
Model-Driven Architecture for SLA Orchestration in
Cloud Services Based Systems

Assel Akzhalova, Akylbek Zhumabayev and Ulan Dossumov
1Department of Electrical Engineering and Computer Science, Kazakh-British Technical University, Tole bi, Almaty,

Kazakhstan
a.akzhalova@kbtu.kz, akylbekz@gmail.com, ulan.dossumov@gmail.com

Keywords: Model-Driven, QoS, SLA, cloud, cost, protocol.

Abstract: The aim of MDA is to facilitate an entirely component-based system generation from models which are pre-
sumably small and manageable. It enables the system developing process be scalable meeting fast growing
e-business demands. The system definition can be mapped to many possible platform infrastructures including
those that are built on cloud services. Basing on MDA conceptcloud services can be introduced by different
providers offering and loaning available physical resources for a limited requested time by predefined contract
containing service specifications. The service specifications and service provider’s obligations are the ele-
ments of Service Level Agreement (SLA) that is a contract over the quality of service (QoS) and the violation
of QoS may be a part of the contract between parties describedas penalty policy. This paper proposes a system
architecture of cloud computing infrastructure with dynamic QoS and SLA included that enables fair cloud
resources facilitation.

1 INTRODUCTION

An efficient mechanism of interactions between
clouds provides a way to enhance the capabilities of
one of them. Such inter-cloud resource sharing re-
quires dynamic resource allocation. Using Service
Level Agreement(SLA) is vital in such dynamic en-
vironment. The cloud consumers expect high qual-
ity services delivered by certain cloud computing
providers since they pay for them.

An example of use-case dynamic cloud service re-
quest and approval by the merging of providers’ re-
sources according to SLA and and Qos can be for-
mulated as follows. We assume that there is avail-
able information about providers with the same cloud
services. The user’ requests can be handled by one
provider that can request additional resources from
the given pool of providers which is possible only ac-
cording to predefined SLA. In other words, we can
consider user as the provider requesting for resources
in case if he needs some. Therefore, providers can
create QoS documents to describe their minimum ex-
pectations from their services. The violation of QoS
causes some form of penalty for participants. As a
result, the provider reconfigures SLA object if there
occurs any need to change current configuration of its
cloud. Hence, a provider can share his available re-

sources with others who needs more resources due to
overload. When users request the service from the
provider they have to agree on certain parameters of
the SLA before they can continue to use the cloud.
Upon successful agreement the user is permitted to
reserve a certain amount of resource that is described
in the SLA. Obviously, providers have to keep track
of resource usage of every user. Afterwards, involved
providers charge users based on their usage history
and pricing plans. Figure 1 below shows described
scenario as particular use-case.

Figure 1: Use-case of user and provider interaction model-
ing of SLA and QoS-aware cloud service system.

Figure 1 demonstrates run-time system of the SLA
and QoS based framework that typically may happen
in case of shareable resources by cloud providers al-
ready signed SLA and cannot change fixed parame-
ters and, therefore, do not take into account dynamic
cloud service allocation.

56
Akzhalova A., Zhumabayev A. and Dossumov U.
Model-Driven Architecture for SLA Orchestration in Cloud Services Based Systems.
DOI: 10.5220/0005885500560064
In Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages 56-64
ISBN: 978-989-758-111-3
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



For instance, (Keller and Ludwig, 2003) describes
the Web Service Level Agreement (WSLA) frame-
work that define and monitor SLAs for Web Services
using WSLA specification language. The WSLA lan-
guage is based on XML and it is defined as an XML
schema. According to WSLA, Service provider signs
up a contract that is the WSLA document to perform
a service according to agreed guarantees for service
level parameters such as response time and through-
put, and measures that have to be taken in case of vi-
olation and failure to meet the asserted service guar-
antees (Figure 2).

Figure 2: WSLA structure.

The typical template of WSLA consists of three
main parts: Parties, Service Definitions and Obliga-
tions. Parties means the parties involved in the man-
agement of the Web Service. Service Definitions con-
tains an information about the services the WSLA is
applied to such as service actions and service parame-
ters and metrics. It also describes measurement meth-
ods of a service’s metrics. Obligations specify the ser-
vice level that is guaranteed with respect to the SLA
parameters. A service provider can specify price for
each providing service. However, the price must be
defined in advanced and it is fixed regardless of cur-
rent loading or provider’s (consumer’s) preferences.

Thus, one of the most important problems that
providers of cloud services have to tackle is the fair
method to charge customers for the real cloud utiliza-
tion. However, the frequent resource allocation upon
new arrivals of tasks make it a challenging problem
to construct the system containing a combination of
available resources along all the SLA parameters that
would cater user requirements.

Ideally, once when current service becomes ex-
pensive to use by current customer, the system should
automatically binds cheaper but faster service in or-
der to meet SLAs and QoS. QoS and SLA monitor-
ing are able to retrieve important parameters from the
available running services which can be used in future
for better adaptation. This approach can be an attrac-
tive solution in more complex case when cloud ser-
vice providers might organize temporal agreements

for cloud merging.
Thus, an efficient solution of service-oriented

cloud computing should consider dynamic configura-
tion of SLA that varies across all stakeholders of the
cloud (Groleat and Pouyllau, 2011). The providers
should understand a potential risk of customer dissat-
isfaction caused by delivery of services of low quality.
Business operations force QoS requirements to be dy-
namic and adjustable to the operational environment.

In this paper we present a meta-model of the cloud
services based system applying MDA. The MDA
based framework can be considered as one that finds
best cost for each cloud provider at run-time in order
to provide maximum profit to keep desirable perfor-
mance and QoS parameters. This architecture can be
scaled up by allowing the deployment of multiple ser-
vice instances running on different cloud servers. We
analyze interaction between the system performance,
QoS and SLA measures and introduce monitoring
engine as an additional instrumentation of SLA ob-
servers that are generated from the initial meta-model.

The choice of appropriate cloud service resources
is defined by policies that show QoS characteristics
and SLA parameters. It is essential to design and
implement admission control mechanism that will be
able to conduct best cloud service allocation in or-
der to introduce cloud service composition framework
supporting QoS.

According to the generated SLA observers and
QoS we introduce SLA based orchestration for flexi-
ble and fair cloud resources facilitation and meantime
providing best deal for cloud service providers. Sec-
tion 2 introduce MDE approach for SLA and QoS-
aware system architecture. Section 3 describes SLA
observers and generation cloud merge protocol for the
proposed architecture. Section 4 demonstrates Case
study. Section 5 compares different techniques that
base on policy-aware service composition. Section 6
summarizes contribution and results.

2 MODEL-DRIVEN
ENGINEERING FOR SLA AND
QOS-AWARE SYSTEM
ARCHITECTURE

Model-Driven approach provides interoperability and
reusability of SOA systems by settling and manip-
ulating a set of interoperable metamodels at differ-
ent layers of abstraction. The role metamodel is
mainly to enable future automatic transformations be-
tween models which makes the software development
more efficient. The specification and design of ser-

Model-Driven Architecture for SLA Orchestration in Cloud Services Based Systems

57



vices within a service-oriented architecture proposed
by OMG standard introduces Model Driven Architec-
ture (MDA) to model SOA. MDA for SOA separates
the logical representation of a service from its possi-
ble implementation on various platforms through aux-
iliary transformation the platform independent model
to a platform specific model by maintaining map-
ping functions which are collection of rules and al-
gorithms. In SOA prospective, these rules can be re-
garded as policies for a design-time and run-time ser-
vice composition via model transformation (see for
example, (Gönczy et al., 2009), (Bocchi et al., 2008),
(Cortellessa et al., 2007)).

The life cycle of policy enforcement on these lev-
els includes policy description and repository, adap-
tation and monitoring. The policy repository stores
format or policy expression and can be formalized by
simple using constraint language. Adaptation is con-
ducted under service control engine. Service control
engine selects a service provider from a number of
service providers having their service details, in par-
ticular: service quality attributes and SLA.

This work presents a model-driven framework for
policy generation to select the service provider as
matching technique that comprises of judging from
negotiation of service functionality and cost. We
include to the system architecture monitoring com-
ponent that collects metrics or statistics to support
the process of checking for policy compliance. Af-
ter observing the adaptation for an initial policy def-
inition, the policy may be modified to better align
with the specific objectives. In particular, we sug-
gest that the relationship between possible reconfig-
urations and QoS constraints should be incorporated
into the design of a SOA: the additional complexity
providing significant benefit at runtime through auto-
mated policy generation. Our focus will be on meet-
ing QoS constraints (performance and reliability) for
an overall architecture, what we consider as Service
Level Agreements (SLAs). Figure 3 shows the sys-
tem architecture of handling requests by several cloud
providers using proxies and controllers.

Figure 3: An architecture of the cloud system handling re-
quests by multiple providers.

In Figure 3 there are several parties and compo-

nents: Users, Service Request Controller, Physical
Machines, Virtual Machines, Agents and Proxies.

Users/Clients Users are involved in the system since
they send service requests to the clouds for pro-
cessing.

Service Request Controller is an interface between
the clouds and users/clients. It is responsible for
resource management and allocation. Governed
by SLAs, it manages the interaction of the clouds
in order to fulfil QoS requirements set by users
and other providers.

Physical Machines . As every provider has physical
machines that includes memory and storage phys-
ical machines are responsible for consuming, pro-
cessing and monitoring requests on physical level.

Virtual Machines can run on a single physical ma-
chine. They act as a logical layer in the opera-
tional hierarchy. VMs are responsible for phys-
ical resource allocation, memory usage, process-
ing and monitoring requests on application level.

Agents are responsible for storing information on
their providers, such as: current bandwidth, mem-
ory, storage capacity, CPU load and current num-
ber of requests.

Proxies We assume that each provider has its own set
of proxies that receive requests particular for its
provider. These proxy servers eventually tell con-
troller about their throughput, number of requests
and server load such that controller can reallocate
resource among different cloud service providers
based on SLA.

The scenario of processing user’s request works as
follows:

First, user’s request for a particular serviceSfrom
ProviderA goes to Service Request Controller. Ser-
vice Request Controller redirects the request to the
provider’s Proxy. Proxy of the specified provider
sends the request to physical servers that can process
the request. Service Request Controller redirects the
request to the provider only if there is a confirma-
tion from provider that it is able to proceed. Other-
wise, if original provider cannot handle the request
by itself, it requests extra resources from other pre-
defined providers based on the SLA between them.
Meantime, an information about status of providers
are monitored by Agents that provide current loading
of virtual machines in order to fulfil SLA parameters.

In our work we offer MDE for cloud based system
that identifies meta-model and relationships between
the following components: Cloud based system, Con-
troller, and Monitoring. The metamodel includes:

Fifth International Symposium on Business Modeling and Software Design

58



• a QoS constraints defined by UML for QoS pro-
file;

• model transformations that: 1. generates SLA ob-
jects taking QoS specifications of how an archi-
tecture should evolve in the face of QoS constraint
violations for the adaptation engine; 2. gener-
ates self-organized pattern for SLA protocol that
Agent constructs automatically in order to quickly
to changes the service binding.

As it can be seen from Figure 4 the dynamic ser-
vice composition can be implemented by applying
policies which are based on QoS requirements and
SLAs. The service handling can be considered as
model transformationsMT): MT1, MT2, MT3 (Fig-
ure 4 which makes reconfiguration of the architecture.

Figure 4: Model transformations for the Cloud based infras-
tructure.

The model transformationMT1 is able to auto-
matically frame the appropriate cloud provider which
is realized by Open Shortest Path First (OSPF) algo-
rithm to find the clouds that have highest through-
put and is available to share resources at the time of
particular request, over which our dedicated Agent
can determine reconfiguration strategies (choices
over variant points) as a function of environmental
changes. This resulting policy table is then combined
with a mapping from choices to actual actions on the
implemented system, to provide a runtime adaptation
engine.

We employ model transformationMT2 in order
to extract application metadata from the design time
metamodel, with the purpose of understanding how
the system is configured at runtime and, consequently,
what needs to be monitored:

• Deployment data for individual services (location,
interfaces, etc);

• The initial architectural configuration of services
(what usage connections exist between services);

• The basic properties that are necessary to com-
pute values of the QoS characteristics used in the
model: memory, number of requests, throughput,
response time and storage capacity.

A third model transformationMT3 is then used
over this monitoring information to change the in-
formation associated with individual services in the
repository model. Policy generation, as it will be
discussed in the next section, is modeled at design-
time as a possible transformation that an architec-
ture model can undergo, representing possible re-
configurations of service composition based on self-
organized pattern. Therefore, service selection allows
us to consider the reconfiguration of an architecture
as atransformationfrom one SOA for Cloud based
model instance to another.

3 AUTOMATIC SERVICE
COMPOSITION BASED ON SLA
AND QOS

The metamodel is equipped with QoS characteristics
and SLA that computes the overall cost as a function
of time of architectural configurations that has to be
minimized.

QoS parameters are defined at runtime due to the
dynamic negotiation processes upon new service re-
quests. For instance, required amount of memory,
bandwidth, storage capacity, response time, through-
put are QoS parameters that are embedded to SLA
which calculates the cost. At the stage ofMT1 the
new SLA objectnewSLAOb jectis created and it con-
sists of the following fields:

• memory

• number of requests

• throughput

• response time

• storage capacity

The cost of handling the service we calculate tak-
ing into account switching price betweenk providers,
mVM that able to process request by allocating mem-
ory and storage as well as time penalty if the request
is processed overdue and price of data transfer:

cost = N ·
{

m
∑

i=1
(CostVMi +CostMemi ·3600+

+StorCosti ·3600)}+Tran f erCost+

+
k
∑

i=1
SwitchCosti −

m
∑
i=1

PenaltyCosti

where CostVMi - cost of using a virtual machinei
triggered by the incoming request (perhour), Cost-
Mem is the cost of using memory belonging to work-
ing VM (persec), StorCost is the cost of using a phys-
ical storage (persec), TransferCost is the cost of data

Model-Driven Architecture for SLA Orchestration in Cloud Services Based Systems

59



transfer per hour (perGb), SwitchCost is the cost of
requesting resources from an additional cloud, Penal-
tyCost is the time penalty (persec), N is a number of
requests,m is a number of virtual machines triggered
by all user requests during an hour,k is a number of
additional clouds (providers) triggered to process all
requests during an hour.

SLA negotiation is based on the constraint sat-
isfaction. For instance, preferred price set by a re-
questing provider for a particular service should be
either declined or accepted by an offering provider.
However, our main goal is to maximize profit for all
providers by sharing their idle resources. As a result,
overloaded cloud service providers will still be able
to respond to user requests by leveraging available
resources from other providers having low resource
consumption. At the same time, it will be beneficial
for providers to lend their resources instead of keep-
ing them idle for uncertain period. Thus, the values
of the variables in 3 are negotiated during the service
discovery and binding. The process of dynamic al-
location of resources to meet SLA is autonomously
handled based on the following Policy which is im-
plemented by Service Request Controller:

1. A new request is received

2. SLA negotiation process is starting

3. Estimating QoS

4. If estimated QoS violated desirable QoS then Ser-
vice Request Controller analyzes the number of
extra resources and finds a third-party provider to
satisfy QoS requirements by forwarding requests
to negotiated resources issued by the third party.

For instance, Service Request Controller handles
SLA negotiation process and estimates time duration
of processing a request by cooperation with Agents
and Proxy of current provider. The set of proxies that
implement Proxy engine informs the Agent about cur-
rent workload of VMs including available memory,
CPU and number of requests.

MT2 is considered as Protocol that facilitates the
negotiation process between participating cloud com-
puting providers. Specifically, Protocol enable au-
tomatic procedure of service discovery and binding
by the middleware between providers based on their
functional and non-functional requirements.

Cloud providers either reserve or lend resources
by constantly adjusting prices based on individual
strategies and it might be represented in a form of
competitive game, in particular, so-called winners in
the minority. In other words, the worst ’player’ in
the majority will have to change its protocol parame-
ters. Krothapalli and Deshmukh describe this scheme

where cost is considered together with a process com-
pletion time (Krothapalli and Deshmukh, 1999). The
amount of cost depends on the due date and the pro-
cessing time. A customer requests bids from the
providers. After some period the customer may re-
fresh the request again to eventually select a certain
bid.

In this work we introduce model transformation
MT2 that allows automating the configuration of the
cloud providers negotiation and generates Protocol
which is designed to provide the newly connected
clouds having configuration parameters required by
QoS and specified in SLAobject. Basing on SLAob-
ject the new cloud should be able to communicate
with another cloud automatically as shown in Figure
5.

Figure 5: Protocol of binding services.

Protocol is derived from Open Shortest Path First
(OSPF) to search for cloud provider with the high-
est throughput. An original form of OSPF calculates
the shortest path to all known destinations connected
to the network (Le Sauze et al., 2010). In our meta-
model we employ this algorithm to share resources
according to the highest throughput which is taken
into account inMT1 to calculate cost. OSPF proto-
col has the following states: Down state, Init state,
Two-way state, Exchange start, Exchange, Loading,
Full adjacency.

In our case, we refer Down state to the state when
particular cloud is inactive. The inactive cloud does
not exchange any messages with others and waits for
the next state. Initial state we use for the state when
particular cloud sends ”Hello” packet to the Service
Request Controller in order to learn about all active
clouds participating in the network. In Two-way state
state the cloud that has sent packet ”Hello” receives
the packet back which means the connection has been
established between the cloud and the Service Re-
quest Controller. Afterwards, the cloud can change
the state to Exchange state in which it actually starts
sharing its own resources. Loading state is the state
when the cloud starts being loaded up. When the

Fifth International Symposium on Business Modeling and Software Design

60



cloud is involved actively in the sharing process then
its state becomes Full Adjacency in which it does not
need to send initial packets in order to introduce itself
to the available pool of cloud providers.

Therefore, we can demonstrate Protocol described
above as follows in Figure 6, Figure 7 and Figure 8.
For instance, Figure 6 considers step when new cloud
joins the composition it should send ANNOUNCE re-
quest to introduce itself to the group members. Figure
6 considers step ASKRESOURCES to request needed
resources and request ASKRESOURCES is immedi-
ately followed by the request SHARERESOURCES
in order to ensure that the requesting cloud is still op-
erating shown in Figure 8.

Figure 6: Protocol: Step ANNOUNCE.

Figure 7: Protocol: Step ASKRESOURCES.

Figure 8: Protocol: Step SHARERESOURCES .

We consider QoS constraints as it was presented
in paper (Akzhalova and Poernomo, 2010). Af-
ter cost model has been defined and QoS require-
ments are determined and included into SLAobject
the model transformationMT3 automatically changes
the global configuration of the system to adjust it
to desirable state. An idea of adaptation is derived
from paper (Akzhalova and Poernomo, 2010) when

the system adaptation happens by calling Reconfig-
ure() selftransformation to make the system satisfy to
desirable QoS characteristics which are pre-defined in
QoSConstraints. In this work Reconfigure() gener-
ates Policy which is used then for a Binding appropri-
ate Service by Service Request Controller. Therefore,
Reconfigure() produces Policy as a product of the fol-
lowing transformation:

Reconfigure: System×QoSConstraints×SLA→ Policy
(1)

where reconfiguration of System is evaluated by its
cost model defined by CostFunction which was de-
scribed in previous section.

Every TimeStep when System violates QoSCon-
straints, Recongigure() defines Service.ID that has to
be bound for each service request. We designate a
candidate Service as{Policy(TimeStep) = ID, ID =
1, ...,Numbero f Services}.

To find best candidate service at each time step:
BestPolicy(TimeStep) ∈ {Policy(TimeStep) =

ID,
ID = 1, ...,Numbero f Services}

that satisfies to QoS constraints:

Constraints()≡ true

and gives a minimum to an overall cost of the System:

System.CostFunction(Policy)→ min, (2)

where System changes its reconfiguration according
to System.SystemConstraints():

SystemConstraints(TimeStep,Policy(TimeStep))
(3)

4 EXPERIMENTS

The purpose of this experiment is to find out how pro-
posed QoS and SLA aware infrastructure affects to
performance of the cloud based system and relation-
ship between cost and performance.

For simulation purposes, we take two Data Cen-
ters (DC) and four User Bases (UB). User Base is a
group of users taken as single unit for the simulation
purposes. User Bases are sources of traffic. An infor-
mation about User Bases and Data Centers are given
in Table 1, 2 and 3, respectively.

For the sake of simplicity, we have taken peak
hours independent from regions. We implement anal-
ysis of handling multiple requests from different lo-
cations for duration period 30 days (approximately

Model-Driven Architecture for SLA Orchestration in Cloud Services Based Systems

61



Table 1: User Base specifications.

Name Region Requests per User Fixed Data Size per Request Avg Peak Users Avg Off-peak users
UB1 2 60 100 1000 100
UB2 1 100 100 1000 100
UB3 1 50 100 1000 100
UB4 0 60 100 1000 100

Table 2: Data centers allocation.

Region Cloud Id
North America 0
South America 1
Europe 2

Table 3: Data centers specifications.

Data Center #VMs Image Size (bytes) Memory Bandwidth
DC1 5 10000 1024 1000
DC2 5 10000 2048 1000

one month). We assume that there are 10 simultane-
ous users from single User Base requesting particular
cloud service.

We consider case when number of requests from
one userN varies between 50 up to 100 per second, a
number of virtual machinesm is 5 which are triggered
by all user requests during an hour andk which is
number of additional cloud providers is 2.

The proposed Policy is used across VMs in sin-
gle Data Center. The ”VM Cost” and ”Data Transfer
Cost” calculated by following formulas:

VMCost= totalTime∗Cost perVM/Hr
DataTrans f erCost= totalData/(1024∗ 1024) ∗

DataTrans f erCost
Input parameters for cost function is given in Ta-

ble 4.
Applying MDE approach proposed in this work

we calculate Data Center usage cost and best cloud
service provider that can be given automatically to
process user requests shown in Table 5 and Table 6.

Table 7 displays maximum, minimum and avarege
achieved response time for different User Bases and
their regions allocation shown in Figure 9. As it can
be studied from the Table and examining all accom-
modated systems we have detected that the best vari-
ant in terms of minimum cost and response time was
generated by policy that operates with services with
highest number of physical machines.

We observe that total cost of the system decreases
while handling services when the value of their capac-
ities increases. Therefore, there is an inverse relation-
ship between performance of existing resources (ser-
vices) and cost and response time of the system. Fig-

ure 10 demonstrates loading of Data Centers that pro-
cess requests according to automatic configurations
done by proposed framework.

All measures were classified in interval based cat-
egory which based on time intervals experienced by
the entity or by events passing through the entity. An
example of an interval based measure is the average
waiting time of events at a certain entity.

Figure 9: Dynamics of response time.

Figure 10: Dynamics of loading of the Data Centers.

Summarizing the case study, we have examined
affection of changing number of requests, capacities

Fifth International Symposium on Business Modeling and Software Design

62



Table 4: Input parameters for cost function.

CostVM ($/hr) CostMem ($/s) StorCost ($/s) TransferCost ($/Gb) SwitchCost ($) PenaltyCost
($/s)

0.001 0.0005 0.0001 0.1 3 0.1
0.003 0.0005 0.0002 0.6 3 0.1

Table 5: Data center usage cost.

Name Cost per VM Memory cost Storage Cost Data Transfer Cost Physical Hardware Units
DC1 0.1 0.05 0.1 0.1 2
DC2 0.3 0.05 0.2 0.06 1

Table 6: Costs of using the clouds.

Data Center VM Cost ($) Data Transfer Cost ($) Total ($)
DC2 21,792.24 66.062 21,858.302
DC1 7,263.61 109.848 7,373.458

Table 7: Response time estimated by regions and by User Bases.

Userbase Avg(ms) Min(ms) Max(ms)
UB1 308.5 209.79 36,726
UB2 210.89 135.46 38,707
UB3 210.19 136.54 34,079.3
UB4 65.812 36.034 36,711.26

to the system characteristics such cost and response
time:

• The experiments showed an automatic reconfigu-
ration of the system that handles multiple requests
from different User Bases according to the pro-
vided framework.

• The response time of the system differs signifi-
cantly if the system process requests on more than
one physical servers and therefore, with highest
throughput.

• Employing OSPF gives better response time.

These investigations can produce essential recom-
mendations when design cloud based system auto-
matic resource allocation engine and struggle with
workloads. The proposed Protocol and QoS and
SLAbased reconfiguration can be used by cloud ser-
vice providers to install dynamic SLA contract with
service consumers.

5 DISCUSSION

(Cardellini et al., 2009) offers MOSES framework
where SLA Monitor collects data about the average
amount of requests from user, response time, cost of

execution and reliability from both user and provider
side. In (Cardellini et al., 2009) SLA Monitor no-
tifies Adaptation layer about the fluctuation of cur-
rent workload. However, the framework does not take
into account the workload into the further model of
adaptation. After receiving notifications and infor-
mation about QoS attributes from Monitoring Layer,
Adaption Layer is built over business process model
and Adaptation Manager. The invocation of the busi-
ness process causes generation of the new instance
of the process which may differ depending on deci-
sion made by Adaption Manager. Therefore, Adap-
tation Manager solves new optimization problem for
each new instance of the business process model. The
optimization problem is represented by single objec-
tive optimization problem where the performance tar-
get is to make the distance between maximum val-
ues of QoS attributes and current ones as far as pos-
sible while meeting two types of constraints: negotia-
tion between MOSES and each user and MOSES and
providers. This problem was solved by linear pro-
gramming approach. However, it has limitation in
case of exponentially increasing number of concrete
services. In this work we model the system where
SLAs are measured and given from providers.

(Menascé et al., 2010) presents the framework
that is a part of Model-Driven project SASSY (Self-

Model-Driven Architecture for SLA Orchestration in Cloud Services Based Systems

63



Architecting Software Systems). SASSY is a run-
time of SOA self-architecting and re-architecting con-
cept to meet functional and QoS requirements such as
availability, execution time, and throughput.

In the SASSY framework, the domain expert
has to specify desirable requirements using a visual
activity-based language. Basing on these require-
ments The SASSY automatically generates a base ar-
chitecture. This architecture will be optimized ac-
cording to specified to QoS requirements through the
selection of the most suitable service providers and
application of QoS architectural patterns. Each ser-
vice sequence scenarios (SSS) has own utility func-
tion that is related to one QoS metric and it is a sub-
ject to constraint. An overall utility function is used to
adapt the whole architecture. The new architecture is
created from the base architecture with the help of op-
timizing a utility function for the entire system. In our
work we minimize overall cost function that reflects
service providers’s SLAs.

6 CONCLUSIONS

In this work we have offered distributed platform
for QoS control and SLA based reconfiguration that
allows to the cloud based system adapt at runtime
depending on constantly changing QoS parameters
by adjusting SLAs automatically by Service Request
Controller engine. Therefore, service providers do
not have to manually allocate service requests on
fixed different servers. It will be done according to the
predefined preferences and SLA contracts with other
cloud service providers. The system reconfiguration
will be done on QoS requirements in order to improve
the performance of the system.

We have extended the meta-model proposed in
previous works that selects best architecture by em-
ploying suitable OSPF optimization technique de-
pending on requirement to the infrastructure. There-
fore, it will provide QoS management of merged
cloud systems.

The case study investigates how different param-
eters of the cloud system and SLA affect to the cost
and performance. We have formulated recommenda-
tions for applying our approach to dynamically adapt
cloud based system to desirable QoS characteristics.

REFERENCES

Akzhalova, A. and Poernomo, I. (2010). Model driven ap-
proach for dynamic service composition based on qos
constraints.Services, IEEE Congress on, 0:590–597.

Bocchi, L., Fiadeiro, J., and Lopes, A. (2008). Service-
oriented modelling of automotive systems. pages
1059 –1064.

Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.,and
Mirandola, R. (2009). Qos-driven runtime adaptation
of service oriented architectures. InESEC/FSE ’09:
Proceedings of the the 7th joint meeting of the Euro-
pean software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, pages 131–140, New York, NY, USA.
ACM.

Cortellessa, V., Di Marco, A., and Inverardi, P. (2007). Non-
functional modeling and validation in model-driven
architecture. pages 25 –25.

Gönczy, L., Déri, Z., and Varró, D. (2009). Model transfor-
mations for performability analysis of service config-
urations. pages 153–166.

Groleat, T. and Pouyllau, H. (2011). Distributed inter-
domain sla negotiation using reinforcement learn-
ing. In Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on, pages 33–40.

Keller, A. and Ludwig, H. (2003). The wsla framework:
Specifying and monitoring service level agreements
for web services.J. Netw. Syst. Manage., 11(1):57–
81.

Krothapalli, N. K. C. and Deshmukh, A. V. (1999). Design
of negotiation protocols for multi-agent manufactur-
ing systems.International journal of production re-
search, 37(7):1601–1624.

Le Sauze, N., Chiosi, A., Douville, R., Pouyllau, H., Lon-
sethagen, H., Fantini, P., Palasciano, C., Cimmino, A.,
Reichl, P., and Gojmerac, I. (2010). ETICS – QoS-
enabled Interconnection for Future Internet Services.
In Proc. Future Network & Mobile Summit 2010, Flo-
rence.

Menascé, D. A., Ewing, J. M., Gomaa, H., Malex, S., and
Sousa, Jo a. P. (2010). A framework for utility-based
service oriented design in sassy. InWOSP/SIPEW ’10:
Proceedings of the first joint WOSP/SIPEW interna-
tional conference on Performance engineering, pages
27–36, New York, NY, USA. ACM.

Fifth International Symposium on Business Modeling and Software Design

64


