
Lido – Wiki based Living Documentation with Domain Knowledge 

Reuven Yagel 
Software Engineering Department, Azrieli - The Jerusalem College of Engineering, POB 3566, 9103501 Jerusalem, Israel 

 

Keywords: Living Documentation, Domain Knowledge, Wiki, Software Processes. 

Abstract: There is a gap between code and documentation in many software development projects. This gap usually 
grows as time goes by, decreasing developers ability to keep product quality high. We describe how 
documentation based on a common wiki can be enhanced with domain knowledge in ways that ensure better 
live documentation. This way updated and relevant documentation, i.e., specifications, manuals, models, 
test scripts, etc. lead ultimately to higher quality software. 

1 INTRODUCTION 

A software product is composed of source code and 
compiled executables but also of data and 
documentation in various forms and formats. Today, 
wiki (Wikipedia) applications have become a 
popular means for documenting software and many 
other areas. Wikipedia.com is a notable popular 
example. 

In software development it is even more 
common, especially in open source projects, to use 
wiki for documentation. Actually, the first wiki site, 
WikiWikiWeb was used for documenting a software 
project (http://c2.com/cgi/wiki?WikiHistory). 

Using wiki for documentation is in itself a big 
step towards a documentation that has more chances 
to be updated and relevant throughout a software 
project lifecycle, due to its accessibility. But, can we 
do better? 

In previous works (Exman et al., 2014; Yagel, 
2011) it was shown how executable specifications 
(Adzic, 2009) can be augmented with domain 
concept modifiers in order to (semi-) automatically 
create parts of the code. Here we lay a plan to 
broaden the scope to documentation as a whole. By 
software documentation we mean here all forms of 
written text and other documents that accompany the 
software code itself. Documents can range from 
requirement and design/architecture specifications, 
modeling diagrams, test scripts, glossaries, technical 
and user manuals, various logs of formal and 
informal communication between various project 
members and stakeholders (even e.g. marketing), 
down to source code comments. 

1.1 The Problem – The Gap between 
Documentation and Code 

The problem is the gaps that often exist between 
various documentation artifacts and the code. This 
gap usually grows as software is being development 
due to lack of continuous updates and changes 
which are often not reflected back to the 
documentation – thus making it obsolete. 

For example, it is common to draw design 
diagrams, e.g. in UML (Fowler, 2003), in earlier 
phases of a project. Let's say this is a class diagram 
with some domain concepts. Later on when these 
classes are implemented (sometimes partially 
generated by a tool), reality comes in and the design 
changes due to, e.g., new insights gained while 
developing the system or requirement changes. What 
happens then to the original diagram? In case we 
still need it for documenting the design – how do we 
keep it updated in a maintainable and economic 
way? Can we provide methods and tools for creating 
documentation in which developers will be more 
productive, in contrast to today's general negative 
attitude to documentation? 

1.2 Live Documentation 

We roughly define live documentation as a set of 
documents which are actively synced with changes 
in software code. The term living documentation is 
widely discussed in an upcoming book in 
preliminary edition with this title (Martraire, 2016). 
Previously, executable specifications were 

26
Yagel, R..
Lido – Wiki based Living Documentation with Domain Knowledge.
In Proceedings of the 6th International Workshop on Software Knowledge (SKY 2015), pages 26-30
ISBN: 978-989-758-162-5
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

mentioned as a form of living documentation, e.g. in 
(Adzic, 2011; Smart, 2014). 

The main idea is that the documentation is 
coupled to the source code by connecting it to the 
toolchain used to develop the code itself and that it 
is as accessible as the code. 

Going back to the UML class diagram example, 
it will be considered a living diagram if it can be 
automatically updated following a corresponding 
change in code and vice versa. 

1.3 Why Wiki? 

Using wiki for documentation has several 
advantages. First it is a proven and acceptable tool 
for collaboration. Its simplicity and high 
accessibility, usually through common browsers, 
makes it an attractive target. It is also based on plain 
text which makes it also easy to manipulate by 
programs. It's free from helps and directs the 
developers/engineers to work in higher level of 
abstraction, away from the formality and constraints 
of today's programming languages. Above all, 
markdown is a simple way to mark and link 
concepts, models and other various levels of 
software artifacts. In this work we emphasize wiki as 
a common base for most of the practices or methods 
of software documentation. 

1.4 Related Work 

FitNesse (Adzic, 2008) is a wiki-based web tool for 
non-developers to write formatted acceptance tests 
through tabular example/test data. 

BDD (Behavior Driven Development) (North, 
2006), is an extension of TDD (Test Driven 
Development/Design) aiming at writing 
requirements by non-technical stakeholders. 
Cucumber (Wynne and Hellesoy, 2012) and 
SpecFlow (SpecFlow) are tools which accept stories 
written in a somewhat constrained natural language, 
directly supporting BDD. They are easily integrated 
with unit testing and user/web automation tools. 
Here (Yagel, 2011) we reviewed these practices and 
tools. 

DaSpec (DaSpec) is a new tool that uses wiki for 
writing executable specifications in free form and 
exercises the system under test for 
approval/acceptance. BDDfy (BDDfy) is a tool that 
creates documentation from unit tests written in 
some disciplined manner, thus reserving the usual 
order and generating documentation from lower 
levels. 

In the diagramming area, many tools are 

generating source code from, e.g., UML diagrams. 
Some of them use standard formats, e.g. XMI files 
used by ArgoUML (ArgoUML). Some of the tools 
also support reverse engineering for creating or 
updating those diagrams, following changes in the 
code – thus helping keep the documentation 
updated. 

Mapador (Mapador) is a service for 
automatically extracting documentation from code, 
which targets writing documentation as part of the 
development process and not a posteriori.  

ATDD (Acceptance Test Driven Development) 
is an extension of TDD, also known as Agile 
Acceptance Testing (Adzic, 2008). Further 
extensions are Story Testing, Specification with 
examples (Adzic, 2011) or Living/Executable 
Documentation (Brown, 2011; Smart, 2014). 

The mentioned coming book (Martraire, 2016) 
emphasizes these relevant practices: Living 
Diagram, Living Glossary, Declarative Automation, 
Enforced Guidelines, Small-Scale Model and others. 
For example, the book discusses how using 
Javadoc's DocLet (documentation generator), one 
can parse source files for annotations marking main 
domain concept and then generating a glossary 
document.  

Concerning diagrams, there are libraries and 
services which accept as input simple text format 
and can then generate diagram documentation. See 
for example: yuml.me, diagrammr.com, and 
structurizr.com. More general legacy tools can be 
used too, e.g. Graphviz (Graphviz) that uses .dot file 
format for generating graphs. 

Enterprise/ALM tools like IBM's Rational Team 
Concert (IBM) put emphasis on traceability which is 
important to link the various documentation and 
software levels. 

More generally, the emphasis on domain analysis 
follows the Domain Driven Design (DDD) work 
(Evans, 2003). Even at higher level of abstraction 
we can make use of ontologies to guide the 
documentation and development process, as 
discussed at (Feathers, 2004; Osetinsky and Yagel, 
2014). 
 

Wiki Software. It is now common that project 
management tools, version control systems and 
services offer built-in wiki support. Github (Github) 
(a well-known version control cloud service) for 
example is adding a wiki by default to every new 
code repository (see: https://help.github.com/ 
articles/about-github-wikis/). However, in contrast 
to our proposal in this paper, this wiki is managed 
separately from the code (e.g. in terms of security 
policies and git versioning). It is also a common 

Lido – Wiki based Living Documentation with Domain Knowledge

27



 

practice for a github project (and other similar ones) 
to have a README file at the source root, which 
often serves as the main page for all other 
documentation. There are many (mostly open 
source) wiki engines, e.g. MediaWiki (MediaWiki) 
that powers Wikipedia and other wikis. 
 

Semantically Enhanced Wikis are a major step 
towards better integration of wiki content. A notable 
example is Semantic MediaWiki (MediaWiki) which 
is an extension to MediaWiki which allows 
semantically annotating wiki pages, using structural 
information, ontology languages, semantic web and 
alike. In this work we focus more on the usability 
side of integrating various tools under a wiki, and 
indeed such semantic tools naturally fit in. 
 

The remaining of this paper is organized as follows: 
In Section 2 we discuss the general approach, in 
section 3 we give a preliminary example and then in 
section 4 we conclude with some remarks and future 
work. 

2 THE SOLUTION – ENHANCED 
WIKI 

2.1 Enhanced Wiki 

The main idea is to use wiki as the "center of mass" 
for software documentation. We want to build on the 
existing wide wiki engines and tools, especially 
dedicated parsers and generators (as mentioned 
above in section 1.4) to keep the documentation and 
the code in sync. Various documentation tools will 
be plugged into the wiki ecosystem.  

The case study in the next section will use, as a 
starting point, a new tool that uses a wiki for 
working with executable specifications. We intend 
to extend the approach of such a tool into using a 
non-fixed set of tools and methods (abbreviated Lido 
for Living Documentation) for producing various 
kinds of documentation. 

In particular, we suggest marking domain 
concepts in the wiki in such a way the various 
documentation tools will detect those concepts and 
help generate more meaningful documentation. 

A suggested workflow for working in this way, 
is as follows: 

a. Executable Specification – one writes an 
executable specification in a wiki (using standard 
Markup), 

b. Domain Annotation – using markup special 
syntax to mark domain and software related 

entities (e.g. using DDD vocabulary), 
c. Diagram Generation – using the entities above, 

possibly with other added information, e.g. 
connection between entities, generating diagrams 
(e.g. in UML), 

d. Connection of Specifications to Tests – 
underneath, step definitions are generated which 
connect sentences from the specification to tests 
which exercise the system under test,  

e. Run Results – finally the result of this run appear 
in a web page 

f. Coding – implementing in a programming 
language the missing parts, 

g. Updating and Iterating – continuously evolving 
the code and the documentation up to the point 
of a successful release. 

 

Other steps are possible too, as will be demonstrated 
in the next section. Also, the order is not necessary 
and should be adapted and customized to the 
development methodology in use.  

The main contribution of this paper is gathering 
various tools under the umbrella of wiki to achieve 
really live documentation. 

3 A CASE STUDY: 
BLACK-LISTING 
APPLICATION 

We demonstrate here our method by combining the 
basic techniques of our previous approach to 
executable specifications (Exman et al., 2014; 
Yagel, 2011; Yagel et al., 2013) with the approach 
of the above referred tool DaSpec (DaSpec).  

 

Figure 1: Executable Specification. 

SKY 2015 - 6th International Workshop on Software Knowledge

28



 

We suggest expanding the idea of using wiki for 
writing executable specifications into a suite of 
living documentation techniques. 

We extend here an example of a black listing 
application. Here we demonstrate some of the steps 
described above. In Figure 1 we see an executable 
specification – taken from DaSpecs' documentation 
site (http://daspec.com/examples/basic/checking_ 
for_missing_and_additional_list_items/, the actual 
purpose is to demonstrate working with list of 
items). 
 

 

Figure 2: Annotating Domain Concepts. 

We can enrich this specification in several ways. 
We shall give the following methods: 
a. Mark Domain Concepts – here we use bold 

Markdown syntax (**) to mark concepts of the 
target domain – Figure 2. 

b. Glossary – add a glossary part to the wiki which 
can then be output in different formats – Figure 
3. 

c. Class Diagram – use text syntax to generate a 
class diagram – Figure 4. 

 

 

Figure 3: Glossary. 

 

Figure 4: Class Diagram. 

See also our previous work (Exman et al., 2014) 
for a thorough discussion about finding entities in 
executable specifications. 

4 DISCUSSION 

We have given preliminary ideas how wiki can serve 
as a basis for more meaningful documentation. 
Some documentation types need extra syntax not 
covered by common Markup, the UML class 
diagram is an example for that. 

Wiki software saves also the history of edits, in 
order to take advantage of it, custom diffs, e.g. 
graphic diff, might be needed as well. 

We need to be careful not to constrain ourselves 
to the wiki medium in a way that will harm other 
useful kinds of documentation. For legacy systems it 
might be too extensive to convert existing 
documentation, for example a specification is given 
in a Doc file format. 

Traceability between documents themselves and 
between the source code is still an open issue that 
can be further investigated. 

In the spirit of this work we believe that 
documentation wiki should be an integral part of the 
configuration management of a project, in order to 
be better integrated and influencing. 

4.1 Future Work 

We plan to further extend previous work (Exman et 
al., 2014) and also use mark-up based executable 
specification augmented by domain annotations, as 
well as integrating ontology repositories. Then, 
combining various tools in coherent ways, as much 
as possible. 

We aim for building a framework for better 
integration of the discussed wiki tools. This will also 
allow to measure and compare the success and 
impact of various tools and the whole process. 

4.2 Main Contribution 

By having better tools we can expect from software 
developers to create better documentation and work 
in higher levels of abstraction. Ultimately, this can 
lead to working only in those higher and more 
human oriented levels, automating the rest of the 
work. 

Lido – Wiki based Living Documentation with Domain Knowledge

29



 

ACKNOWLEDGEMENTS 

I would like to thank Iaakov Exman for the fruitful 
discussion and collaboration. And also the 
anonymous reviewer who pointed out semantic wiki 
and other useful comments. 

REFERENCES 

Adzic, G., 2008. Test Driven .NET Development with 
FitNesse, Neuri, London, UK. 

Adzic, G., 2009. Bridging the Communication Gap: 
Specification by Example and Agile Acceptance 
Testing, Neuri, London, UK. 

Adzic, G., 2011. Specification by Example – How 
Successful Teams Deliver the Right Software, 
Manning, New York, USA. 

ArgoUML. Available from: http://argouml.tigris.org/. [29 
September 2015]. 

BDDfy. Available from: https://github.com/ 
TestStack/TestStack.BDDfy. [29 September 2015]. 

Brown, K., 2011. Taking executable specs to the next 
level: Executable Documentation, Available from: 
http://keithps.wordpress.com/2011/06/26/taking-
executable-specs-to-the-next-level-executable-
documentation/. [1 September 2011]. 

DaSpec. Available from: http://daspec.com/. [29 
September 2015]. 

Evans E., 2003. Domain-Driven Design: Tackling 
Complexity in the Heart of Software. Prentice Hall. 

Exman I., Litovka, A. and Yagel, R., 2014. Ontologies + 
Mock Objects = Runnable Knowledge, the 5th 
International Conference on Knowledge Discovery, 
Knowledge Engineering and Knowledge Management 
(IC3K) - SKY Workshop, Rome, Italy. 

Feathers M., 2004. Working Effectively with Legacy Code. 
Prentice Hall, 2004. 

Fowler M., 2003. UML distilled, 3rd ed., Addison Wesley. 
Github. Available from: https://github.com/. [29 

September 2015]. 
Graphviz. Available from: http://www.graphviz.org/. [29 

September 2015]. 
Krötzsch M., Vrandecic D., Völkel M., Haller H., Studer 

R., 2007. Semantic Wikipedia. In Journal of Web 
Semantics 5/2007, pp. 251–261. Elsevier. 

IBM. Rational Team Concert. Available from: 
http://www-03.ibm.com/software/products/en/rtc. [29 
September 2015]. 

Mapador. Available from: http://www.mapador.com/ 
documentation/. [29 September 2015]. 

Martraire C., 2016. Living Documentation - A low-effort 
approach of Documentation that is always up-to-date, 
inspired by Domain-Driven Design. Leanpub 
(expected). http://leanpub.com/livingdocumentation. 

MediaWiki. Available from: https://www.mediawiki.org/. 
[29 September 2015]. 

North, D., 2006. Introducing Behaviour Driven 

Development, Better Software Magazine. Available 
from: http://dannorth.net/introducing-bdd/. [29 
September 2015]. 

Osetinsky I, and Yagel, R., 2014. Working More 
Effectively with Legacy Code Using Domain 
Knowledge and Abstractions – A Case Study, the 5th 
International Conference on Knowledge Discovery, 
Knowledge Engineering and Knowledge Management 
(IC3K) - SKY Workshop, Rome, Italy. 

Smart J. F., 2014. BDD in Action Behavior-Driven 
Development for the whole software lifecycle, 
Manning. 

SpecFlow. Pragmatic BDD for .NET. Available from: 
http://specflow.org. [29 September 2015]. 

Wynne, M. and Hellesoy, A., 2012. The Cucumber Book: 
Behaviour Driven Development for Testers and 
Developers, Pragmatic Programmer, New York. 

Wikipedia. Available from: 
https://en.wikipedia.org/wiki/Wiki. [29 September 
2015].  

Yagel, R., 2011. Can Executable Specifications Close the 
Gap between Software Requirements and 
Implementation?, pp. 87-91, in Exman, I., Llorens, J. 
and Fraga, A. (eds.), Proc. SKY'2011 Int. Workshop on 
Software Engineering, SciTePress, Portugal. 

Yagel, R., Litovka, A. and Exman I., 2013: KoDEgen: A 
Knowledge Driven Engineering Code Generating 
Tool, The 4th International Conference on Knowledge 
Discovery, Knowledge Engineering and Knowledge 
Management (IC3K) - SKY Workshop, Vilamoura, 
Portugal. 

SKY 2015 - 6th International Workshop on Software Knowledge

30


