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Abstract: This paper presents a prototype web-based Graphical User Interface (GUI) platform for integrating and testing 
a system that can perform Low-Entropy Model Specification (LEMS) neural network description to Hardware 
Description Language (VHDL) conversion, and automatic synthesis and neuron implementation and testing 
on Field Programmable Gate Array (FPGA) testbed hardware. This system enables hardware implementation 
of neuron components and their connection in a small neural network testbed. This system incorporates 
functionality for automatic LEMS to synthesisable VHDL translation, automatic VHDL integration with 
FPGA logic to enable data I/O, automatic FPGA bitfile generation using Xilinx PlanAhead, automated multi-
FPGA testbed configuration, neural network parameter configuration and flexible testing of FPGA based 
neuron models. The prototype UI supports clock step control and real-time monitoring of internal signals. 
References are provided to video demonstrations. 

1 INTRODUCTION 

In recent years, spiking Neural Networks (NNs) have 
been implemented on a range of hardware platforms 
including Field Programmable Analogue Arrays 
(FPAAs) (Rocke et al., 2008; Rocke, 2007; Maher et 
al. 2006), FPGAs (Cawley et al., 2011; Morgan et al. 
2009; Carrillo et al, 2013; Glackin et al. 2005; Pande 
et al., 2010) and multi-processor based systems such 
as Spinnaker (Khan et al., 2008). However, to date, 
many of these hardware systems do not model 
biological neurons to a high-degree of accuracy. 

The Low Entropy Model Specification (LEMS) 
(Cannon et al., 2014) is a language used to 
functionally describe neuron models and neural 
networks. LEMS is a declarative language which is 
accessible to persons not trained in electronic 
engineering or computer science. A large library of 
complex and diverse LEMS neuron models exists and 
forms the basis of the NeuroML2 NN description 
language. LEMS descriptions are often exported to 
various software simulators such as NEURON and 
BRIAN for optimised execution. 

The research proposed in this paper captures 
biologically realistic neuron models in the LEMS 
neuron and neural network modelling language 
before translating the models to synthesisable 
Hardware Description Language (VHDL) and 

implementing the neural network on a testbed 
comprised of Field Programmable Gate Arrays 
(FPGAs). The work is a contribution to the overall Si 
elegans system (Blau et al. 2014). 

This paper presents a prototype web-based 
Graphical User Interface (GUI) platform for 
integrating and testing a system that can perform 
LEMS neural network description to VHDL language 
conversion, automatic synthesis and neuron 
implementation on FPGA hardware, and their 
connection in a small neural network. This system 
provides a working end-to-end system on which User 
Interface (UI) neural networks may be prototyped and 
tested in hardware. The system incorporates 
automatic LEMS to VHDL translation, automatic 
VHDL integration with FPGA logic to enable data 
I/O, automatic FPGA bitfile generation using Xilinx 
PlanAhead, automated multi-FPGA configuration, 
neural parameter configuration and flexible testing of 
FPGA based neuron models. The prototype UI 
supports clock step control and real-time monitoring 
of internal signals. This work is demonstrated at 
Morgan et al, 2014.  

The structure of this paper is as follows: Section 2 
describes the neural network prototype high level 
architecture. Section 3 overviews each of the UI 
elements. Section 4 describes the Prototype Neuron 
Model Capture UI. Section 5 outlines the Experiment 
Control UI. Finally, section 6 concludes the paper. 
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Figure 1: Prototype System Architecture.  

2 PROTOTYPE SYSTEM HIGH 
LEVEL ARCHITECTURE 

This section outlines the high-level structure of the 
prototype system (shown in Fig 1). An example user 
usage scenario sequence for the prototype is as 
follows: 
1. Define neuron model in LEMS.  
2. Upload model to the application server through a 

web browser. 
3. Define neuron model test through the web UI. 
4. Request test execution on FPGA hardware. 
5. View neuron model behaviour in the browser as 

the test is running. 
 
The current implementation of the prototype system 
facilitates a single biologically plausible neuron 
model to be used in each of  8 FPGAs to provide a 
hardware neural network simulation. The system is 
designed with the intention of future extension to 
allow different neuron models to be used during a 
simulation. 
All user interaction with the system is through a web 
browser running on the user’s local machine and 
connecting to the prototype system over the internet. 

All server-side software components are deployed on 
a single server machine running the Ubuntu Linux 
operating system. The server has three active Ethernet 
interfaces, namely:  
1. eth0 - server to internet. 
2. eth1 - server to a Raspberry Pi (RPi) which 

facilitates testbed FPGA configuration using 
JTAG (Joint Test Action Group). 

3. eth2 - server to Ethernet switch to which all 
FPGAs are also connected. This third network 
interface is used for all data transmission to/from 
neuron models running on the FPGAs.  

 

The following technologies are used in the prototype 
system: 
• All user interface elements are implemented in 

HTML5, CSS and Javascript. 
• Server-side web application processing uses the 

Django web application framework for the Python 
programming language. 

• Data storage uses an sqlite database. 
• The LEMS to VHDL converter (Krewer et al., 

2014) is implemented in Java with a thin Python 
frontend. Communication between the  Java  and 
Python components is over XML-RPC. 

• The Java component of the LEMS to VHDL  

Web-enabled Neuron Model Hardware Implementation and Testing

139



 

converter is implemented as a Java servlet 
deployed in the Apache Tomcat container. 

• The VHDL neuron model wrapper framework is 
implemented as an XML-RPC service with a thin 
frontend that provides database communications. 

• The simulation controller prototype is 
implemented as a service with a thin frontend that 
provides database communications. Communi-
cation between the backend and frontend of the 
simulation controller prototype uses the 
websocket protocol. 

• The websocket interface to the simulation 
controller prototype backend is also used to allow 
a web-browser to connect directly to the backend 
of the simulation controller to retrieve real-time 
data from an ongoing simulation. 

• The server-side websocket interface uses the 
Tornado framework for Python. 

• The FPGAs used are Xilinx Spartan 6 FPGAs on 
Digilent Nexys 3 development boards. 

• Testbed FPGA configuration is performed 
through a Raspberry Pi single board computer 
with a JTAG connection to all FPGAs. The 
Raspberry Pi uses the UrJTAG library to perform 
FPGA configuration over JTAG. 

The UI allows the user to add neuron models to the 
model library, edit existing models, define FPGA 
simulations, and configure and run simulations on 
FPGA hardware. The elements of the UI are 
described in section 3. 
In response to user activity in the UI, the system 
completes a selection of the following steps: 
• LEMS neuron model to VHDL conversion and 

model verification.  
• Synthesis, FPGA place and route and generation 

of FPGA configuration bitstream files, using 
Xilinx Electronic Design Automation tools. 

• Configuration of multi-FPGA hardware testbed 
• Simulation using FPGA hardware. 
The LEMS to VHDL converter (see Fig 1) monitors 
the database for models that have been added in 
LEMS format but have not yet been converted to 
VHDL. On finding these models, the system extracts 
the LEMS data and converts the model to VHDL.  

3 USER INTERFACE ELEMENTS 

The prototype system implements a web UI which 
allows users to add neuron models to the system in 
LEMS format. When a new model is uploaded or an 
existing model is changed, the system automatically 
builds an FPGA bitfile for the model. The system 
allows users to define simulations which use the 
uploaded models (as described in Section 4). 

Simulations may be defined as a set of instructions 
which may include Python-style control elements. 
Simulations may also be defined graphically through 
a simulation definition user interface. The simulation 
definition UI (described in Section 5) provides the 
following functionality: 
• Users may specify the number of neurons they 

would like in their simulation neural network.  
• Users can set parameter values for each neuron in 

the simulation. 
• Users can specify which variables from each 

neuron they would like recorded. 
• Users can define stimulus spikes to be injected 

into the NN. These spikes are sent from the server 
into the FPGA NN during the simulation. 

• Users can specify the number of neural network 
timesteps that they would like the simulation to 
run for. 

4 PROTOTYPE NEURON MODEL 
CAPTURE UI 

The UI for uploading and managing neuron models 
primarily consists of two screens, namely the Neuron 
Model List UI and the Neuron Model Edit UI. 

4.1 Neuron Model List UI  

Neuron Model List UI, illustrated in Fig 2, shows a 
list of all neuron models available to a user. An 
uploaded neuron model is automatically processed by 
the LEMS->VHDL->bitfile pipeline. The status field 
in the model gives the user an indication of what stage 
in the pipeline a model is currently at. 

The LEMS column in the model list indicates 
whether this model was uploaded as a LEMS model. 
If this is set to ‘Yes’ then the word ‘Yes’ is a 
hyperlink that lets a user download the original 
LEMS data.  

The VHDL column in the model list indicates 
whether a VHDL version of this model is available on 
the system. If this is set to ‘Yes’ then the word ‘Yes’ 
is a hyperlink that lets a user download a zip archive 
containing the VHDL files for the model. A VHDL 
version of the model is available if the model was 
uploaded in LEMS format and the LEMS to VHDL 
conversion has completed successfully. 
The bitfile column in the model list indicates whether 
an FPGA configuration bitfile is available on the 
system for this model. A bitfile will be available for a 
model if the FPGA synthesis has completed 
successfully. If this field is set to ‘Yes’ then the model 
status will be ‘READY’.  
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Figure 2: Neuron Model List UI. 

 

Figure 3: Neuron Model Edit UI - LEMS Model. 

The Model status field may be one of the following: 
• RAW: Model has just been uploaded in LEMS 

though is not yet processed by the system.  
A model in this state has been queued for 
processing by the LEMS to VHDL converter. 

• CONVERTING:  Model is currently being 
processed by the LEMS to VHDL converter. 

• CONVERT FAILED: LEMS to VHDL process 
has failed. Detailed information about the cause of 
the failure is stored in the database and is available 
through the Admin interface. 

• CONVERTED: VHDL for this model is available 
on the system. A model in this state has been 
queued for processing by the synthesis tool. 

• WRAPPING: VHDL for the model is currently 
being synthesised. 
WRAPPING FAILED: VHDL Neuron Model 
synthesis failed to synthesise the model. Detailed 
information about the cause of the failure is stored 
in the database and is available through the Admin 
interface. 

• READY: VHDL Neuron Model synthesis has 
successfully processed the model and a bitfile is 
now available for this model. This model may 
now be used in the simulation definition UI. 

 
4.2 Neuron Model Edit UI 

A user may add a new model to the system or edit an 

Web-enabled Neuron Model Hardware Implementation and Testing

141



 
Figure 4: Neuron Model Edit UI - VHDL Model. 

existing model through the Model Edit UI (Figs 3 and 
4). The user can access this UI through the Neuron 
Model List UI by clicking on a model name to edit an 
existing model or by clicking the ‘Add Model’ link to 
create a new model. If users wants to upload a LEMS 
model, they will be prompted to enter the LEMS 
description of the model into a resizable text area. 

5 SIMULATION CONTROL UI 

A simulation definition is a list of instructions that are 
interpreted by the simulation controller prototype (see 
Fig 1). These instructions can trigger the simulation 
controller to load a particular bitfile onto the specified 
FPGAs, to read and write to neuron model signals to 
inject neural spikes into the network of FPGAs and to 
increment the simulation time on the FPGAs. 

The UI screens in this section allow users to create 
and execute a simulation definition. This is done 
through the following UI screens: 
• Simulation definition and instance list screen (Fig 5). 
• Raw simulation definition screen (Fig 6). 
• Graphical simulation definition screen (Fig 7) . 
 

Two methods are provided for defining a simulation. 
• The raw simulation definition screen (Fig 6) 

provides a low-level mechanism for maximum 
flexibility in defining a simulation. This is 
primarily intended for system testing and 
debugging. This method requires the user to have 
some understanding of the workings of the 
system. 

• The graphical simulation definition screen (Fig 7) 
provides a high-level mechanism that requires no 
prior knowledge of the workings of the system. 

5.1  Simulation Definition  

The Simulation Definition and Instance List UI 
screen is shown in Fig 5. This screen displays a list of 
simulation definitions available to the user. Each has 
previously been defined either in the raw simulation 
definition screen (Fig 6) or the graphical simulation 
definition screen (Fig 7). When a simulation 
definition has been added by a user, they can then 
choose to either: 
• Schedule the simulation to be run: this option is 

selected by clicking the ‘Schedule Run’ link 
beside the simulation definition. This queues the 
simulation for running when the FPGA hardware 
is next available. The results of the simulation are 
added to the database when the simulation is 
complete. 

• Run the simulation immediately: this option is 
selected by clicking the ‘Run Live’ link beside the 
simulation definition. This option requests that the 
simulation be run immediately on the FPGA 
hardware. If another simulation is currently 
running then the request is denied and a message 
is displayed to the user in the web UI indicating 
that the FPGA hardware is currently busy. If the 
FPGA hardware is free then the simulation is 
passed to the simulation controller and the 
simulation results data  is stored in the database 
for later review. 
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Figure 5: Simulation Definitions and Instances List UI. 

 
Figure 6: Raw Simulation Definition UI. 

If a simulation has been scheduled for running then 
an instance of that simulation is added to the 
simulation instances list. This list is displayed 
underneath the simulation definitions list (Fig 5). The 
status column is initially ‘SCHEDULED’. When a 
simulation is running on the FPGA hardware its status 

field is set to ‘RUNNING’. When a simulation has 
finished its status field is set to ‘COMPLETE’. 

5.2 Raw Simulation Definition 

The Raw Simulation Definition UI screen is shown  
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Figure 7: Graphical Simulation Definition UI. 

in Fig 6. This screen allows a user to define a 
simulation as a list of instructions to be sent to the 
simulation controller prototype (see Fig 1). This 
instruction set allows users to select specific FPGAs 
for configuration, read from specific neuron model 
variables on each FPGA, write to configure model 
parameters on each FPGA, inject spike stimulus 
patterns into the hardware neural network (to mimic 
sensory input), and increment the neural network time 
(by progressing by a time step). 

5.3 Graphical Simulation Definition 

The Graphical Simulation Definition UI screen is 
shown in Fig 7. This screen allows a user to define a 
simulation through the UI without knowledge of the 
underlying instructions that are to be passed to the 
simulation controller to execute the simulation. 
Simulations defined through the Raw Simulation 
Definition UI and the Graphical Simulation 
Definition UI have the same functionality available to 
them. 

In this UI the user typically first adds a simulation 
name and description, and then selects the neuron 
model to be used in the simulation from the dropdown 
box of neuron models. The user then specifies the 
number of neurons to be used in the simulation and 
clicks the ‘Draw Network’ button. This results in a 
graphical representation of the requested number of 
neurons on the right-hand side panel (Fig 7). The user 
can drag these neurons within the panel to clearly 
visualise the network used in the simulation. 

The parameters from the neuron model that define 
the synaptic weights are identified by the UI through 
a naming convention shared between the LEMS to 

VHDL converter and the UI. The user can set the 
value to be used for any neuron parameter in any 
specific neuron by clicking on the neuron in the right-
hand side visualisation window and then clicking the 
‘Inputs’ button in the left-hand panel. 

Any neuron can be marked as being a ‘Virtual 
Neuron’ by selecting the neuron in the right-hand 
window and then checking the ‘virtual neuron’ 
checkbox in the left-hand window. This is a 
mechanism to allow spikes to be injected into the 
neural network from the server as if they were coming 
from a number of different neurons. Virtual neurons 
model neuron behaviour only in so far as they 
generate programmed patterns of spikes, which are 
injected into the neural network by the Simulation 
Controller during the simulation. The user can specify 
the rate at which spikes are injected into the FPGA 
neural network from virtual neurons during the 
simulation. Spike rates are defined in terms of 
simulation timesteps.  

6 CONCLUSIONS 

This paper has presented a prototype web-based GUI 
platform for integrating and testing a system that can 
perform Low-Entropy Model Specification (LEMS) 
neural network description to VHDL language 
conversion, automatic synthesis and neural network 
implementation on FPGA hardware. This system 
provides a working end-to-end system on which UI 
components may be prototyped and tested, and 
captured neural networks may be implemented in 
hardware. The prototype UI supports clock step 
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control and real-time monitoring of internal signals. 
This work is demonstrated at (Morgan et al, 2014). 
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