
Tracing of Informal and Formal Requirements through Model Variables
SKY 2015 Challenge

Martin Böschen and Christian Rudat
OFFIS - Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany

Keywords: Requirements Engineering, Traceability, Requirement Formalization.

Abstract: We describe a particular notion of traceability, namely the traceability between model variables and text pas-
sages in an informal requirement and discuss the usefulness of this concept, as it establishes a natural connec-
tion between formal and informal requirements. The traceability can be established in an semi-automated way
by using the algorithm presented in this paper, which combines two metrics to match parts of the informal
requirements to model variables. The first metric is purely text based and uses the Levenshtein distance, the
second metric measures the semantical distance of concepts by using the Wu and Palmer measure and the
WordNet ontology. The algorithm makes suggestions to the requirements engineer based on a combined score
of these two measures. The suggested approach has been implemented in a tool and is studied in a small
example.

1 INTRODUCTION

Traceability is a well-known concept in system engi-
neering. It helps to manage the creation and changes
of different assets within the development process.
Safety critical requirements are often subject to a for-
mal analysis and therefore need to be refined to a de-
gree in which the formal semantic of a requirement
is stated precisely. The ability to efficiently trace
between the different levels of abstractions becomes
even more important as standards like the ISO 26262
(International Standard Organization, 2011) require
the industry to have a fully traceable development
process. Requirement management tools like IBM
DOORS (IBM, 2015) support these kinds of trace
links between requirements. The CESAR project (Ra-
jan and Wahl, 2013) described several requirement
languages (varying in their level of formality) and the
corresponding analysis techniques.

In this article, we focus on a specific notion of
traceability, namely the traceability between text pas-
sages of natural language requirements to either vari-
ables of formalized versions of the requirement or
variables of a model which shall implement the re-
quirement. Technically, we assume requirements to
be defined by a single or by multiple sentences writ-
ten in natural language. Model variables are a list of
variable names, defined in a system model. They can
originate from a Matlab Simulink (Mathworks, 2015)

model or from more abstract model, like an automa-
ton. It is also possible that these variables are only
defined within some ontological knowledge database.
In any of these cases a clearly defined traceability is
of importance. Figure 1 shows an example of a linked
text passages to model variables. Below the natural
language description of the requirement is the cor-
responding formal requirement, which describes the
temporal-logic relationships between the model vari-
ables and can be processed by programs for testing or
verification.

cyclic P implies finally Q B immediate
P: $WindowMovesUp ∧ $ObstacleDetected
Q: $WindowMovesDown
B: 10ms

Figure 1: Example requirement (top) with traces to model
variables. Formalization of the requirement (bottom) using
a BTC ES pattern.

The requirement is taken of the motor driven
power window system in one of the Matlab Simulink
tutorials (Prabhu and Mosterman, 2004). The concept
of traceability to variables has been implemented in

58
Böschen, M. and Rudat, C..
Tracing of Informal and Formal Requirements through Model Variables - SKY 2015 Challenge.
In Proceedings of the 6th International Workshop on Software Knowledge (SKY 2015), pages 58-63
ISBN: 978-989-758-162-5
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

industrial tools, such as the Embedded Specifier (BTC
Embedded Systems, 2015), where the manual iden-
tification and linking of variables to requirements is
used as a first step to formalize a requirement. Sev-
eral discussions (Sexton, 2013; Sebastian Siegl, 2014)
emphasize the value of this step to structure the pro-
cess of deriving formal requirements from informal
ones.

A disadvantage of manually establishing trace-
ability is that the process becomes increasingly error-
prone with larger projects. The requirements engi-
neer often has to process long lists of similar sound-
ing words and has to be very carefully not to make
mistakes, such as to link the wrong variables or create
duplicates of variables.

Our approach support such a identification process
by using a combination of different similarity mea-
sures between the model variables and the text pas-
sages, and to suggest the most similar terms to be
linked with a trace. In this article, we measure the
similarity by a textual difference (Levenshtein, 1966)
as well as by a semantic similarity (Wu and Palmer,
1994), derived from the WordNet ontology (Miller,
1995). Knowledge stored in other kinds of ontolo-
gies could also be used to improve the results. Our
goal is to support a requirements engineer by provid-
ing suggestions, since a fully automatic approach is
unreasonable in most cases due to subtle differences
in the meaning of natural language texts.

The theoretical background of our approach is
elaborated in Section 2 and its implementation in Sec-
tion 3. In Section 4 metrics to evaluate the provided
suggestions are discussed.

2 ALGORITHM

This section describes our algorithm for generating
suggestions for links to model variables. As a run-
ning example we use the following natural language
requirement which was the basis for the formal re-
quirement depicted in Figure 1:

Requirement: “If the window moves up and an ob-
stacle is detected, the window has to start moving
down in less than 10ms.”

Model variables: ObstacleObserved,
PassengerDownSwitchIsPressed,
WindowMovesDown,WinMovUp

In this simple case, we would like to estab-
lish a trace between the text passage “window
moves up” and the variable WinMovUp, a trace be-
tween the text passage “obstacle is detected” and
the variable ObstacleObserved, as well as be-

tween the text passage “window has to start mov-
ing down” and WindowMovesDown. The variable
PassengerDownSwitchIsPressed is not textually
mentioned in this requirement and therefore shall not
get a link. Instead of defining these traces manu-
ally, our algorithm generates suggestions, which can
be accepted to establish the trace. Suggestions are
proposed if a text passage within the requirement
is similar to any of the variables. In this example,
we illustrated several case which should be handled
by the algorithm. The text passage “obstacle is de-
tected” and the variable ObstacleObserved have the
same meaning, but use a different verb. This se-
mantic similarity should be perceived. The variable
WinMovUp should be referenced to the text passage
“window moves up”, although it is in an abbreviated
variable style. The text passage “window has to start
moving down” contains other information (“has to
start”, but should be referenced to the model variable
WindowMovesDown.

To measure the similarity illustrated in the exam-
ples above, our algorithm uses a textual similarity
measure as well as a semantical similarity by using
knowledge stored in an ontology. The top suggestions
with their respective scores are finally presented to the
engineer.

A suggestion is a pair of a text passage and a
model variable, accompanied by a score. The algo-
rithm for generating suggestions for a given require-
ment is outlined in Algorithm 1.

Algorithm 1: Generate Suggestion List for Requirement.
1: function GETSUGGESTIONS(text)
2: for each passage ∈ text do
3: for each var ∈ model do
4: score← SIMILARITY(passage, var)
5: list.append((score,passage,var))
6: end for
7: end for
8: SORT(list)
9: for each suggestion ∈ list do

10: if NOOVERLAP(suggestion, sugList) then
11: sugList← suggestion
12: end if
13: end for
14: sugList← sugList[0..maxSuggestions]
15: return sugList
16: end function

Every possible combination of text passages and
variables is checked and rated with a score (line 4).
We don’t suggest overlapping text passages to avoid
cluttering the suggestion list with slight modifications
of the same text passage. Therefore, after identifica-
tion of the individual scores, the list is sorted by de-

Tracing of Informal and Formal Requirements through Model Variables - SKY 2015 Challenge

59

Figure 2: Screen shot of the prototype implementation.

scending score (line 8) and only the text passage with
the best score will be used as a suggestion (line 11).
We further limit the number of suggestions to a max-
imal value (line 14).

The similarity score is calculated based on a com-
bination of two different similarity measures: The
first score scorelvs is a textual similarity measure
called the Levenshtein (Levenshtein, 1966) distance.
It is a very common score to measure how similar two
strings are and is available in many programming li-
braries. The idea is to measure the number of charac-
ter edits needed to transform one string into the other.
We use the Levenshtein distance of the whole text
passage and the model variable as our first score.

Our second score scorewpd is a semantic similar-
ity measure, called the Wu-Palmer (Wu and Palmer,
1994) similarity measure. It measures the distance in
terms of the number of semantic links necessary to
reach the closest common ancestor of two concepts
in an ontology. In this scenario, we used the seman-
tic definition and relationship of concepts within the
WordNet Ontology (Miller, 1995), which is a gen-
eral purpose ontology of the English language. This
measure does not work on arbitrary strings but on on-
tological concepts. Therefore it can not be directly
applied to the text passage and the variable names.
They need to be split into identified WordNet con-
cepts, before the Wu-Palmer similarity measure can
be applied. Therefore, the algorithm splits the text
passages and the variable names into tokens and tries
to match them to concepts defined in WordNet. The

function hit for a text passage token is defined as:

hit(token,variable)=

1 if ∃t ∈ Tvariable :
wpd(token, t)< treshold

0 otherwise
(1)

,where Tvariable is the set of the tokens extracted from
the variable name, wpd(·) is the Wu-Palmer distance,
and treshold is a constant. The score of this measure
is then defined as:

scorewpd(textpassage,variable) =
∑hit(token)√
|text passage|

(2)
,where the sum in the numerator is computed over all
tokens extracted from the text passage. In this paper,
we assume that the names of the model variables are
written using a CamelCase convention, so that they
can be split into individual tokens. The square root in
the denominator has the effect, that the score prefers
further token hits than a shorter text passage.

The combined suggestion score is a logistic re-
gression classifier. The two values scorelvs and
scorepwd are used as features of the classifier. The
model is learned on a set of training requirements,
where the traces have been drawn manually. The
learning is done offline and the identified model is
used as combined score of the algorithm. The final
score estimate is normalized to be within the interval
[0,1], such that they can be easily compared by the
requirements engineer.

SKY 2015 - 6th International Workshop on Software Knowledge

60

3 IMPLEMENTATION

We implemented the methodology and the algorithm
described above within a prototypical tool. Currently,
it is a stand-alone tool independent of commercial so-
lutions, but we also cover integration scenarios into
commercials solutions within this section. Figure 2
depicts a screen shot of the user interface.

The figure shows the natural language require-
ments on the far left and the model variables right
next to it. The established traces are shown on the
right side, together with the generated suggestions for
traces. The currently selected requirement is shown
within the text field working area. Already estab-
lished traces and suggestion for traces are marked by
a background color and suggestions can be accepted
by drag-and-drop into the traces section. This orga-
nization of the GUI was chosen to give the engineer
an overview over the current state of the data and sug-
gestions, and facilitate the interaction.

The tool was implemented in Python using the
NLTK1 library for natural language processing. For
the machine learing step the scikit-learn2 library was
used. The graphical user interface was implemented
using the Qt framework3.

For the methodology to be applicable in an indus-
try process, it has to be integrated into their tool land-
scape. In the following, we sketch a possible scenario.
We start by identifying which data has to be stored
and which functionality must be provided. There are
three different data artifacts, which must be stored:

• Natural Language Requirements

• Model Variables

• Traces

Furthermore, the following functionality must be
provided:

• Calculation of suggestions

• Presentation of suggestion

• Establishing traces

Figure 3 sketches an overview of a possible tool
landscape which realizes these requirements. In this
scenario, the Requirements are stored in a require-
ment Repository, for example in DOORS. To edit
and analyze the requirements, one could use the Re-
quirement Quality Suite from the ReUse Company
(The Reuse Company, 2015). It is integrated with a

1http://www.nltk.org
2http://scikit-learn.org
3http://www.qt.io

Figure 3: Possible Tool Landscape.

Knowledge Server, where one could define the struc-
ture of the formal requirements and the model vari-
ables. With its support, the requirements can be inter-
preted as patterns, and its formal structure can be ac-
cessed. The Requirement Quality Suite also allows to
define add-ons with custom code, which can be used
to implement our suggested algorithm. The results
of this calculation can be shown using a web inter-
face, which in turn could be used to create traces in
the requirement repository by using an OSLC(OSLC
Community, 2013) connection. Finally, the formal re-
quirements can be subject for further analysis, such
as verification and testing procedures. The full trace-
ability to the natural language requirements to their
refined formal requirements and even to the individ-
ual model variables can still be maintained.

4 EVALUATION METRIC

We propose an evaluation metric for our method.
First, we need to make sure that the algorithm pro-
duces suggestions that have the same quality as traces
drawn manually by an expert. This can be done
quantitatively by defining an appropriate measure and
compare traces established by an expert with sugges-
tion made by the algorithm.

Before this metric is described, we show the
data we used during development and testing. We
made extensive use of a case study developed by
MathWorks, where it is used as a tutorial for Mat-
lab/Simulink. A variant of their requirements is also
been used as a tutorial example for the Embedded
Specifier, to show how requirements are formalized.
The following list shows an excerpt of the require-
ments:

• If the driver up switch is pressed, the window has
to start moving up in less than 50 [ms]. Assump-
tion: The driver does not push the down switch,
the window is not at the top end and there is no
obstacle in the way.

Tracing of Informal and Formal Requirements through Model Variables - SKY 2015 Challenge

61

• If the driver down switch is pressed, the window
has to start moving down in less than 50 [ms]. As-
sumption: The driver does not push the up switch,
the window is not at the bottom end.

• If the passenger up switch is pressed while the
window is at the top end, the passenger up request
shall have no effect. Assumption: N/A

• and six more requirements.

The following model variables have been identi-
fied within theses requirements:

• DriverUpSwitchedIsPressed

• WindowMovingDown

• DriverDownSwitchIsPressed

• ObstacleDetected

• WindowIsAtTheTopEnd

• WindowIsAtTheBottomEnd

• PassengerUpSwitchIsPressed

• AutoUpModeActivated

• PassengerDownSwitchIsPressed

• AutoDownModeActivated

We produced several examples of sets of requirements
(5 to 10 requirements and model variables) of similar
complexity for our testing and evaluation purpose, for
example a beverage vending machine, a traffic light
or a home alarm system.

We suggest the following metric for measuring the
quality of the suggestion. For a single requirement,
let R be the set of references (which have been estab-
lished manually by an expert) and let S be the ordered
list of suggestions. Let Sn be the set of the best n sug-
gestion. If |R |= n, then we calculate the quality score
q of a requirements as followed:

q =
| R∩Sn |

n
(3)

The quality score is hence a number between 0 and 1.
Note that we don’t reduce the quality score if a sug-
gestion is made for a different text passage, our evalu-
ation shows that such an issue can be easily corrected
by the user. We also don’t consider the quality beyond
the top suggestions. The formula expresses our expe-
rience, that the top suggestion must be useful for the
user and small adjustments are acceptable. For our
simple example we achieved very often a score above
50% and up to 100 %, but we deliberately don’t pub-
lish any numbers here, as our example lacks the noise
and the size of real-world examples. We plan to fur-
ther evaluate our method with more realistic data sets
in the near future.

As our method proposes a semi automatic ap-
proach, we also need to evaluate the user accep-
tance. This suggests a classical user experience re-
search study. Within an experiment, different persons
should establish the traceability on different set of re-
quirements manually and with the help of our sugges-
tion based method. The following measures should
be used:

• Time to complete the task

• Perceived complexity of the task

• Accuracy achieved

5 CONCLUSION

We presented our algorithm and a prototypical imple-
mentation to establish traceability between require-
ments and model variables in a semi-automatic way.
Our algorithm makes suggestions based on a simi-
larity measure between development artifacts. For
our approach, we got positive feedback from our col-
leagues and industrial partners, which encourages us
to head further into the described direction. We would
like to emphasize two main ideas, which are underly-
ing our work:

• Model variables, which are explicitly stated in for-
mal requirement and at least implicitly mentioned
in informal requirements can be use to “glue” the
requirement on different levels of abstraction.

• Traceability can be established in a semi-
automatic, suggestion based process. An auto-
matic process seems unfeasible due to the subtle-
ness natural language can have, but a computer
can support the engineer by pointing into the right
direction.

In our future research, we plan to perform a more
rigorous evaluation on real-world examples from in-
dustry and use more domain knowledge to improve
the suggestion algorithm. For example, instead of
only using the general purpose WordNet ontology, we
could use domain specific ontologies which may lead
to better results.

Instead of pure natural language requirement, one
could start with requirement templates or patterns. In
the CRYSTAL project we developed examples using
requirements patterns (Génova et al., 2013). These re-
quirements are more structured than natural language
requirements, and their structure can be directly ac-
cessed by a computer. This closes the gap between
the high-level requirements and the formulas used for
verification and testing and could make it easier to
draw the connection.

SKY 2015 - 6th International Workshop on Software Knowledge

62

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under
Grant Agreement N◦332830 (CRYSTAL) and Ger-
man national funding from BMBF N◦01IS13001A.

REFERENCES

BTC Embedded Systems (2015). BTC Embedded Spec-
ifier. http://www.btc-es.de/index.php?idcatside=52
(last visited 09/09/2015).

Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O., and
Moreno, V. (2013). A framework to measure and im-
prove the quality of textual requirements. Require-
ments Engineering, 18(1):25–41.

IBM (2015). IBM Rational DOORS. http://www-
03.ibm.com/software/products/en/ratidoor (last vis-
ited 09/09/2015).

International Standard Organization (2011). Road Vehicles
- Functional Safety.

Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710.

Mathworks (2015). Simulink.
http://de.mathworks.com/products/simulink (last
visited 09/09/2015).

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

OSLC Community (2013). Open Services for Lifecycle
Collaboration. http://open-services.net/.

Prabhu, S. M. and Mosterman, P. J. (2004). Model-based
design of a power window system: Modeling, simu-
lation and validation. In Proceedings of IMAC-XXII:
A Conference on Structural Dynamics, Society for Ex-
perimental Mechanics, Inc., Dearborn, MI.

Rajan, A. and Wahl, T., editors (2013). CESAR - Cost-
efficient Methods and Processes for Safety-relevant
Embedded Systems. Number 978-3709113868.
Springer.

Sebastian Siegl, T. W. (2014). Von natrlichsprachlichen zu
formalen anforderungen zwei werkzeuge im praxis-
test. OBJEKTspektrum.

Sexton, D. (2013). An outline workflow for practical for-
mal verification from software requirements to object
code. In Formal Methods for Industrial Critical Sys-
tems, pages 32–47. Springer.

The Reuse Company (2015). Requirements Quality
Suite. http://www.reusecompany.com/requirements-
quality-suite (last visited 05/27/2014).

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical
selection. In Proceedings of the 32nd annual meeting
on Association for Computational Linguistics, pages
133–138. Association for Computational Linguistics.

Tracing of Informal and Formal Requirements through Model Variables - SKY 2015 Challenge

63

