in Fig.
1. Second, we supply an analysis of the shortcomings
of the model that were found as the model was tested
in more and more platform-specific settings. Third,
our results show that the introduction of model-based
testing will require organisational changes even if the
used tools are familiar to the company.

In the near future we will be able to test the model
on a real truck to see if any new defects or faulty as-
sumptions are exposed. Another research direction
for the future is to explore to which extent the test
cases developed for the MiL stage can be automati-
cally reused at the more platform-specific stages, but
also to determine to which extent the test cases for the
SiL and HiL stages can be reused with other program-
ming tools since it is not yet established which tools
will be used across the organisation.

Speaking of organisation, it is still work in

progress to implement and adapt the developed test
practices in the organisation at large and we aim to
report on the organisational changes and necessary
adaptations of model-based practices. A key aspect
to explore is to which extent MBT can be used for
other features of the truck and in other divisions of the
organisation. In this line of work we will seek strate-
gies to mitigate the tensions reported on by previous
studies, to explore how the test engineers and test en-
vironment developers can work in harmony with each
other.

ACKNOWLEDGEMENTS

The authors would like to thank Mathworks for pro-
viding the necessary licenses for free during the case
study. We would also like to acknowledge the effort
that Vector put into the case study by adapting their
tools for our needs. This work was partially funded
by the Vinnova project Next Generation Electrical Ar-
chitecture.

REFERENCES

Aranda, J., Damian, D., and Borici, A. (2012). Transition to
Model-Driven Engineering - What Is Revolutionary,
What Remains the Same? In MODELS 2012, 15th In-
ternational Conference on Model Driven Engineering
Languages and Systems, pages 692–708. Springer.

Bringmann, E. and Kramer, A. (2008). Model-Based Test-
ing of Automotive Systems. In Software Testing, Ver-
ification, and Validation, 2008 1st International Con-
ference on, pages 485–493.

Burden, H., Heldal, R., and Whittle, J. (2014). Com-
paring and Contrasting Model-driven Engineering at
Three Large Companies. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14,
pages 14:1–14:10, New York, NY, USA. ACM.

Eliasson, U. and Burden, H. (2013). Extending Agile Prac-
tices in Automotive MDE. In XM Extreme Modeling
Workshop, Miami, Fl, USA.

Eliasson, U., Heldal, R., Lantz, J., and Berger, C. (2014).
Agile Model-Driven Engineering in Mechatronic Sys-
tems - An Industrial Case Study. In Dingel, J.,
Schulte, W., Ramos, I., Abrahão, S., and Insfrán, E.,
editors, Model-Driven Engineering Languages and
Systems - 17th International Conference, MODELS
2014, Valencia, Spain, September 28 - October 3,
2014. Proceedings, volume 8767 of Lecture Notes in
Computer Science, pages 433–449. Springer.

Etschberger, K. (2001). Controller Area Network: Basics,
Protocols, Chips and Applications. IXXAT Automa-
tion GmbH.

From Model to Rig – An Automotive Case Study

621



Han, K., Son, I., and Cho, J. (2013). A study on test automa-
tion of IVN of intelligent vehicle using model-based
testing. In Ubiquitous and Future Networks (ICUFN),
2013 Fifth International Conference on, pages 123–
128.

Kent, S. (2002). Model Driven Engineering. In Proceedings
of the Third International Conference on Integrated
Formal Methods, IFM ’02, pages 286–298, London,
UK. Springer-Verlag.

Kuhn, A., Murphy, G. C., and Thompson, C. A. (2012).
An exploratory study of forces and frictions affect-
ing large-scale model-driven development. In Pro-
ceedings of the 15th international conference on
Model Driven Engineering Languages and Systems,
MODELS’12, pages 352–367, Berlin, Heidelberg.
Springer-Verlag.

Mellor, S. J., Kendall, S., Uhl, A., and Weise, D. (2004).
MDA Distilled. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

Mens, T. and Gorp, P. V. (2006). A Taxonomy of Model
Transformation. Electronic Notes in Theoretical Com-
puter Science, 152:125–142.

Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,
Baumgartner, M., Sostawa, B., Zölch, R., and Stauner,
T. (2005). One Evaluation of Model-based Testing
and Its Automation. In Proceedings of the 27th Inter-
national Conference on Software Engineering, ICSE
’05, pages 392–401, New York, NY, USA. ACM.

Runeson, P., Höst, M., Rainer, A., and Regnell, B. (2012).
Case Study Research in Software Engineering: Guide-
lines and Examples. John Wiley & Sons.

Schieferdecker, I. (2012). Model-Based Testing. IEEE Soft-
ware, 29(1):14–18.

Utting, M. and Legeard, B. (2010). Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H.,
and Heldal, R. (2013). Industrial Adoption of Model-
Driven Engineering: Are the Tools Really the Prob-
lem? In MODELS 2013, 16th International Con-
ference on Model Driven Engineering Languages and
Systems, Miami, USA.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

622


